Skip to main content

Abstract

Plant seeds vary widely in size, and in the nature and amount of the reserve materials which they provide for the germinating seedling. The nitrogenous metabolism of seedlings has, for obvious reasons of experimental convenience, been studied in large-seeded species, usually with substantial reserves of nitrogenous compounds. Some gymnosperms, particularly cycads, have very large seeds but except for a few studies with coniferous seedlings, flowering plants have been used in nearly all of the work on the metabolic changes in germination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • Abelson, P. H., E. Bolton, R. Britten, D. B. Cowie and R. B. Roberts: Synthesis of the aspartic and glutamic families of amino acids in Escherichia coli. Proc. Nat. Acad. Sci. U.S.A. 39, 1020 (1953).

    Article  CAS  Google Scholar 

  • Albaum, H. G., and P. P. Cohen: Transamination and protein synthesis in germinating oat seedlings. J. of Biol. Chem. 149, 19 (1943).

    CAS  Google Scholar 

  • Algeus, S.: The utilization of aspartic acid, succinamide and asparagine by Scenedesmus obliquus. Physiol. Plantarum (Copenh.) 3, 225 (1950).

    Article  Google Scholar 

  • Annett, H. E.: The urease content of certain Indian seeds. Biochemic. J. 8, 449 (1914).

    CAS  Google Scholar 

  • Archibald, R. M.: The enzymatic determination of glutamine. J. of Biol. Chem. 154, 643 (1944).

    CAS  Google Scholar 

  • Balicka-Iwanowska, G.: O rozkladzie i odtwarzaniu materyi bialkowatych u roslin. Rozprawy Akad. Krakow, Ser. III 3, 1 (1903).

    Google Scholar 

  • Barrien, B. S., and J. G. Wood: Studies on the sulphur metabolism of plants. II. New Phytologist 38, 257 (1939).

    Article  CAS  Google Scholar 

  • Barry, J. M.: Asparagine in blood plasma. Nature (Lond.) 171, 1123 (1953).

    Article  CAS  Google Scholar 

  • Berg, A. M., S. Kari, M. Alfthan U. A. I. Virtanen: Homoserine and α-aminoadipic acid in green plants. Acta chem. scand. (Copenh.) 8, 358 (1954).

    Article  CAS  Google Scholar 

  • Bhagvat, K., and M. Sreenivasaya: The non-protein nitrogen of pulses. Biochemic. J. 29, 909 (1935).

    CAS  Google Scholar 

  • Bishop, L. R.: The changes undergone by the nitrogenous constituents of barley during malting. J. Inst. Brew. 35 (26 N. S.), 323 (1929).

    CAS  Google Scholar 

  • Björkstén, J.: Zur Kenntnis der Synthese von Eiweißstoffen und ihrer Bausteine bei höheren Pflanzen. Biochem. Z. 225, 1 (1930).

    Google Scholar 

  • Blagoveshchenski, A. V.: On the specific action of plant proteases. Biochemic. J. 18, 795 (1924).

    Google Scholar 

  • Über die synthetische Wirkung der pflanzlichen Proteasen. Biochem. Z. 168, 1 (1926).

    Google Scholar 

  • Blagoveshchenske, A. V., and A. N. Bielozerski: The specific action of plant ferments. II. The specific conditions of action of leaf peptases. Biochemic. J. 19, 355 (1925).

    Google Scholar 

  • Blagoveshchenski, A. V., u. R. M. Melamed: Die proteolytischen Fermente der Samen einiger Pflanzen. Biochem. Z. 273, 435 (1934).

    Google Scholar 

  • Borodin, I.: Über die physiologische Rolle und die Verbreitung des Asparagins im Pflanzenreiche. Bot. Z. 36, 801 (1878).

    Google Scholar 

  • Boussingault, J. B. J. D.: De la végétation dans l’obscurité. C. r. Acad. Sci. Paris 58, 917 (1864).

    Google Scholar 

  • Braunstein, A. E., i M. G. Kritzmann: Amino-acid formation by intermolecular transfer of amino-groups. 1. The metabolism of l-(+)-glutamic acid in muscle tissue. Biokhim. 2, 242 (1937a).

    Google Scholar 

  • Über den Ab- und Aufbau von Aminosäuren durch Umaminierung. Enzymol. 2, 129 (1937b).

    Google Scholar 

  • Brown, R.: Studies on germination and seedling growth. III. Early growth in relation to certain aspects of nitrogen metabolism in the seedling of barley. Ann. of Bot., N, S. 10, 73 (1946).

    CAS  Google Scholar 

  • Butkevich, V.: Über das Vorkommen proteolytischer Enzyme in gekeimten Samen und über ihre Wirkung. I. Ber. dtsch. bot. Ges. 18, 185 (1900a).

    Google Scholar 

  • Über das Vorkommen proteolytischer Enzyme in gekeimten Samen und über ihre Wirkung. II. Ber. dtsch. bot. Ges. 18, 358 (1900b).

    Google Scholar 

  • Über das Vorkommen eines proteolytischen Enzyms in gekeimten Samen und über ihre Wirkung. Z. physiol. Chem. 32, 1 (1901).

    Google Scholar 

  • Chibnall, A. C.: Protein metabolism in the plant. New Haven, Conn.: 1939.

    Google Scholar 

  • Chibnall, A. C., and M. W. Rees: Further observations on the amide and free carboxyl groups of insulin. Biochemic. J. 52, iii (1952).

    CAS  Google Scholar 

  • Chibnall, A. C, and R. G. Westall: Estimation of glutamine in the presence of asparagine. Biochemic. J. 26, 122 (1932).

    CAS  Google Scholar 

  • Christiansen, G. S., and K. V. Thimann: The metabolism of stem tissue during growth and its inhibition. III. Nitrogen metabolism. Arch. of Biochem. 28, 117 (1950).

    CAS  Google Scholar 

  • Collier, H. B.: The problem of plastein formation. II. The chemical changes involved in plastein formation by papain and by pepsin. Canad. J. Res., Sect. B 18, 272 (1940).

    Google Scholar 

  • Curtis, L. C.: The exudation of glutamine from lawn grass. Plant Physiol. 19, 1 (1944).

    Article  PubMed  CAS  Google Scholar 

  • Damodaran, M.: The isolation of asparagine from an enzymic digest of edestin. Biochemic. J. 26, 235 (1932).

    CAS  Google Scholar 

  • Damodaran, M., G. Jaaback and A. C. Chibnall: The isolation of glutamine from an enzymic digest of gliadin. Biochemic. J. 26, 1704 (1932).

    CAS  Google Scholar 

  • Damodaran, M., and K. G. A. Narayanan: A comparative study of arginase and canavanase. Biochemic. J. 34, 1449 (1940).

    CAS  Google Scholar 

  • Damodaran, M., R. Ramaswamy, T. R. Venkatesan, S. Mahadevan and K. Ramdas: Amide synthesis in plants. II. Amino-acid changes in germinating seedlings. Proc. Indian Acad. Sci., Sect. B 23, 86 (1946).

    Google Scholar 

  • Damodaran, M., and T. R. Venkatesan: Amide synthesis in plants. III. Urea formation in seedlings. Proc. Indian Acad. Sci., Sect. B 27, 26 (1948).

    Google Scholar 

  • Danielsson, C. E.: The breakdown of the high-molecular reserve proteins of peas during germination. Acta chem. scand. (Copenh.) 5, 541 (1951).

    Article  CAS  Google Scholar 

  • Davison, D. C, and W. H. Elliott: Enzymic reaction between arginine and fumarate in plant and animal tissues. Nature (Lond.) 169, 313 (1952).

    Article  CAS  Google Scholar 

  • Dekker, C. A., D. Stone and J. S. Fruton: A peptide from a marine alga. J. of Biol. Chem. 181, 719 (1949).

    CAS  Google Scholar 

  • Done, J., and L. Fowden: A new amino-acid amide in the groundnut plant (Arachis hypogaea): evidence of the occurrence of γ-methylene glutamine and γ-methylene glutamic acid. Biochemie. J. 51, 451 (1952).

    CAS  Google Scholar 

  • Dumas, J. B., et A. Cahours: Sur les matières azotées neutres de l’organisation. Ann. Chim. Phys., Sér. III 6, 385 (1842).

    Google Scholar 

  • Elliott, W. H.: Studies on the enzymatic synthesis of glutamine. Biochemic. J. 49, 106 (1951).

    CAS  Google Scholar 

  • Elliott, W. H., and E. F. Gale: Glutamine-synthesizing system of Staphylococcus aureus: its inhibition by crystal violet and methionine sulphoxide. Nature (Lond.) 161, 129 (1948).

    Article  CAS  Google Scholar 

  • Emmerling, C.: Aminosäuren als Nährstoffe für niedrigere Pflanzen. Ber. dtsch. chem. Ges. 35, 2289 (1902).

    Article  CAS  Google Scholar 

  • Fincham, J. R. S.: Ornithine transaminase in Neurospora and its relation to the biosynthesis of proline. Biochemic. J. 53, 313 (1953).

    CAS  Google Scholar 

  • Fisher, E. A.: Contributions to a study of the vegetable protease. I. Introductory. Biochemic. J. 13, 124 (1919).

    CAS  Google Scholar 

  • Folkes, B. F.: Amino-acid interconversion during the germination of barley grains. Biochemic. J. 49, xxvii (1951).

    CAS  Google Scholar 

  • Folkes, B. F., A. J. Willis and E. W. Yemm: The respiration of barley plants. VII. The metabolism of nitrogen and respiration in seedlings. New Phytologist 51, 317 (1952).

    Article  Google Scholar 

  • Fosse, R.: Uréogenese et metabolisme de l’azote purique chez les végétaux. C. r. Acad. Sci. Paris 208, 865 (1939).

    CAS  Google Scholar 

  • Fowden, L., and J. Done: A third unsaturated amino-acid in groundnut plants: evidence for the occurrence of γ-amino-α-methylenebutyric acid. Biochemic. J. 55, 548 (1953).

    CAS  Google Scholar 

  • Fraser, D., W. O. Kermack, H. Lees and J. D. Wood: Non-protein nitrogen fractions of the flesh of lobsters and crabs. Biochemic. J. 51, xxxii (1952).

    Google Scholar 

  • Frei, J., u. F. Leuthardt: La synthèse biologique de la glutamine. Helvet. chim. Acta 32, 1137 (1949).

    Article  PubMed  CAS  Google Scholar 

  • Fries, N.: Limiting factors in the growth of the pea seedling root. Physiol. Plantarum (Copenh.) 6, 292 (1953).

    Article  CAS  Google Scholar 

  • Gäumann, E.: Der Einfluß der Keimungstemperatur auf die chemische Zusammensetzung der Getreidekeimlinge. I. Z. Bot. 25, 385 (1931/32).

    Google Scholar 

  • Giri, K. V., A. N. Radhakrishnan and C. S. Vaidyanathan: Transaminase activity in plants. J. Indian Inst. Sci. 34, 305 (1952).

    CAS  Google Scholar 

  • Gorup-Besanez, E. v.: Leucin neben Asparagin in dem frischen Safte der Wickenkeime. Ber. dtsch. chem. Ges. 7, 146 (1874a).

    Article  Google Scholar 

  • Über das Vorkommen eines diastatischen und peptonbildenden Ferments in den Wickensamen. Ber. dtsch. chem. Ges. 7, 1478 (1874b)

    Google Scholar 

  • Greenhill, A. W., and A. C. Chibnall: Exudation of glutamine from perennial rye grass. Biochemic. J. 28, 1422 (1934).

    CAS  Google Scholar 

  • Hanes, C. S., F. J. R. Hird and F. A. Isherwood: Enzymic transpeptidation reactions involving γ-glutamyl peptides and γ-amino-acyl peptides. Biochemic. J. 51, 25 (1952).

    CAS  Google Scholar 

  • Harris, J. I.: The use of carboxypeptidase for the identification of terminal carboxyl groups in polypeptides and proteins. Asparagine as a C-terminal residue in insulin. J. Amer. Chem. Soc. 74, 2944 (1952).

    Article  Google Scholar 

  • Hartig, T.: Über das Klebermehl. Bot. Z. 13, 881 (1855).

    Google Scholar 

  • Hlasiwetz, H., u. J. Habermann: Über die Proteinstoffe. Liebigs Ann. 169, 150 (1873).

    Article  Google Scholar 

  • Holton, F. A.: An oxido-reduction reaction of α-oxoglutarate coupled with direct transfer of an amino-group. Comm. Biochem. Soc. 330th meeting, 19 June. p. 1. 1954.

    Google Scholar 

  • Huang, H. T., and C. Niemann: The inertness of crystalline ovalbumin in systems containing α-chymotrypsin and hydrolyzable substrates. J. Amer. Chem. Soc. 72, 4286 (1950).

    Article  CAS  Google Scholar 

  • James, W. O.: The amino-acid precursors of the belladonna alkaloids. New Phytologist 48, 172 (1949).

    Article  CAS  Google Scholar 

  • Plant respiration. Oxford 1953.

    Google Scholar 

  • Jodidi, S. L.: Physiological studies on cereals. II. The occurrence of amino acids and polypeptides in the ungerminated oat kernel. J. Franklin Inst. 198, 201 (1924).

    Article  CAS  Google Scholar 

  • Physiological studies on cereals. III. The occurrence of amino acids and polypeptides in the ungerminated maize kernel. J. Agricult. Res. 30, 587 (1925).

    Google Scholar 

  • Jodidi, S. L., and K. S. Markley: The occurrence of polypeptides and free amino acids in the ungerminated wheat kernel. J. Amer. Chem. Soc. 45, 2137 (1923).

    Article  CAS  Google Scholar 

  • Jodidi, S. L., and J. G. Wangler: Physiological and biochemical studies on cereals. IV. On the presence of amino acids and polypeptides in the ungerminated rye kernel. J. Agricult. Res. 30, 989 (1925).

    CAS  Google Scholar 

  • Kating, H.: Zur Rolle der γ-Aminobuttersäure im Stoffwechsel von Endomycopsis vernalis. Naturwiss. 41, 188 (1954).

    Article  CAS  Google Scholar 

  • Kiesel, A.: Über den fermentativen Abbau des Arginins in Pflanzen. Z. physiol. Chem. 75, 169 (1911).

    Article  Google Scholar 

  • Über den fermentativen Abbau des Arginins in Pflanzen. II. Abhandlung. Z. physiol. Chem. 118, 267 (1922).

    Google Scholar 

  • Kjeldahl, J.: Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. anal. Çhem. 22, 366 (1883).

    Article  Google Scholar 

  • Klein, G., u. K. Tauböck: Harnstoff und Ureide bei den höheren Pflanzen. I. Das Vorkommen von Harnstoff im Pflanzenreich und sein Wandel im Laufe der Vegetationsperiode. Jb. wiss. Bot. 74, 429 (1931a).

    CAS  Google Scholar 

  • Harnstoff und Ureide bei den höheren Pflanzen. III. Das Vorkommen von Ureiden. Quantitative Bestimmung von freiem und gebundenem Harnstoff. Biochem. Z. 241, 413 (1931b).

    Google Scholar 

  • Kotake, Y., U. F. Knoop: Über einen krystallisierten Eiweißkörper aus dem Milchsafte der Antiaris toxicaria. Z. physiol. Chem. 75, 488 (1911).

    Article  Google Scholar 

  • Krebs, H. A.: Metabolism of amino acids. IV. The synthesis of glutamine from glutamic acid and ammonia and the enzymic hydrolysis of glutamine in animal tissues. Biochemic. J. 29, 1951 (1935).

    CAS  Google Scholar 

  • Manometric determination of L-aspartic acid and L-asparagine. Biochemie. J. 47, 605 (1950).

    Google Scholar 

  • Krebs, H. A., and P. P. Cohen: Metabolism of α-ketoglutaric acid in animal tissues. Biochemic. J. 33, 1895 (1939).

    CAS  Google Scholar 

  • Krebs, H. A., u. H. Henseleit: Untersuchungen über die Harnstoffbildung im Tierkörper. Z. physiol. Chem. 210, 33 (1932).

    Article  CAS  Google Scholar 

  • Kretovich, V., i A. A. Bundel: Formation of alanine in the plant by direct amination of pyruvic acid. C. r. Acad. Sci. URSS. 74, 107 (1950).

    CAS  Google Scholar 

  • Kretovich, V., i R. R. Tokareva: Interaction of amino-acids and sugars at high temperatures. Biokhim. 13, 508 (1948).

    CAS  Google Scholar 

  • Kretovich, V. L., i Z. G. Yevstigneyeva: Synthesis of glutamine and asparagine in plants. C. r. Acad. Sci. URSS. 66, 429 (1949).

    CAS  Google Scholar 

  • Kritzmann, M. G.: The enzyme system transferring the amino group of aspartic acid. Nature (Lond.) 143, 603 (1939).

    Article  Google Scholar 

  • Krotkov, G., E. J. Masoro, C. D. Nelson and G. B. Reed: Utilization of asparagine by rats. Arch. of Biochem. 42, 431 (1953).

    Google Scholar 

  • Kudryashova, N. A., i E. V. Kolobkova: Content of free amino-acids in dormant seeds. C. r. Acad. Sci. URSS. 91, 1365 (1953).

    CAS  Google Scholar 

  • Kylin, A.: The uptake and metabolism of sulphate by deseeded wheat plants. Physiol. Plantarum (Copenh.) 6, 775 (1953).

    Article  CAS  Google Scholar 

  • Leach, S. J., and H. Lindley: Structure of asparagine. Nature (Lond.) 171, 1062 (1953).

    Article  CAS  Google Scholar 

  • Lehmann, E., U. F. Aichele: Keimungsphysiologie der Gräser. Stuttgart 1931.

    Google Scholar 

  • Leloir, L. F., and C. E. Cardini: The biosynthesis of glucosamine. Biochim. et Biophysica Acta 12, 15 (1953).

    Article  CAS  Google Scholar 

  • Linderstrøm-Lang, K., R. D. Hotchkiss and G. Johansen: Peptide bonds in globular proteins. Nature (Lond.) 142, 996 (1938).

    Article  Google Scholar 

  • Mack, W. R.: Über das Vorkommen von Pepton in Pflanzensamen. Z. physiol. Chem. 42, 259 (1904).

    Article  CAS  Google Scholar 

  • Mardashev, S. R., i N. N. Lestrovaya: Biological synthesis of asparagine and glutamine by transamidation. C. r. Acad. Sci. URSS. 78, 547 (1951).

    CAS  Google Scholar 

  • Maschke, O.: Krystallisirte Caseinverbindung. J. prakt. Chem. 74, 436 (1858).

    Article  Google Scholar 

  • Matsuda, K., and K. Aso: Utilization of apples. VII. By-products of apple-pulp manufacturing. J. Fermentation Technol. (Japan) 30, 23 (1950). Quoted from Chem. Abstr. 47, 2393h (1953).

    Google Scholar 

  • Mc Kee, H. S.: A review of recent work on the nitrogen metabolism of plants. New Phytologist 36, 33, 240 (1937).

    Article  CAS  Google Scholar 

  • Review of recent work on nitrogen metabolism. New Phytologist 48, 1 (1949).

    Google Scholar 

  • Studies on the nitrogen metabolism of the barley plant (Hordeum sativum). Austral. J. Sci. Res., Sect. B 3, 474 (1950).

    Google Scholar 

  • Mc Kenzie, H. A., and H. S. Wallace: The Kjeldahl determination of nitrogen: a critical study of digestion conditions—temperature, catalyst, and oxidizing agent. Austral. J. Chem. 7, 55 (1954).

    Article  CAS  Google Scholar 

  • Meiss, A. N.: The formation of asparagine in etiolated seedlings of Lupinus albus L. Conn. Agricult. Exper. Stat. Bull. 1952, 552.

    Google Scholar 

  • Meister, A., H. A. Sober, S. V. Tice and P. E. Fraser: Transamination and associated deamidation of asparagine and glutamine. J. of Biol. Chem. 197, 319 (1952).

    CAS  Google Scholar 

  • Melville, J.: Labile glutamic peptides and their bearing on the origin of the ammonia set free during the enzymic digestion of proteins. Biochemic. J. 29, 187 (1935).

    CAS  Google Scholar 

  • Miettinen, J. K., u. A. I. Vertanen: Nitrogen metabolism of pea and alder. Transamination of γ-aminobutyric acid and l(+)-citrulline with α-ketoglutaric acid. Acta chem. scand. (Copenh.) 7, 1243 (1953).

    Article  CAS  Google Scholar 

  • Mothes, K.: Physiologische Untersuchungen über das Asparagin und das Arginin in Coniferen. Planta (Berl.) 7, 585 (1929).

    Article  Google Scholar 

  • Die Vakuuminfiltration im Ernährungsversuch (dargestellt an Untersuchungen über die Assimilation des Ammoniaks). Planta (Berl.) 19, 117 (1933).

    Google Scholar 

  • Nasse, O.: Studien über die Eiweißkörper. Pflügers Arch. 6, 589 (1872).

    Article  Google Scholar 

  • Ørstrøm, A.: Über die chemischen Vorgänge, insbesondere den Ammoniakstoffwechsel bei der Entwicklungserregung des Seeigeleies. Z. physiol. Chem. 271, 1 (1941).

    Article  Google Scholar 

  • Ory, R. L., D. W. Hood and C. M. Lyman: The role of glutamine in the synthesis of arginine by Lactobacillus arabinosus. J. of Biol. Chem. 207, 267 (1954).

    CAS  Google Scholar 

  • Osborne, T. B.: The Vegetable Proteins, 2nd ed. London 1924.

    Google Scholar 

  • Pasteur, L.: Nouvelles recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le phenomène de la polarisation rotatoire. Ann. Chim. Phys., Sér. III 31, 67 (1851).

    Google Scholar 

  • Petrie, J. M.: The role of nitrogen and its compounds in plant-metabolism. Part II. The non-protein nitrogen in seeds. Proc. Linnean Soc. N. S. Wales 33, 835 (1908).

    Google Scholar 

  • Pfeffer, W.: Untersuchungen über die Proteinkörner und die Bedeutung des Asparagins beim Keimen der Samen. Jb. wiss. Bot. 8, 429 (1872).

    Google Scholar 

  • Piria, R.: Note sur l’asparagine. C. r. Acad. Sci. Paris 19, 575 (1844).

    Google Scholar 

  • Recherches sur la constitution chimique de l’asparagine et de l’acide aspartique. Ann. Chim. Phys., Sér. III 22, 160 (1848).

    Google Scholar 

  • Piutti, A.: Sintesi dell’acido aspartico. Gazz. chim. ital. 17, 519 (1887).

    Google Scholar 

  • Sintesi e constituzione delle asparagine. Gazz. chim. ital. 18, 457 (1888).

    Google Scholar 

  • Plisson, A.: Sur l’identité du malate acide d’althéine avec l’asparagine. Ann. Chim. Phys. 36, 175 (1827).

    Google Scholar 

  • Pryantshntkov, D.: Zur Kenntnis der Keimungsvorgänge bei Vicia sativa. Landw. Ver suchsstat. 45, 247 (1895).

    Google Scholar 

  • Eiweißzerfall und Atmung an ihren gegenseitigen Verhältnissen. Landw. Versuchsstat. 52, 137 (1899).

    Google Scholar 

  • Über den Einfluß der Temperatur auf die Energie des Eiweißzerfalls. Ber. dtsch. bot. Ges. 18, 285 (1900).

    Google Scholar 

  • Über den Aufbau und Abbau des Asparagins in den Pflanzen. Ber. dtsch. bot. Ges. 40, 242 (1922a).

    Google Scholar 

  • Ammoniak als Alpha und Omega des Stickstoffumsatzes in Pflanzen. Landw. Versuchsstat. 99, 267 (1922 b)

    Google Scholar 

  • Sur le role de l’asparagine dans les transformations des matières azotées chez les plantes. Rev. gén. Bot. 36, 108, 159 (1924).

    Google Scholar 

  • Nitrogen in the life of plants. (English translation by S. A. Wilde.) Madison, Wis. 1945.

    Google Scholar 

  • Pryantshntkov, D. N., U. I. Shulov: Über die synthetische Asparaginbildung in den Pflanzen. Ber. dtsch. bot. Ges. 28, 253 (1910).

    Google Scholar 

  • Racusen, D. W., and S. Aronoff: Metabolism of soybean leaves. VI. Exploratory studies in protein metabolism. Arch. of Biochem. a. Biophysics 51, 68 (1954).

    Article  CAS  Google Scholar 

  • Ratner, S., and A. Pappas: Biosynthesis of urea. I. Enzymatic mechanism of arginine synthesis from citrulline. J. of Biol. Chem. 179, 1183 (1949).

    CAS  Google Scholar 

  • Ratner, S., B. Petrack and O. Rochovansky: Biosynthesis of urea. V. Isolation and properties of argininosuccinic acid. J. of Biol. Chem. 204, 95 (1953).

    CAS  Google Scholar 

  • Rautanen, N.: Transamination in green plants. J. of Biol. Chem. 163, 687 (1946).

    CAS  Google Scholar 

  • On the synthesis of the first amino acids of green plants. Ann. Acad. Sci. fenn., Ser. A, II. Chem. 1948, No 33.

    Google Scholar 

  • Rice, R. G., G. A. Ballou, P. D. Boyer, J. M. Luck and F. G. Lum: The papain digestion of native, denatured, and “stabilized” human serum albumin. J. of Biol. Chem. 158, 609 (1945).

    CAS  Google Scholar 

  • Richardson, C., U. C. A. Crampton: Vorläufige Mittheilung über die Zusammensetzung des Weizenkeimes und über die Anwesenheit von einer neuen Zuckerart und von Allantoin. Ber. dtsch. chem. Ges. 19, 1180 (1886).

    Article  Google Scholar 

  • Rijven, A. H. G. C.: Effects of glutamine, asparagine and other related compounds on the growth of embryos of Capsella bursa-pastoris. Proc. Kon. Ned. Akad. v. Wetensch. C 58, 368 (1955).

    Google Scholar 

  • Ritthausen, H.: Asparaginsäure und Glutaminsäure, Zersetzungsprodukte des Legumins beim Kochen mit Schwefelsäure. J. prakt. Chem. 106, 445 (1869).

    Article  Google Scholar 

  • Die Eiweißkörper der Getreidearten, Hülsenfrüchte und Ölsamen. Bonn

    Google Scholar 

  • Handbuch d. Pflanzenphysiologie, Bd. VIII 33 1872.

    Google Scholar 

  • Roberts, E., P. Ayengar and I. Posner: Transamination of γ-aminobutyric acid and β-alanine in microorganisms. J. of Biol. Chem. 203, 195 (1953).

    CAS  Google Scholar 

  • Roine, P.: On the synthesis of nitrogenous compounds by yeast. II. The soluble compounds formed during the uptake of ammonium nitrogen by low-nitrogen yeast. Suomen Kemistil., Ser. B 19, 73 (1946a).

    Google Scholar 

  • On the role of glutamine in the protein synthesis by yeast. Suomen Kemistil., Ser. B 19, 113 (1946b).

    Google Scholar 

  • Ruhland, W., U. K. Wetzel: Zur Physiologie der organischen Säuren in grünen Pflanzen. III. Rheum hybridum hort. Planta (Berl.) 3, 765 (1927).

    Article  CAS  Google Scholar 

  • Säverborn, S., K. E. Danielsson U. T. Svedberg: The globulins of cereals and malt. Sv. kern. Tidskr. 56, 75 (1944).

    Google Scholar 

  • Saidel, L. J.: Contribution of the ultra-violet spectrum of asparagine to the problem of its structure. Nature (Lond.) 172, 955 (1953).

    Article  CAS  Google Scholar 

  • Sakato, Y.: The chemical constituents of tea. III. A new amide, theanine. J. Agricult. Chem. Soc. Japan 23, 262 (1950). Quoted from Chem. Abstr. 45, 3528 (1952).

    Article  CAS  Google Scholar 

  • Sanger, F., and E. O. P. Thompson: The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochemic. J. 53, 353 (1953a).

    CAS  Google Scholar 

  • The aminoacid sequence in the glycyl chain of insulin. 2. The investigation of peptides from enzymic hydrolysates. Biochmic. J. 53, 366 (1953 b).

    Google Scholar 

  • Schjerning, H.: On the proteid substances of barley, in the grain itself and during the brewing process. C. r. Trav. Labor. Carlsberg 11, 45 (1914). Quoted from E. Lehmann and H. Aichele, 1931.

    Google Scholar 

  • Schmid,H., u. M. Serrano: Untersuchungen über die Nicotinbildung des Tabaks. I. Die Nicotinbildung im Keimling von Nicotiana rustica L. Experientia (Basel) 4, 311 (1948).

    Article  CAS  Google Scholar 

  • Schulze, B., U. E. Flechsig: Vergleichende Untersuchungen an verschiedenen Pflanzensamen über die Größe der Amidbildung bei der Keimung im Dunkeln. Landw. Versuchsstat. 32, 137 (1886).

    Google Scholar 

  • Schulze, E.: Landw. Jb. 7, 411 (1878). Quoted from Chibnall, 1939).

    Google Scholar 

  • Über die beim Umsatz der Proteinstoffe in den Keimpflanzen einiger Coniferen-Arten entstehenden Stickstoffverbindungen. Z. physiol. Chem. 22, 435 (1896/97).

    Google Scholar 

  • Schulze, E., U. J. Barbieri: Über das Vorkommen eines Glutaminsäure-Amides in den Kürbiskeimlingen. Ber. dtsch. chem. Ges. 10, 199 (1877).

    Article  Google Scholar 

  • Schulze, E., U. E. Bosshard: Über das Glutamin. Landw. Versuchsstat. 29, 295 (1883).

    Google Scholar 

  • Über das Glutamin. Ber. dtsch. chem. Ges. 16, 312 (1883).

    Google Scholar 

  • Schulze, E., U. N. Castoro: Beiträge zur Kenntnis der Zusammensetzung und des Stoffwechsels der Keimpflanzen. Z. physiol. Chem. 38, 199 (1903).

    Article  CAS  Google Scholar 

  • Beiträge zur Kenntnis der Zusammensetzung und des Stoffwechsels der Keimpflanzen. Z. physiol. Chem. 43, 170 (1904).

    Google Scholar 

  • Schulze, E., U. A. Likiernik: Über die Bildung von Harnstoff bei der Spaltung des Arginins. Ber. dtsch. chem. Ges. 24, 2701 (1801).

    Article  Google Scholar 

  • Schulze, E., u. W. Umlauft: Landw. Jb. 5, 819 (1876). Quoted from Chibnall, 1939.

    Google Scholar 

  • Schulze, E., U. A. Urich: Untersuchung über die stickstoffhaltigen Bestandtheile der Runkelrüben. (In reports by R. Gnehm of meetings of Chemische Gesellschaft Zürich 20 November and 18 December, 1876.) Ber. dtsch. chem. Ges. 10, 85 (1877).

    Article  Google Scholar 

  • Schulze, E., U. E. Winterstein: Über die Bildung von Ornithin bei der Spaltung des Arginins und über die Constitution dieser beiden Basen. Z. physiol. Chem. 26, 1 (1898).

    Article  CAS  Google Scholar 

  • Schwab, G.: Studien über Verbreitung und Bildung der Säureamide in der höheren Pflanze. Planta (Berl.) 25, 579 (1936).

    Article  CAS  Google Scholar 

  • Skinner, J. C., and H. E. Street: Studies on the growth of excised roots. II. Observations on the growth of excised groundsel roots. New Phytologist 53, 44 (1954).

    Article  CAS  Google Scholar 

  • Smirnov, A. I.: Über die Synthese der Säureamide in den Pflanzen bei Ernährung mit Ammoniaksalzen. Biochem. Z. 137, 1 (1923).

    CAS  Google Scholar 

  • Snoke, J. E.: On the mechanism of the enzymatic synthesis of glutathione. J. Amer. Chem. Soc. 75, 4872 (1953).

    Article  CAS  Google Scholar 

  • Sondheimer, E., and R. W. Holley: Synthesis of L-amino-succinimide. Nature (Lond.) 173, 773 (1954).

    Article  CAS  Google Scholar 

  • Speck, J. F.: The enzymatic synthesis of glutamine. J. of Biol. Chem. 168, 403 (1947).

    CAS  Google Scholar 

  • Spragg, S. P., and E. W. Yemm: Glutathione and ascorbic acid in the metabolism of germinating peas. Comm. 330th Meeting Biochem. Soc, 19th June, 1954.

    Google Scholar 

  • Srb, A. M., and N. H. Horowitz: The ornithine cycle in Neurospora and its genetic control. J. of Biol. Chem. 154, 129 (1944).

    CAS  Google Scholar 

  • Stein, W. H., A. C. Paladini, C. H. W. Hirs and S. Moore: Phenylacetylglutamine as a constituent of normal human urine. J. Amer. Chem. Soc. 76, 2848 (1954).

    Article  CAS  Google Scholar 

  • Steinhardt, J., and C. H. Fugitt: Catalysed hydrolysis of amide and peptide bonds in proteins. Bur. Stand. J. Res. Wash. 29, 315 (1942).

    CAS  Google Scholar 

  • Steward, F. C, and J. F. Thompson: Properties and physiological role of asparagine and glutamine, with a new interpretation of the structure of asparagine. Nature (Lond.) 169, 739 (1952).

    Article  CAS  Google Scholar 

  • Stokes, P.: The effect of temperature on metabolism. Ann. of Bot., N. S. 17, 157 (1953a).

    CAS  Google Scholar 

  • The stimulation of growth by low temperature in embryos of Heracleum sphondylium L. J. of Exper. Bot. 4, 222 (1953 b).

    Google Scholar 

  • Strachitski, K. I., i M. P. Chernikov: Enzymatic hydrolysis of native and denatured crystalline albumin from horse serum. Biokhim. 12, 277 (1947).

    Google Scholar 

  • Strassman, M., and S. Weinhouse: The biosynthesis of arginine by Torulopsis utilis. J. Amer. Chem. Soc. 74, 1726 (1952).

    Article  CAS  Google Scholar 

  • Stumpf, P. K.: Transaminases in higher plants. Federat. Proc. 10, 256 (1951).

    Google Scholar 

  • Sullivan, W. K.: Sur la presence de l’ammoniaque et de l’acide azotique dans la sève des végétaux. Ann. des Sci. natur. Bot., Sér. IV 9, 281 (1858).

    Google Scholar 

  • Sutulov, A. N.: La dégradation des protéines. C. r. Acad. Sci. URSS. 53, 331 (1946).

    Google Scholar 

  • Suzuki, U.: On the formation of asparagine in plants under different conditions. Bull. Coll. Agricult. Tokyo 2, 408 (1897).

    Google Scholar 

  • On the formation of arginin in coniferous plants. Bull. Coll. Agricult. Tokyo 4, 25 (1900–1902).

    Google Scholar 

  • Syrett, P. J.: The assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Part I. The correlation of assimilation with respiration. Ann. of Bot., N. S. 17, 1 (1953a).

    CAS  Google Scholar 

  • The assimilation of ammonia by nitrogen-starved cells of Chlorella vulgaris. Part II. The assimilation of ammonia to other compounds. Ann. of Bot., N. S. 17, 21 (1953b).

    Google Scholar 

  • Taggart, J. V., and R. B. Krakaur: Studies on the cyclophorase system. V. The oxidation of proline and hydroxyproline. J. of Biol. Chem. 177, 641 (1949).

    CAS  Google Scholar 

  • Thierfelder, H., u. C. P. Sherwin: Phenylacetyl-glutamin, ein Stoffwechsel-Produkt des menschlichen Körpers nach Eingabe von Phenyl-essigsäure. Ber. dtsch. chem. Ges. 47, 2630 (1914).

    Article  CAS  Google Scholar 

  • Thimann, K. V., R. R. Slater and G. S. Christiansen: The metabolism of stem tissue during growth and its inhibition. IV. Growth inhibition without enzyme poisoning. Arch. of Biochem. 28, 130 (1950).

    CAS  Google Scholar 

  • Ussing, H. H.: Isolation of asparagine from the haemolymph of Melolontha larvae. Nature (Lond.) 155, 481 (1945).

    Article  CAS  Google Scholar 

  • Vauquelin et Robiquet: Découverte d’un nouveau principe végétal dans les asperges (Asparagus sativus Linn.). Ann. de Chim. 57, 88 (1808).

    Google Scholar 

  • Vickery, H. B., and G. W. Pucher: Amide metabolism in etiolated seedlings. I. Asparagine and glutamine formation in Lupinus angustifolius, Vicia atropurpurea, and Cucurbita pepo. J. of Biol. Chem. 150, 197 (1943).

    CAS  Google Scholar 

  • Vickery, H. B., G. W. Pucher and H. E. Clark: Glutamine metabolism of the beet. Plant Physiol. 11, 413 (1936).

    Article  PubMed  CAS  Google Scholar 

  • Vertanen, A. I., and T. Laine: Investigations on the root nodule bacteria of leguminous plants. Biochemic. J. 33, 412 (1938).

    Google Scholar 

  • Über die Umaminierung in grünen Pflanzen. Biochem. Z. 308, 213 (1941).

    Google Scholar 

  • Virtanen, A. I., and J. K. Miettinen: Free amino-acids in the leaves, roots and root nodules of the alder (Alnus). Nature (Lond.) 170, 283 (1952).

    Article  CAS  Google Scholar 

  • Vogel, H. J., and B. D. Davis: Glutamic γ-semialdehyde and ⊿′-pyrroline-5-carboxylic acid, intermediates in the biosynthesis of proline. J. Amer. Chem. Soc. 74, 109 (1952).

    Article  CAS  Google Scholar 

  • Wada, M.: Über Citrullin, eine neue Aminosäure im Preßsaft der Wassermelone, Citrullus vulgaris Schrad. Biochem. Z. 224, 420 (1930).

    CAS  Google Scholar 

  • Waelsch, H., P. Owades, E. Borek, N. Grossowicz and M. Schott: The enzyme-catalysed exchange of ammonia with the amide group of glutamine and asparagine. Arch. of Biochem. 27, 237 (1950).

    CAS  Google Scholar 

  • Waelsch, H., P. Owades, H. K. Miller and E. Borek: Glutamic acid antimetabolites: the sulfoxide derived from methionine. J. of Biol. Chem. 166, 273 (1946).

    CAS  Google Scholar 

  • Walker, J. B.: An enzymatic reaction between canavanine and fumarate. J. of Biol. Chem. 204, 139 (1953).

    CAS  Google Scholar 

  • Walker, J. B., and J. Myers: The formation of arginosuccinic acid from arginine and fumarate. J. of Biol. Chem. 203, 143 (1953).

    CAS  Google Scholar 

  • Webster, G. C.: Enzymatic synthesis of γ-glutamylcysteine in higher plants. Plant Physiol. 28, 728 (1953a).

    Article  CAS  Google Scholar 

  • Peptide-bond synthesis in higher plants. I. The synthesis of glutathione. Arch. of Biochem. a. Biophysics 47, 241 (1953b).

    Google Scholar 

  • Webster, G. C, and J. E. Varner: On the mechanism of the enzymatic synthesis of glutamine. J. Amer. Chem. Soc. 76, 633 (1954).

    Article  CAS  Google Scholar 

  • Willis, A. J.: Synthesis of amino-acids in young roots of barley. Biochemic. J. 49, xxvii (1951).

    CAS  Google Scholar 

  • Wilson, D. G., K. W. King and R. H. Burris: Transamination reactions in plants. J. of Biol. Chem. 208, 863 (1954).

    CAS  Google Scholar 

  • Wood, J. G., D. H. Cruickshank and R. H. Kuchel: The metabolism of starving leaves. 1. Presentation of data; the nature of respiration rate/time curves in air and in nitrogen and the relation to carbohydrates. 2. Changes in amounts of total and chloroplast proteins, chlorophyll, ascorbic acid and soluble nitrogen compounds. 3. Changes in malic and citric acid contents and interrelations of these with soluble nitrogen compounds. Austral. J. Exper. Biol. a. Med. Sci. 21, 37 (1943).

    Article  CAS  Google Scholar 

  • Yemm, E. W.: Respiration of barley plants. III. Protein catabolism in starving leaves. Proc. Roy. Soc. Lond., Ser. B 123, 243 (1937).

    Article  CAS  Google Scholar 

  • Glutamine in the metabolism of barley plants. New Phytologist 48, 315 (1949).

    Google Scholar 

  • Yemm, E. W., and B. F. Folkes: The regulation of respiration during the assimilation of nitrogen in Torulopsis utilis. Biochemic. J. 57, 495 (1954).

    CAS  Google Scholar 

  • Yevstigneyeva, Z. G., i V. L. Kretovich: The difference in structure and chemical properties of asparagine and glutamine. C. r. Acad. Sci. URSS. 93, 1069 (1953).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1958 Springer-Verlag oHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

McKee, H.S. (1958). Nitrogen metabolism of seedlings. In: Allen, E.K., et al. Der Stickstoffumsatz / Nitrogen Metabolism. Handbuch der Pflanzenphysiologie / Encyclopedia of Plant Physiology, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94733-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94733-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94734-6

  • Online ISBN: 978-3-642-94733-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics