Skip to main content

Part of the book series: Psychiatrie der Gegenwart ((2030,volume 1 / 1 / B))

  • 29 Accesses

Abstract

The inclusion of a chapter on neurochemistry in a handbook of psychiatry attests to the ever-increasing appreciation of the need for understanding biochemical mechanisms in order to interpret disease processes of the nervous system. The interest in neurochemistry, fostered in some isolated centers of psychiatric research for many years, has become more general during the last decade.

In the original manuscript the literature was covered up to and including 1959. Because of the delay in publication some of the aspects of the review have been revised and brought up to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

References To Table 2

  1. Kety, S. S., and C. F. Schmidt: J. clin. Invest. 27, 476 (1948).

    Google Scholar 

  2. Scheinberg, P., and E. A. Stead: J. clin. Invest. 28, 1163 (1949).

    PubMed  CAS  Google Scholar 

  3. Lassen, N. A., and O. Munck: Acta physiol. scand. 33, 30 (1955).

    PubMed  CAS  Google Scholar 

  4. Kety, S. S., R. B. Woodford, M. H. Harmel, F. A. Freyhan, K. E. Appel and C. F. Schmidt: Amer. J. Psychiat. 104, 765 (1948).

    PubMed  CAS  Google Scholar 

  5. Schmidt, C. F.: Pflügers Arch. ges. Physiol. 251, 571 (1949).

    Google Scholar 

  6. Kety, S. S., J. H. Hafkenschiel, W. A. Jeffers, I. H. Leopold and H. A. Shenkin: J. clin. Invest. 27, 511 (1948).

    CAS  Google Scholar 

  7. Kennedy, C.: Neurochemistry. p. 230. (Ed. S. R. Korey and J. I. Nürnberger) London: Cassell and Co. Ltd. 1956.

    Google Scholar 

  8. Sokoloff, L., D. K. Dastur, M. H. Lane and S. S. Kety: Unpublished data quoted by N. A. Lassen. Physiol. Rev. 39, 183 (1959).

    Google Scholar 

  9. Sokoloff, L.: Neurochemistry. p. 216. (Ed. S. R. Korey, and J. I. Nürnberger ). London: Cassell and Co. Ltd. 1956.

    Google Scholar 

  10. Heyman, A., J. L. Patterson, T. W. Duke and L. L. Battey: New Engl. J. Med. 249, 223 (1953).

    PubMed  CAS  Google Scholar 

  11. Lassen, N. A., O. Munck and E. R. Tottey: Arch. Neurol. Psychiat. 77, 126 (1957).

    CAS  Google Scholar 

  12. Kety, S. S., H. A. Shenkin and C. F. Schmidt: J. clin. Invest. 27, 493 (1948).

    Google Scholar 

  13. Wechsler, R. L., R. D. Dripps, and S. S. Kety: Anaesthesiology 12, 308 (1951).

    CAS  Google Scholar 

  14. Scheinberg, P., E. A. Stead, E. S. Brannon, And J. V. Warren: J. clin. Invest. 29, 1139 (1950).

    PubMed  CAS  Google Scholar 

  15. Lassen, N. A.: Physiol. Rev. 39, 183 (1959).

    PubMed  CAS  Google Scholar 

References To Table 3

  1. Krebs, H. A., and H. Rosenhagen: Z. ges. Neurol. 134, 643 (1931).

    Google Scholar 

  2. Craig, F. N., and H. K. Beecher: J. Neurophysiol. 6, 135 (1943).

    CAS  Google Scholar 

  3. Heller, I. H., and K. A. C. Elliott: Canad. J. Biochem. 33, 395 (1955).

    PubMed  CAS  Google Scholar 

  4. Weil-Malherbe, H.: Unpublished data.

    Google Scholar 

  5. Dixon, T. F., and A. Meyer: Biochem. J. 30, 1577 (1936).A. Introduction

    PubMed  CAS  Google Scholar 

A. Introduction

  • Berl, S., A. Lajtha and H. Waelsch: Cerebral compartments of glutamic acid meta-bolism. J. Neurochem. 7, 186 (1961a).

    CAS  Google Scholar 

  • Berl, S., G. Takagaki, D. D. Clarke and H. Waelsch: Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J. biol. Chem. 231, 2562 (1962).

    Google Scholar 

  • Berl, S., G. Takagaki and D. P. Purpura: Metabolic and pharmacological effects of injected amino acids and ammonia on cortical epileptogenic lesions. J. Neurochem. 7, 198 (1961).

    CAS  Google Scholar 

  • Edström, J. E., and H. Hyden: Ribonucleotide analysis of individual nerve cells. Nature (Lond.) 174, 128 (1954).

    Google Scholar 

  • Heller, I. H., and K. A. C. Elliott: Metabolism of normal brain and human gliomas in relation to cell type and density. Canad. J. Bioohem. 33, 395 (1955).

    CAS  Google Scholar 

  • Hyden, H.: Protein metabolism in the nerve cell during growth and function. Acta physiol. scand. 6, Suppl. 17, 5–136 (1943).

    Google Scholar 

  • Hyden, H.: Biochemical changes in glial cells and nerve cells at varying activity. In: Proceedings of the Fourth International Congress of Biochemistry. Volume III, Biochemistry of the central nervous system, pp. 64–89. ( F. Brücke, Ed. ), Pergamon Press 1959.

    Google Scholar 

  • Hyden, H.: The chemistry of single neurons. In: Biochemistry of the developing nervous system; pp. 358–371. ( H. Waelsch, Ed.), New York: Academic Press Inc. 1955.

    Google Scholar 

  • Lowry, O. H.: A study of the nervous system with quantitative histochemical methods. In: Biochemistry of the developing nervous system, pp. 350–357. ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.

    Google Scholar 

  • Lowry, O. H.: Quantitative analysis of single nerve cell bodies. In: Ultrastructure and cellular chemistry of neural tissue. 69–76. ( H. Waelsch, Ed.). New York: Hoeber-Harper 1957.

    Google Scholar 

  • Lowry, O. H., N. R. Roberts, and M. W. Chang: The analysis of single cells. J. biol. Chem. 222, 97 (1956a).

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., N. R. Roberts, K. Y. Leiner, M. Wu, A. L. Farr, and R. W. Albers: The quantitative histochemistry of brain. J. biol. Chem. 207, 39 (1954).

    PubMed  CAS  Google Scholar 

  • Lowry, O. H., N. R. Roberts, and C. Lewis: The quanti-tative histochemistry of the retina. J. biol. Chem. 220, 879 (1956b).

    PubMed  CAS  Google Scholar 

  • Mcilwain, H.: Substances which support respiration and metabolic response to electrical impulses in human cerebral tissues. J. Neurol. Neurosurg. Psychiat. 16, 257 (1953).

    PubMed  CAS  Google Scholar 

  • Nürnberger, J. I., And M. W. Gordon: The cell density of neural tissue. In: Ultrastructure and cellular chemistry of neural tissue, pp. 100–138. ( H. Waelsch, Ed.). New York: Hoeber-Harper 1957.

    Google Scholar 

  • Palay, S. L., and G. E. Palade: The fine structure of neurons. J. biophys. biochem. Cytol. 1, 69–88 (1955).

    PubMed  CAS  Google Scholar 

  • Pope, A.: Application of quantitative histochemical methods to the study of the nervous system. J. Neuropath, exp. Neurol. 14, 39 (1955).

    CAS  Google Scholar 

  • Pope, A.: The relationship of neurochemistry to the microscopic anatomy of the nervous system. In: The biochemistry of the developing nervous system, pp. 341–349. ( H. Waelsch, Ed.), New York: Academic Press Inc. 1955.

    Google Scholar 

  • Pope, A., H. H. Hess, And J. N. Allen: Quantitative histo-chemistry of proteolytic and oxidative enzymes in human cerebral cortex and brain tumors. In: Ultrastructure and cellular chemistry of neural tissue, pp. 182–194. ( H. Waelsch, Ed.). New York: Hoeber-Harper 1957.

    Google Scholar 

  • Pope, A., H. H. Hess, J. R. Ware, and R. H. Thomson: Intralaminar distribution of cytochrome oxidase and DPN in rat cerebral cortex. J. Neurophysiol. 19, 259 (1956).

    PubMed  CAS  Google Scholar 

  • Waelsch, H.: An attempt at integration of structure and metabolism in the nervous system. In: Structure and function of the cerebral cortex. Elsevier Publishing Company, 1960.

    Google Scholar 

  • Waelsch, H.: Compartmentalized biosynthetic reactions in the central nervous system. In Regional Neurochemistry (S. S. Kety and J. Elkes, Eds); p. 57. London: Pergamon Press Ltd. 1961.

    Google Scholar 

  • Waelsch, H., and A. Lajtha: Protein metabolism in the nervous svstem. Physiol. Rev. 41, 709 (1961).

    PubMed  CAS  Google Scholar 

B. The brain barrier systems

  • Bakay, L.: The blood-brain barrier: with special regard to the use of radioactive isotopes. Springfield, Illinois: Charles C. Thomas 1956.

    Google Scholar 

  • Bakay, L.: Dynamic aspects of the blood-brain barrier. In: Metabolism of the nervous system. 136–150. ( D. Richter, Ed.), London: Pergamon Press 1957.

    Google Scholar 

  • Bakay, L., T. F. Hueter, H. T. Ballantine, Jr., and D. Sosa: Ultrasonically produced changes in the blood-brain barrier. A. M. A. Arch. Neurol. Psychiat. 76, 457–467 (1956).

    CAS  Google Scholar 

  • Berl, S., G. Takagaki And D. P. Purpura: Metabolic and pharmacological effects of injected amino acids and amoniam on cortical epileptogenic lesions. J. Neurochem. 7, 198 (1961).

    CAS  Google Scholar 

  • Brierley, J. B.: The blood-brain barrier: structural aspects. In: Metabolism of the nervous system, 121–135. ( D. Richter, Ed.). London: Pergamon Press Ltd. 1957.

    Google Scholar 

  • Davson, H.: A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J. Physiol. (Lond.) 129, 111–183 (1955).

    CAS  Google Scholar 

  • Edström, R.: An explanation of the blood-brain barrier phenomenon. Acta psychiat. scand. 33, 403–416 (1958).

    Google Scholar 

  • Green, J. B.: Recent advances in the chemistry of cerebrospinal fluid. J. nerv. ment. Dis. 127, 359–373 (1958).

    PubMed  CAS  Google Scholar 

  • Quadbeck, G., And H. Helmchen: Steigerung des Phosphat-Übertrittes vom Blut in das Zentralnervensystem nach schweren Gehirnerschütterungen bei der Katze. Z. Naturforsch. 10b, 328–331 (1955).

    Google Scholar 

  • Sweet, W. H., G. L. Brownell, J. A. Scholl, D. R. Bowsher, P. Benda, and E. E. Strickley: The formation, flow and absorption of cerebrospinal fluid; newer concepts based on studies with isotopes. In: Neurology and psychiatry in childhood. Res. Publ. Ass. nerv. ment. Dis. 34, 101–159 (1954).

    Google Scholar 

  • Sweet, W. H., And H. B. Locksley: Formation, flow, and re- absorption of cerebrospinal fluid in man. Proc. Soc. exp. Biol. (N. Y.) 84, 397–402 (1953).

    CAS  Google Scholar 

  • Waelsch, H.: The turnover of components of the developing brain; the blood-brain barrier. In: Biochemistry of the developing nervous system. 187–201. ( H. Waelsch, Ed.) New York: Academic Press Inc. 1955.

    Google Scholar 

  • Wakim, K. G., and G. A. Fleisher: The effect of experimental cerebral infarction on transaminase activity in serum, cerebrospinal fluid, and infarcted tissue. Proc. Mayo Clin. 31, 391–399 (1956).

    CAS  Google Scholar 

  • Weil-Malherbe, H., J. Axelrod, and R. Tomchick: Blood-brain barrier for adrenaline. Science 129, 1226–1227 (1959).

    PubMed  CAS  Google Scholar 

  • Wislocki, G. B., and E. H. Ledtjc: Vital staining of the hematoencephalic barrier by silver nitrate and trypan blue, and cytological comparisons of the neurohypophysis, pineal body, area postrema, intercolumnar tubercle and supra-optic crest. J. comp. Neurol. 96, 371–414 (1952).

    PubMed  CAS  Google Scholar 

C. Energy metabolism

  • Abood, L. G., E. Brunngraber, and M. Taylor: Glycolytic and oxidative phosphorylative studies with intact and disrupted brain mitochondria. J. biol. Chem. 234, 1307 (1959).

    PubMed  CAS  Google Scholar 

  • Abood, L. G., and A. Geiger: Breakdown of proteins and lipids during glucose-free perfusion of the cat’s brain. Amer J. Physiol. 182, 557 (1955).

    CAS  Google Scholar 

  • Abood, L. G., R. W. Gerard, And S. Ochs: Electrical stimulation of metabolism of homogenates and particulates. Amer. J. Physiol. 171, 134 (1952).

    PubMed  CAS  Google Scholar 

  • Acs, G., R. Balazs, and F. B. Straub: Synthesis of adenosine-triphosphate in slices of brain cortex. Chem. Abstr. 48, 8923 (1954).

    Google Scholar 

  • Adams, J. E., H. A. Harper, G. S. Gordan, M. Hutchin, and R. C. Bentinck: Cerebral metabolism of glutamic acid in multiple sclerosis. Neurology (Minnesota). 5, 100 (1955).

    CAS  Google Scholar 

  • Allweis, C., and J. Magnes: The uptake and oxidation of glucose by the perfused cat brain. J. Neurochem. 2, 326 (1958).

    PubMed  CAS  Google Scholar 

  • Ashford, C. A., and K. C. Dixon: The effect of potassium on the glucolysis of brain tissue with reference to the Pasteur effect. Biochem. J. 29, 157–168 (1935).

    PubMed  CAS  Google Scholar 

  • Berger, M.: Metabolic reactivity of brain and liver mitochondria towards chlorpromazine. J. Neurochem. 2, 30–36 (1957).

    PubMed  CAS  Google Scholar 

  • Berl, S., D. D. Clarke, G. Takagaki, D. P. Purpura And H. Waelsch: Carbon dioxide fixation in brain in vivo. Fed. Proc. 20, No. 1 (1961).

    Google Scholar 

  • Berl, S., G. Takagaki, D. D. Clarke And H. Waelsch: Carbon dioxide fixation in the brain. J. biol. Chem. 231, 2510 (1962).

    Google Scholar 

  • Bloom, B.: Catabolism of glucose by mammalian tissues. Proc. Soc. exp. Biol. (N. Y.) 88, 317 (1955).

    CAS  Google Scholar 

  • Boszormenyi-Nagy, I., and F. J. Gerty: Difference between the phosphorus metabolism of erythrocytes of normals and of patients suffering from schizophrenia. J. nerv. ment. Dis. 121, 53 (1955).

    PubMed  CAS  Google Scholar 

  • Boszor-Menyi-Nagy, I., F. J. Gerty, and J. Kueber: Correlation between an anomaly of the intracellular metabolism of adenosine nucleotides and schizophrenia. J. nerv. ment. Dis. 124, 413 (1956).

    CAS  Google Scholar 

  • Braceland, F. J., L. J. Meduna, and J. A. Vaichulis: Delayed action of insulin in schizophrenia. Amer. J. Psychiat. 102, 108 (1945).

    Google Scholar 

  • Brody, T. M., and J. A. Bain: Barbiturates and oxidative phosphorylation. J. Pharmacol, exp. Ther. 110, 148 (1954).

    CAS  Google Scholar 

  • Cheng, S. C., and H. Waelsch: Carbon dioxide fixation in lobster nerve. Science in press, 1962.

    Google Scholar 

  • Danziger, L.: Anoxia and compounds causing mental disorders in man. Dis. nerv. Syst. 6, 365 (1945).

    PubMed  CAS  Google Scholar 

  • Davies, P. W., and A. Remond: Oxygen consumption of the cerebral cortex of the cat during metrazol convulsions. Res. Publ. Ass. nerv. ment. Dis. 26, 205–217 (1947).

    Google Scholar 

  • Dawson, J., R. P. Hullin, And A. Pool: Variations in the blood levels of acetoin and butane- 2:3-diol in normal individuals and mental patients. J. ment. Sci. 100, 536–542 (1954).

    PubMed  CAS  Google Scholar 

  • Dawson, J., R. P. Hullin, and B. M. Crockett: Metabolic variations in manic-depressive psychosis. J. ment, Sci. 102, 168–177 (1956).

    CAS  Google Scholar 

  • Dickens, F.: Metabolism of normal and tumour tissue. XV. The respiratory quotient of brain cortex. Biochem. J. 30, 661–664 (1936).

    PubMed  CAS  Google Scholar 

  • Dipietro, D., and S. Weinhouse: Glucose oxidation in rat brain slices and homogenates. Arch. Biochem. Biophys. 80, 268 (1959).

    CAS  Google Scholar 

  • Dolivo, M., and M. G. Larrabee: Metabolism of glucose and oxygen in a mammalian sympathetic ganglion at reduced temperature and varied PH. J. Neurochem. 3, 72 (1958).

    PubMed  CAS  Google Scholar 

  • Doust, J. W. Lovett: Spectroscopic and photo-electric oximetry in schizophrenia and other psychiatric states. J. ment. Sci. 98, 143–160 (1952).

    PubMed  CAS  Google Scholar 

  • Elliott, K. A. C., and I. H. Heller: Metabolism of neurones and glia. In: The metabolism of the nervous system, p. 286–290. (Ed. D. Richter ). New York: Pergamon Press 1957.

    Google Scholar 

  • Elliott, K. A. C., and N. Henderson: Metabolism of brain tissue slices and suspensions from various mammals. J. Neurophysiol. 11, 473 (1948).

    PubMed  CAS  Google Scholar 

  • Findlay, M., W. L. Magee, and R. J. Rossiter: Incorporation of radioactive phosphate into lipids and pentosenucleic acid of cat brain slices. The effect of inorganic ions. Biochem. J. 58, 236 (1954).

    PubMed  CAS  Google Scholar 

  • Freeman, H., J. M. Looney, R. G. Hoskins, And C. G. Dyer: Results of insulin and epinephrine tests in schizophrenia. Arch. Neurol. Psychiat. (Chicago) 49, 195 (1943).

    CAS  Google Scholar 

  • Freeman, H., and R. Zaborenke: Relation of changes in carbohydrate metabolism to psychotic states. Arch. Neurol. Psychiat. (Chicago) 61, 569 (1949).

    CAS  Google Scholar 

  • Frohman, C. E., N. P. Czajkowski, E. D. Luby, J. S. Gottlieb And R. Senf: Further evidence of a plasma factor in schizophrenia. Arch. gen. Psychiat. 3, 263 (1960).

    Google Scholar 

  • Frohman, C. E., L. K. Latham, P. G. S. Beckett and J. S. Gottlieb: Evidence of a plasma factor in schizophrenia. Arch, gen. Psychiat, 3, 255 (1960).

    Google Scholar 

  • Frohman, C. E., E. D. Luby, G. Tourney, P. G. S. Beckett and J. S. Gottlieb: Steps toward the isolation of a serum factor in schizophrenia. Amer. J. Psychiat. 117, 401 (1960).

    PubMed  CAS  Google Scholar 

  • Frohman, C. E., G. Tourney, P. G. S. Beckett, H. Lees, L. K. Latham, and J. S. Gottlieb: Biochemical identification of schizophrenia. Arch. gen. Psychiat. 4, 405 (1961).

    Google Scholar 

  • Gallagher, C. H., J. D. Judah, and K. R. Rees: Glucose oxidation by brain mitochondria. Biochem. J. 62, 436 (1956).

    PubMed  CAS  Google Scholar 

  • Gatt, S., and E. Racker: Regulatory mechanisms in carbohydrate metabolism. II. Pasteur effect in reconstructed systems. J. biol. Chem. 234, 1024 (1959).

    PubMed  CAS  Google Scholar 

  • Gayet, J.: Physical reactivity of liver and brain cortex mitochondria. Nature (Lond.) 182, 941 (1958).

    CAS  Google Scholar 

  • Geiger, A.: Correlation of brain metabolism and function by use of a brain perfusion method in situ. Physiol. Rev. 38, 1 (1958).

    PubMed  CAS  Google Scholar 

  • Geiger, A., and J. Magnes: Isolation of cerebral circulation and perfusion of brain in the living cat. Amer. J. Physiol. 149, 517–537 (1947).

    PubMed  CAS  Google Scholar 

  • Geiger, A., J. Magnes, and R. S. Geiger: Survival of the perfused cat’s brain in the absence of glucose. Nature (Lond.) 170, 754 (1952).

    CAS  Google Scholar 

  • Geiger, A., J. Magnes, R. M. Taylor, and M. Veralli: Effect of blood constituents on uptake of glucose and on metabolic rate of the brain in perfusion experiments. Amer. J. Physiol. 177, 138–149 (1954).

    PubMed  CAS  Google Scholar 

  • Geiger, A., and S. Yamasaki: Cytidine and uridine requirements of the brain. J. Neurochem. 1, 93 (1956).

    PubMed  CAS  Google Scholar 

  • Gey, K. F.: The concentration of glucose in rat tissues. Biochem. J. 61, 145–150 (1956).

    Google Scholar 

  • Geyer, R. P., L. W. Matthews, and F. G. Stare: Metabolism of emulsified trilaurin (-C1400-) and octanoic acid (-C1400-) by rat tissue slices. J. biol. Chem. 180, 1037–1045 (1949).

    PubMed  CAS  Google Scholar 

  • Ghosh, J. J., and J. H. Quastel: Narcotics and brain respiration. Nature (Lond.) 174, 28 (1954).

    CAS  Google Scholar 

  • Gibbs, E. L., W. G. Lennox, and F. A. Gibbs: Bilateral internal jugular blood: comparison of A-V differences, oxygen-dextrose ratios, and respiratory quotients. Amer. J. Psychiat. 102, 184–190 (1945).

    CAS  Google Scholar 

  • Goldfarb, W., and J. Wortis: Availability of sodium pyruvate for human brain oxidations. Proc. Soc. exp. Biol. (N. Y.) 46, 121–123 (1941).

    CAS  Google Scholar 

  • Gordan, G. S.: Influence of steroids on cerebral metabolism in man. Recent Progr. Hormone Res. 12, 153–174 (1956).

    CAS  Google Scholar 

  • Gordan, G. S., F. M. Estess, J. E. Adams, K. M. Bowman, And A. Simon: Cerebral oxygen uptake in chronic schizophrenic reaction. Arch. Neurol. Psychiat. (Chicago) 73, 544 (1955).

    CAS  Google Scholar 

  • Gore, M. B. R., and H. Mcil-Wain: Effects of some inorganic salts on the metabolic response of sections of mammalian cerebral cortex to electrical stimulation. J. Physiol. 117, 471 (1952).

    PubMed  CAS  Google Scholar 

  • Gottlieb, J. S., C. E. Frohman, P. G. S. Beckett, G. Tourney, and R. Senf: Production of high energy phosphate bonds in schizophrenia. A. M. A. Arch. gen. Psychiat. 1, 243 (1959).

    CAS  Google Scholar 

  • Gottlieb, J. S., C. E. Frohman, G. Tourney, And P. G. S. Beckett: Energy transfer systems in schizophrenia. Arch. Neurol. Psychiat. (Chicago) 81, 505 (1959).

    Google Scholar 

  • Greengard, O., and H. Mc-Ilwain: Anticonvulsants and the metabolism of separated mammalian cerebral tissues. Biochem. J. 61, 61 (1955).

    PubMed  CAS  Google Scholar 

  • Grenell, R. G., J. Mendelson, and W. D. Mcelroy: Neuronal metabolism and ATP synthesis in narcosis. J. cell. comp. Physiol. 46, 143 (1955).

    CAS  Google Scholar 

  • Haavaldsen, R., O. Lingjaerde, and O. Walaas: Disturbances of carbohydrate metabolism in schizophrenics. The effect of serum fractions from schizophrenics on glucose uptake of rat diaphragm in vitro. Confin. neurol. (Basel) 18, 270–279 (1958).

    CAS  Google Scholar 

  • Heald, P. J.: Rapid changes in creatine phosphate level in cerebral cortex slices. Biochem. J. 57, 673–679 (1954).

    PubMed  CAS  Google Scholar 

  • Heald, P. J.: Effects of electrical pulses on the distribution of radioactive phosphate in cerebral tissues. Biochem. J. 63, 242 (1956).

    PubMed  CAS  Google Scholar 

  • Heald, P. J.: The incorporation of phosphate into cerebral phosphoprotein promoted by electrical impulses. Biochem. J. 66, 659 (1957).

    PubMed  CAS  Google Scholar 

  • Heller, I. H., and K. A. C. Elliott: The metabolism of normal brain and human gliomas in relation to cell type and density. Canad. J. Biochem. 33, 395–403 (1955).

    PubMed  CAS  Google Scholar 

  • Henneman, D. H., M. D. Altschule, and R. M. Goncz: Carbohydrate metabolism in brain disease. II. Glucose metabolism in schizophrenic, manic-depressive and involutional psychoses. Arch, intern Med. 94, 402–416 (1954).

    CAS  Google Scholar 

  • Hesselbach, M. L., and H. G. Dubuy: Localization of glycolytic and respiratory enzyme systems on isolated mouse brain mitochondria. Proc. Soc. exp. Biol. (N. Y.) 83, 62–65 (1953).

    CAS  Google Scholar 

  • Himwich, H. E.: Brain metabolism and cerebral disorders. Baltimore: The Williams & Wilkins Co. 1951.

    Google Scholar 

  • Himwich, W. A., And H. E. Himwich: Pyruvic acid exchange of the brain. J. Neurophysiol. 9, 133–136 (1946).

    PubMed  CAS  Google Scholar 

  • Hokin, M. R., and L. E. Hokin: The synthesis of phosphatidic acid from diglyceride and adenosine triphosphate in extracts of brain microsomes. J. biol. Chem. 234, 1381 (1959a).

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., and M. R. Hokin: Evidence for phosphatidic acid as the sodium carrier. Nature (Lond.) 184, 1068 (1959b).

    CAS  Google Scholar 

  • Holmgren, H., and S. Wohlfahrt: Blutzuckerstudien bei Geisteskranken und psychisch Abnormen. Acta psychiat. (Kbh.) Suppl. 31 (1944).

    Google Scholar 

  • Hoskin, F. C. G.: Chemical stimulation and modification of glucose metabolism by brain. Arch. Biochem. Biophys. 91, 43 (1960).

    PubMed  CAS  Google Scholar 

  • Hyden, H.: Biochemical changes in glia cells and nerve cells at varying activity. IVth Internat. Congr. Biochem., Vol. III. Biochemistry of the central nervous system. London: Pergamon Press 1958.

    Google Scholar 

  • Jasper, H., and T. C. Erickson: Cerebral blood flow and pH in excessive cortical discharge induced by metrazol and electrical stimulation. J. Neurophysiol. 4, 333–347 (1941).

    CAS  Google Scholar 

  • Johnson, M. K.: The intracellular distribution of glycolytic and other enzymes in rat-brain homogenates and mitochondrial preparations. Biochem. J. 77, 610 (1960).

    PubMed  CAS  Google Scholar 

  • Kennedy, C.: The cerebral metabolic rate in children. In: Neurochemistry p. 230–238. (Eds. S. R. Korey and J. I. Nürnberger) London: Cassell and Co. Ltd. 1956.

    Google Scholar 

  • Kerr, S. E., and M. Ghantus: The carbohydrate metabolism of brain. II. The effect of varying the carbohydrate and insulin supply on the glycogen, free sugar and lactic acid in mammalian brain. J. biol. Chem. 116, 9–20 (1936).

    CAS  Google Scholar 

  • Kety, S. S.: Quantitative determination of cerebral blood flow in man. Meth. med. Res. 1, 204 (1948).

    Google Scholar 

  • Kety, S. S.: Discussion in: Metabolic and toxic diseases of the nervous system. Proc.Ass.Res. nerv. ment. Dis. 32,362–363 (1953).

    Google Scholar 

  • Kety, S. S.: The general metabolism of the brain in vivo. In: The metabolism of the nervous system, p. 221–237. (Ed. D. Richter) New York: Pergamon Press 1957.

    Google Scholar 

  • Kety, S. S., and C. F. Schmidt: The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J. clin. Invest. 27, 476–483 (1948).

    Google Scholar 

  • Kety, S. S., R. B. Woodford, M. H. Harmel, F. A. Freyhan, K. E. Appel, And C. F. Schmidt: Cerebral blood flow and metabolism in schizophrenia. The effects of barbiturate seminarcosis, insulin coma, and electroshock. Amer. J. Psychiat. 104, 765 (1948).

    PubMed  CAS  Google Scholar 

  • Kimura, Y., And K. Ito: Effect of sodium azide on the carbohydrate metabolism of brain tissue in presence and absence of the potassium effect. Sci. Papers Coll. gen. Educ. Univ. Tokyo 4, 57–70 (1954).

    CAS  Google Scholar 

  • Kimura, Y., and T. Niwa: Inhibitory effect of malonate on the respiration of brain tissue, with special reference to the potassium effect. Nature (Lond.) 171, 881 (1953).

    CAS  Google Scholar 

  • Klein, J. R., R. Hur-Witz, and N. S. Olsen: Distribution of intravenously injected fructose and glucose between blood and brain. J. biol. Chem. 164, 509–512 (1946).

    PubMed  CAS  Google Scholar 

  • Klein, J. R., and N. S. Olsen: Distribution of intravenously injected glutamate, lactate, pyruvate and succinate between blood and brain. J. biol. Chem. 167, 1–5 (1947).

    PubMed  CAS  Google Scholar 

  • Korey, S. R., and M. Orchen: Relative respiration of neuronal and glial cells. J. Neurochem, 3, 277 (1959).

    PubMed  CAS  Google Scholar 

  • Krebs, H. A., L. V. Eggleston, and C. Terner: In vitro measurements of the turnover rate of potassium in brain and retina. Biochem. J. 48, 530–537 (1951).

    PubMed  CAS  Google Scholar 

  • Kunz, H. A.: Comparative investigations on the oxidation of pyruvate in liver and brain mitochondria. Biochem. biophys. Acta 28, 104 (1958).

    PubMed  CAS  Google Scholar 

  • Lajtha, A., S. Berl, and H. Waelsch: Amino acid and protein metabolism of the brain. IV. The metabolism of glutamic acid. J. Neuroohem. 3, 322 (1959).

    CAS  Google Scholar 

  • Landau, W. M., W. H. Freygang Jr., L. P. Roland, L. Sokoloff, and S. S. Kety: The local circulation of the living brain; values in the unanesthetized and anesthetized cat. Trans. Amer. neurol. Ass. 80, 125 (1955).

    Google Scholar 

  • Larrabee, M. G.: Oxygen consumption of excised sympathetic ganglia at rest and in activity. J. Neurochem. 2, 81 (1958).

    PubMed  CAS  Google Scholar 

  • Lassen, N. A., and O. Munck: The cerebral blood flow in man determined by the use of radioactive krypton. Acta physiol. scand. 33, 30 (1955).

    PubMed  CAS  Google Scholar 

  • Levy, L., And R. M. Featherstone: The effect of xenon and nitrous oxide on in vitro guinea pig brain respiration and oxidative phosphorylation. J. Pharmacol, exp. Ther. 110, 221 (1954).

    CAS  Google Scholar 

  • Lewis, J. L., And H. Mcilwain: The action of some ergot derivatives, mescaline and dibenamine on the metabolism of separated mammalian cerebral tissues. Biochem. J. 57, 680–684 (1954).

    PubMed  CAS  Google Scholar 

  • Li, C. L., And H. Mcilwain: Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro. J. Physiol. 139, 178–190 (1957).

    PubMed  CAS  Google Scholar 

  • Lingjaerde, O.: Adrenocortical functions in the insane. Acta psychiat. suppl. 80, 202 (1953).

    Google Scholar 

  • Lingjaerde, O.: Failure in the utilization of carbohydrates in mental disease. Acta psychiat. suppl. 106, 302 (1956).

    CAS  Google Scholar 

  • Lisovskaya, N. P.: Phosphoproteins and the processes of metabolism in the brain. Dokl. Acad. Nauk SSSR 95, 1033 (1954); Chem. Abstr. 48, 9509 (1954).

    CAS  Google Scholar 

  • Lohr, K., and W. O. Schümann: Presence of a hyperglycaemia-inducing material in the urine. Z. ges. exp. Med. 122, 374 (1953).

    PubMed  CAS  Google Scholar 

  • Lynen, F.: Fatty acid metabolism. In. Metabolism of the nervous system, p. 381–395. (Ed. D. Richter ). New York: Pergamon Press 1957.

    Google Scholar 

  • Macfarlane, M. G., And H. Weil-Malherbe: Changes in phosphate distribution during anaerobic glycolysis in brain slices. Biochem. J. 35, 1–6 (1941).

    PubMed  CAS  Google Scholar 

  • Maddock, S., J. E. Hawkins, And E. Holmes: Inadequacy of substances of “glucose cycle” for maintenance of normal cortical potentials during hypoglycaemia produced by hepatectomy with abdominal evisceration. Amer. J. Physiol. 125, 551–565 (1939).

    CAS  Google Scholar 

  • Magee, W. L., J. F. Berry, and R. J. Rossiter: Effect of chlorpromazine and azacyclonol on the labelling of phosphatides in brain slices. Biochim. biophys. Acta 21, 408 (1956).

    PubMed  CAS  Google Scholar 

  • Mann, F. C., and T. B. Magath: Studies on the physiology of the liver. III. The effect of administration of glucose in the condition following total exstirpation of the liver. Arch, intern Med. 30, 171–181 (1922).

    CAS  Google Scholar 

  • Mayer-Gross, W.: The diagnostic significance of certain tests of carbohydrate metabolism in psychiatric patients and the question of “oneirophrenia”. J. ment. Sci. 98, 683–686 (1952).

    PubMed  CAS  Google Scholar 

  • Mayer-Gross, W., and J. W. Walker: The effect of L-glutamic acid and other amino-acids in hypoglycaemia. Biochem. J. 44, 92–97 (1949).

    CAS  Google Scholar 

  • McFarland, R. A., and H. Goldstein: The biochemistry of manic-depressive psychosis. Amer. J. Psychiat. 96, 21 (1939).

    CAS  Google Scholar 

  • McIlwain, H.: The effect of depressants on the metabolism of stimulated cerebral tissues. Biochem. J. 53, 403–412 (1953).

    PubMed  CAS  Google Scholar 

  • McIlwain, H.: Biochemistry and the central nervous system. Boston: Little, Brown and Co. 1955.

    Google Scholar 

  • McIlwain, H.: Electrical influences and speed of chemical change in the brain. Physiol. Rev. 36, 355–375 (1956).

    PubMed  CAS  Google Scholar 

  • McIlwain, H.: Characterization of naturally occurring materials which restore excitability to isolated cerebral tissues. Biochem. J. 78, 24 (1961).

    PubMed  CAS  Google Scholar 

  • McIlwain, H., L. Büchel, And J. D. Cheshire: The inorganic phosphate and phosphocreatine of brain especially during metabolism in vitro. Biochem. J. 48, 12–20 (1951).

    PubMed  CAS  Google Scholar 

  • McIlwain, H., and M. A. Tresize: The glucose, glycogen and aerobic glycolysis of isolated cerebral tissues. Biochem. J. 63, 250 (1956).

    PubMed  CAS  Google Scholar 

  • Meduna, L. J.: Oneirophrenia. Urbana: The University of Illinois Press 1950.

    Google Scholar 

  • Meduna, L. J., F. J. Gerty, and V. G. Urse: Biochemical disturbances in mental disorders. I. Anti-insulin effect of blood in cases of schizophrenia. Arch. Neurol. Psychiat. 47, 38 (1942)

    CAS  Google Scholar 

  • Meduna, L. J., and J. A. Vaichulis: A hyperglycemic factor in the urine of so-called schizophrenics. Dis. nerv. Syst. 9, 248 (1948).

    PubMed  CAS  Google Scholar 

  • Meyerhof, O.: The rates of glycolysis of glucose and fructose in extracts of brain. Arch. Biochem. 13, 485–487 (1947).

    PubMed  CAS  Google Scholar 

  • Morgan, M. S., and F. J. Pilgrim: Concentration of a hyperglycaemic factor from the urine of schizophrenics. Proc. Soc. exp. Biol. (N. Y.) 79, 106–111 (1952).

    CAS  Google Scholar 

  • Moya, F., J. Dewar, M. Macintosh, S. Hirsch, And R. Townsend: Hyperglycemic action and toxicity of the urine of schizophrenic patients. Canad. J. Biochem. 36, 505 (1958).

    PubMed  CAS  Google Scholar 

  • Nadeau, G., and Y. Rouleau: Insulin tolerance in schizophrenics. J. clin. exp. Psychopath. 14, 69 (1953).

    PubMed  CAS  Google Scholar 

  • Narayanaswami, A., and H. McIlwain: Electrical pulses and the metabolism of cell-free cerebral preparations. Biochem. J. 57, 663–666 (1954).

    PubMed  CAS  Google Scholar 

  • Nürn-Berger, J. I., And M. W. Gordon: The cell density of neural tissues: direct counting method and possible applications as a biologic referent. In: Ultrastructure and cellular chemistry of neural tissue, p. 100–138. (Ed. H. Waelsch ). New York: Hoeber-Harper 1957.

    Google Scholar 

  • Olkon, D. M.: Capillary structure in patients with schizophrenia. Arch. Neurol. Psychiat. (Chicago) 42, 652–663 (1939).

    Google Scholar 

  • Opitz, E.: Energieumsatz des Gehirns in situ unter aeroben und anaeroben Bedingungen. In: Die Chemie und der Stoffwechsel des Nervengewebes. 3.Coli. Ges. physiol. Chem. p. 66–108 (1952).

    Google Scholar 

  • Orstrom, A., and O. Skaug: The isolation from the blood of chronic schizophrenic patients of compounds active in radioactive phosphate turnover. Acta psychiat. scand. 25, 437 (1950).

    CAS  Google Scholar 

  • Perutz, A.: Turnover of the ether soluble plasma phosphatides in schizophrenia. Acta psychiat. scand. 26, 411 (1951).

    Google Scholar 

  • Pryce, I. G.: The relationship between glucose tolerance body weight and clinical state in melancholia. J. ment. Sci. 104, 1079 (1958).

    PubMed  CAS  Google Scholar 

  • Raaflaub, J.: Die Metallpufferfunktion der Adenosinphosphate. Helv. physiol. pharmacol. Acta 14, 304 (1956).

    PubMed  CAS  Google Scholar 

  • Reiner, J. M.: Carbohydrate metabolism in tissue homogenates. Arch. Biochem. 12, 327–338 (1947).

    PubMed  CAS  Google Scholar 

  • Reiss, J. M., M. Reiss, and A. Wyatt: Action of thyroid hormones on brain metabolism of new born rats. Proc. Soc. exp. Biol. (N. Y.) 93, 19–22 (1956).

    CAS  Google Scholar 

  • Richter, D.: Brain metabolism and cerebral function. Biochem. Soc. Symp. 8, 62–76 (1952).

    Google Scholar 

  • Rodnight, R., H. Mcilwain, and M. A. Tresize: Analysis of arterial and cerebral venous blood from the rabbit. J. Neurochem. 3, 209 (1959).

    PubMed  CAS  Google Scholar 

  • Sacks, W.: Cerebral oxidation of fumarate-2-C14 in normal human subjects. J. appl. Physiol. 9, 43 (1956).

    PubMed  CAS  Google Scholar 

  • Sacks, W.: Cerebral metabolism of butyrate-l-C14 in normal human subjects. Fed. Proc. 16, 240 (1957).

    Google Scholar 

  • Schmidt, C. F., And J. P. Hendrix: The circulation of the brain and spinal cord. Res. Publ. Ass. nerv, ment. Dis. 18, 229–276 (1938).

    Google Scholar 

  • Schmitt, C. O.: The structure and properties of nerve membranes. In: The metabolism of the nervous system, p. 35–51. (Ed. D. Richter ). New York: Pergamon Press 1957.

    Google Scholar 

  • Schwerin, P., S. P. Bessman, and H. Waelsch: The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. J. biol. Chem. 184, 37–44 (1950).

    PubMed  CAS  Google Scholar 

  • Sebrell, W. H.: The mental and neurological aspects of vitamin B complex deficiency. Res. Publ. Ass. Res. nerv. ment. Dis. 22, 113–121 (1943).

    CAS  Google Scholar 

  • Sebrell, W. H., Jr., and K. Schwarz: The role of B-vitamins in the metabolism of the nervous system. Res. Publ. Ass. nerv. ment. Dis. 32, 174–183 (1953).

    CAS  Google Scholar 

  • Seltzer, H. S., S. Eisenberg, And C. W. Sensenbach: Cerebral and peripheral carbohydrate utilization during amelioration of hypoglycemic symptoms by fructose. J. Lab. clin. Med. 50, 953 (1957).

    Google Scholar 

  • Selye, H.: The physiology and pathology of exposure to stress; a treatise based on the concepts of the general-adaptation syndrome and the diseases of adaptation. Montreal: Acta 1950.

    Google Scholar 

  • Shattock, F. M.: The somatic manifestations of schizophrenia. A clinical study of their significance. J. ment. Sci. 96, 32–142 (1950).

    Google Scholar 

  • Siebert, D., K. H. Baessler, R. Hannover, E. Adloff U. R. Beyer: Enzymaktivitäten in isolierten Zellkernen in Abhängigkeit von der mitotischen Aktivität. Biochem. Z. 334, 388 (1961).

    CAS  Google Scholar 

  • Sokoloff, L.: Relation of cerebral circulation and metabolism to mental activity. In: Neurochemistry. p. 216–229. (Eds. S. R. Korey, and J. I. Nürnberger ). London: Cassell and Co. Ltd. 1956.

    Google Scholar 

  • Sokoloff, L., S. Perlin, C. Kornetsky, And S. S. Kety: The effects of D-lysergic acid diethylamide on cerebral circulation and over-all metabolism. Ann. N. Y. Acad. Sci. 66, 468–477 (1957).

    PubMed  CAS  Google Scholar 

  • Spillane, J. D.: Nutritional disorders of the nervous system. Baltimore: Williams and Wilkins Co. 1947.

    Google Scholar 

  • Spirtes, M. A., and E. Brunner: Induced fructolysis in normal rat brain cortex slices. Fed. Proc. 18, 447 (1959).

    Google Scholar 

  • Streicher, E.: Effect of anesthetic and convulsant drugs on P32 exchange in rat brain. Fed. Proc. 13, 146 (1954).

    Google Scholar 

  • Tagnon, R. F., and J. Corvilain: Utilization of fructose by the nervous system in man. J. clin. Endocrin. 19, 509 (1959).

    CAS  Google Scholar 

  • Terner, C.: The effects of phosphate acceptors, p-nitro-phenol and arsenate on respiration, phosphorylation and Pasteur effect in cell-free suspensions. Biochem. J. 64, 523–532 (1956).

    PubMed  CAS  Google Scholar 

  • Thorn, W.: Über die anaerobe Glykolyse des Warmblütergehirns in situ. Biochem. Z. 321, 361–367 (1951).

    PubMed  CAS  Google Scholar 

  • Thorn, W., W. Isselhard, and B. Mul-Dener: Glykogen-, Glucose- und Milchsäuregehalt in Warmblüterorganen, bei unterschiedlicher Versuchsanordnung und anoxischer Belastung mit Hilfe optischer Fermentteste ermittelt. Biochem. Z. 331, 545–562 (1959).

    PubMed  CAS  Google Scholar 

  • Thorn, W., and H. A. Raszkowski: Über den Verlauf der anaeroben Glykolyse in situ bei verschiedenen Körpertemperaturen gemessen am Kaninchenhirn. Biochem. Z. 323, 21–27 (1952).

    PubMed  CAS  Google Scholar 

  • Tower, D. B.: The effects of 2-deoxy-D-glucose on metabolism of slices of cerebral cortex incubated in vitro. J. Neurochem. 3, 185 (1958).

    PubMed  CAS  Google Scholar 

  • Tschirgi, R. D., R. W. Gerard, H. Jenerick, L. L. Boyarsky, And J. Z. Hearon: Metabolism of the rat spinal cord functioning in isolation. Fed. Proc. 8, 166 (1949).

    Google Scholar 

  • Tsukada, Y., G. Takagaki, And S. Hirano: Incorporation of radioactive phosphate into protein-bound phosphorus fractions of brain slices in reference to its relation to the metabolic activity. J. Biochem. (Tokyo) 45, 489–501 (1958).

    CAS  Google Scholar 

  • Utena, H., And T. Ezoe: Studies on the carbohydrate metabolism in brain tissue of schizophrenic patients. Reports I and II. The aerobic metabolism of glucose. Psychiat. Neurol, jap. 52, 204–250 (1951).

    Google Scholar 

  • Utena, H., T. Ezoe, And N. Kato: Biochemical studies on addiction due to -phenylisopropylmethylamine. I. Tissue distribution and excretion of the amine. II. Effect on glucose metabolism in brain tissue. Psychiat. Neurol, jap. 57, 1–3 (1955).

    Google Scholar 

  • Vignais, P. M., C. H. Gallagher, And I. Zabin: Activation and oxidation of long chain fatty acids by rat brain. J. Neurochem. 2, 283 (1958).

    PubMed  CAS  Google Scholar 

  • Vladimirov, G. E., And J. N. Rubel: The turnover of hexosemonophosphate in the brain and the effect of stimulation, narcosis and hypothermia. In: Metabolism of the nervous system p. 263–266. (Ed. D. Richter ). New York: Pergamon Press 1957.

    Google Scholar 

  • Volk, M. E., R. H. Millington, and S. Weinhouse: Oxidation of endogenous fatty acids of rat tissues in vitro. J. biol. Chem. 195, 493 (1952).

    PubMed  CAS  Google Scholar 

  • Wang, R. I. H., and R. R. Sonnenschein: pH of cerebral cortex during induced convulsions. J. Neurophysiol. 18, 130 (1955).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H.: The action of glutamic acid in hypoglycaemic coma. J. ment. Sci. 95, 930–944 (1949).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H.: Der Energiestoffwechsel Des Nervengewebes Und Scen Zusammenhang Mit Der Funktion. In: Die Chemie und der Stoffwechsel des Nervengewebes. 3. Coli. Ges. physiol. Chem. 1952, p. 41–65.

    Google Scholar 

  • Weil-Malherbe, H., and A. D. Bone: Studies on hexokinase. 1. The hexokinase activity of rat brain extracts. Biochem. J. 49, 339–347 (1951).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., and A. D. Bone: Activators and inhibitors of hexokinase in human blood. J. ment. Sci. 97, 635–662 (1951).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., and A.D. Bone: The concentration of adrenaline-like substances in blood during insulin hypoglycaemia. J. ment. Sci. 98, 565–578 (1952).

    PubMed  CAS  Google Scholar 

  • Wilson, W. P., J. F. Schieve, and P. Scheinberg: Effect of series of electric shock treatments on cerebral blood flow and metabolism. Arch. Neurol. Psychiat. (Chicago) 68, 651–654 (1952).

    CAS  Google Scholar 

  • Wortis, J., K. M. Bowman, W. Goldfarb, J. F. Fazekas, and H. E. Himwich: Availability of lactic acid for brain oxidations. J. Neurophysiol. 4, 243–249 (1941).

    CAS  Google Scholar 

D. Metabolism of nitrogenous compounds

  • Acs, G., A. Neidle, And H. Waelsch: Brain ribosomes and amino acid incorporation. Biochem. biophys. Acta 50, 403 (1961).

    PubMed  CAS  Google Scholar 

  • Abood, L.G., and A. Geiger: Breakdown of proteins andlipids during glucose-free perfusion of the cat’s brain. Amer. J. Physiol. 182, 557–560 (1955).

    PubMed  CAS  Google Scholar 

  • Abood, L. G., F. A. Gibbs, and E. Gibbs: Comparative study of blood ceruloplasmin in schizophrenia and other disorders. A.M. A. Arch. Neurol. Psychiat. 77, 643–645 (1957).

    CAS  Google Scholar 

  • Acs, G., R. Baläzs, and E. B. Straub: Metabolism in slices of brain cortex. The level of adenosine triphosphate and its changes under the influence of glutamic acid. Ukrain. Biokhim. Zhur. 25, 17–27 (1953).

    CAS  Google Scholar 

  • Adams, J. E., H.A. Harper, G. S. Gordon, M. Hutchin, and R. C. Bentinck: Cerebral metabolism of glutamic acid in multiple sclerosis. Neurology 5, 100–107 (1955).

    PubMed  CAS  Google Scholar 

  • Ajmone-Marsan, C., M. G. F. Fuortes, and F. Marossero: Influence of ammonium chloride on the electrical activity of the brain and spinal cord. EEG Clin. Neurophys. 1, 291–298 (1949).

    CAS  Google Scholar 

  • Akerfeldt, S.: Oxidation of N,N-dimethyl-p-phenylenediamine by serum from patients with mental disease. Science 125, 117–119 (1957).

    PubMed  CAS  Google Scholar 

  • Albers, R. W., and R. A. Salvador: Succinic semialdehyde oxidation by a soluble dehydrogenase from brain. Science 128, 359–360 (1958).

    PubMed  CAS  Google Scholar 

  • Albert, K., P. Hoch, and H.Waelsch: Glutamic acid and mental deficiency. J. nerv. ment. Dis. 114, 471–491 (1951).

    PubMed  CAS  Google Scholar 

  • Ansell, G. B., and D. Richter: A note on the free amino acid content of rat brain. Biochem. J. 57, 70–73 (1954).

    PubMed  CAS  Google Scholar 

  • Awapara, J., A. J. Landua, R. Fuerst, and B. Seale: Free y-aminobutyric acid in brain. J. biol. Chem. 187, 35–39 (1950).

    PubMed  CAS  Google Scholar 

  • Awapara, J., and B. Seale: Distribution of transaminases in rat organs. J. biol. Chem. 194, 497–502 (1952).

    PubMed  CAS  Google Scholar 

  • Bargmann, W., and E. Scharrer: The site of origin of the hormones of the posterior pituitary. Amer. Sci. 39, 255–259 (1951).

    Google Scholar 

  • Bazemore, A. W., K. A. C. Elliott, And E. Florey: Isolation of factor I. J. Neurochem. 1, 334–339 (1957).

    CAS  Google Scholar 

  • Beloff-Chain, A., R. Cantanzaro, E. B. Chain, I. Masi, and F. Pocchiari: Fate of uniformly labeled C14-glucose in brain slices. Proc. roy. Soc. B 144, 22–28 (1955).

    CAS  Google Scholar 

  • Benitez, D., G. R. Pscheidt, and W. E. Stone: Formation of ammonium ion in the cerebrum in fluoroacetate poisoning. Amer. J. Physiol. 170, 488–492 (1954).

    Google Scholar 

  • Berl, S., And H. Waelsch: Determination of glutamic acid, glutamine, glutathione and y-aminobutyric acid and their distribution in brain tissue. J. Neurochem. 3, 161–169 (1958).

    PubMed  CAS  Google Scholar 

  • Berl, S., D. P. Purpura, M. Girado, and H. Waelsch: Amino acid metabolism in epileptogenic and non-epileptogenic lesions of the neocortex (cat). J. Neurochem. 4, 311 (1959).

    PubMed  CAS  Google Scholar 

  • Berl, S., D. P. Purpura, O. Gonzalez-Monteagudo, And H. Waelsch: Effects of injected amino acids on metabolic changes occurring in epileptogenic and non-epileptogenic lesions of the cerebral cortex. In: Inhibition in the nervous system and y-aminobutyric acid. ( E. Roberts, Ed.). London: Pergamon Press 1960b.

    Google Scholar 

  • Berl, S., F. Takagaki, D. D. Clarke, And H. Waelsch: Metabolic compartments in vivo. Ammonia and glutamic acid metabolism in brain and liver. J. biol. Chem. 237, 2562 (1962).

    PubMed  CAS  Google Scholar 

  • Bessman, J. P.: Ammonia and coma. In chemical pathology of the nervous system, p. 370. ( J. Folch-Pi, Ed.) London: Pergamon Press Ltd. 1961.

    Google Scholar 

  • Bessman, S. P., J. Rossen, and E. C. Layne: y-Aminobutyric acid Glutamic Acid Transamination In Brain. J. Biol. Chem. 201, 385–391 (1953).

    PubMed  CAS  Google Scholar 

  • Bessman, S. P., and A. N. Bessman: The cerebral and peripheral uptake of ammonia in liver disease with an hypothesis for the mechanism of hepatic coma. J. clin. Invest. 34, 622–628 (1955).

    PubMed  CAS  Google Scholar 

  • Bessman, S. P.: Ammonia metabolism in animals. In: Inorganic nitrogen metabolism. 408–437. ( W. D. McElroy and B. Glass, Eds.), Baltimore, Maryland: Johns Hopkins Press 1956.

    Google Scholar 

  • Block, W.: In-vitro-Versuche zum Einbau von 14C-Mescalin und 14C-ß-Phenyl-athylamin in Proteine. Hoppe-Seylers Z. physiol. Chem. 296, 1 (1954).

    PubMed  CAS  Google Scholar 

  • Block, W., K. Block, and B. Patzig: Zur Physiologie des 14C-radioaktiven Mescalins im Tierversuch. Hoppe-Seylers Z. physiol. Chem. 290, 160 (1952).

    PubMed  CAS  Google Scholar 

  • Braganca, B. M., P. Faulkner, and J. H. Quastel: Effects of inhibitors of glutamine synthesis on the inhibition of acetylcholine synthesis in brain slices by ammonia ions. Biochim. biophys. Acta 10, 83–88 (1953).

    PubMed  CAS  Google Scholar 

  • Brattgard, S. O.: The importance of adequate stimulation for the chemical composition of retinal ganglion cells during early po3t-natal develop-Ment. Acta Radiol. (Stockh.) Suppl. 96, (1952).

    Google Scholar 

  • Busch, H.: Studies on the metabolism of pyruvate-2-C14 in tumor-bearing rats. Cancer Res. 15, Suppl. 3, 365 (1955).

    PubMed  CAS  Google Scholar 

  • Busch, H., M. H. Goldberg, and D. C. Anderson: Substrate effects on metabolic patterns of pyruvate- 2-C14 in tissue slices. Cancer Res. 16, 175 (1956).

    PubMed  CAS  Google Scholar 

  • Caspersson, T.: The relations between nucleic acid and protein synthesis. Symp. Soc. Exp. Biol. 1. Nucleic acid, 127–151 (1947).

    Google Scholar 

  • Chirigos, M. A., P. Greengard, and S. Uden-Friend: Uptake of tyrosine by rat brain in vivo. J. biol. Chem. 235, 2075 (1960).

    PubMed  CAS  Google Scholar 

  • Clarke, D. D., M. J. Mycek, A. Neidle, And H. Waelsch: The incorporation of amines into protein. Arch. Biochem. 79, 338 (1959).

    CAS  Google Scholar 

  • Clarke, D. D., A. Neidle, N. K. Sarkar, and H. Waelsch: Metabolic activity of protein amide groups. Arch. Biochem. 71, 277–279 (1957).

    PubMed  CAS  Google Scholar 

  • Clark, G. M., and B. Eiseman: Studies in ammonia metabolism. IV. Biochemical changes in brain tissue of dogs during ammonia induced coma. New Engl. J. Med. 259, 178–180 (1958).

    PubMed  CAS  Google Scholar 

  • Clouet, D. H.: On the apparent fixation of serotonin in mitochondrial proteins. Abstract in: Proceedings of the Fourth International Congress of Biochemistry, p. 184. Pergamon Press 1958.

    Google Scholar 

  • Clouet, D. H., and D. Richter: The incorporation of (35S) labelled methionine into the proteins of the rat brain. J. Neurochem. 3, 219–229 (1959).

    PubMed  CAS  Google Scholar 

  • Clouet, D.H., and H. Waelsch: The recovery of Cholinesterase in the nervous system of the frog after inhibition. J. Neurochem. 8, 201 (1961).

    PubMed  CAS  Google Scholar 

  • Crane, R. K., and E. G. Ball: Factors affecting the fixation of C1402 by animal tissues. J. biol. Chem. 188, 819–832 (1951).

    PubMed  CAS  Google Scholar 

  • Davison, A. N.: Metabolically inert proteins of the central and peripherial nervous system, muscle and tendon. Biochem. J. 78, 272 (1961).

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C.: Studies on the glutamine and glutamic acid content of the rat brain during insulin hypoglycaemia. Biochem. J. 47, 386–395 (1950).

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C.: The metabolism and glutamic acid content of rat brain in relation to thiopentane anaesthesia. Biochem. J. 49, 138–144 (1951).

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., and R. A. Peters: Observations upon the behaviour of some phosphate esters in brain at the start of convulsions induced by fluorocitrate and fluoroacetate. Biochim. biophys. Acta 16, 254–257 (1955).

    PubMed  CAS  Google Scholar 

  • Dingman, W., and M. B. Sporn: The penetration of proline and proline derivatives into brain. J. Neurochem. 4, 148–153 (1959).

    PubMed  CAS  Google Scholar 

  • Dingman, W., And M. B. Sporn: The incorporation of 8-azaguanine into rat brain RNA and its effect on maze-learning by the rat: an inquiry into the biochemical basis of memory. J. Psychiatric. Res. 1, 1 (1961).

    CAS  Google Scholar 

  • Dingman, W., M. B. Sporn, and R. K. Da Vies: The chemical fractionation of rat brain proteins. J. Neurochem. 4, 154–160 (1959).

    PubMed  CAS  Google Scholar 

  • Einarson, L.: Structural changes and functional disturbances in the nervous system. Anatomiske Skrifter 1, 27–51 (1954).

    Google Scholar 

  • Einarson, L.: Cytological aspects of nucleic acid metabolism. In: Metabolism of the nervous system. 403–420. ( D. Richter, Ed.), London: Pergamon Press 1957.

    Google Scholar 

  • Eiseman, B., W. Bakewell, and G. Clark: Studies in ammonia metabolism. I. Ammonia metabolism and glutamate therapy in hepatic coma. Amer. J. Med. 20, 890–895 (1956).

    PubMed  CAS  Google Scholar 

  • Elliot, W. H.: Studies on the enzymic synthesis of glutamine. Biochem. J. 49, 106–112 (1951).

    Google Scholar 

  • Elliott, K. A. C.: The relation of ions to metabolism in brain. Canad. J. Biochem. 33, 466 (1955).

    PubMed  CAS  Google Scholar 

  • Findlay, M., W. L. Magee, and R. J. Rossiter: Incorporation of radioactive phosphate into lipids and pentosenucleic acid of cat brain slices. The effect of inorganic ions. Biochem. J. 58, 236–243 (1954).

    PubMed  CAS  Google Scholar 

  • Flock, E. V., M. A. Block, J. H. Grindlay, F. C. Mann, and J. L. Bollman: Changes in free amino acids of brain and muscle after total hepatectomy. J. biol. Chem. 200, 529–536 (1953).

    PubMed  CAS  Google Scholar 

  • Florey, E.: Über einen nervösen Hemmungsfaktor in Gehirn und Rückenmark. Naturwissenschaften 40, 295–296 (1953).

    CAS  Google Scholar 

  • Fürst, S., A. Lajtha, and H. Waelsch: Amino acid and protein metabolism of the brain. III. Incorporation of lysine into the proteins of various brain areas and their cellular fractions. J. Neurochem. 2, 216–225 (1958).

    PubMed  Google Scholar 

  • Gaitonde, M. K.: The rate of (35S) methionine and (35S) cystine into proteolipids and proteins of rat brain. Biochem. J. 80, 277 (1961).

    PubMed  CAS  Google Scholar 

  • Gaitonde, M. K., and D. Richter: The uptake of 35S into rat tissues after injection of (35S) methionine. Biochem. J. 59, 690–696 (1955).

    PubMed  CAS  Google Scholar 

  • Gaitonde, M. K., and D. Richter: The metabolic activity of the proteins of the brain. Proc. roy. Soc. 145, 83–99 (1956).

    CAS  Google Scholar 

  • Geiger, A., J. Magnes, and J. Dobkin: Non-carbohydrate sources of excess energy utilized by the brain during convulsions. Fed. Proc. 13, 52–53 (1954).

    Google Scholar 

  • Geiger, A.: Correlation of brain metabolism and function by the use of a brain perfusion method in situ. Physiol. Rev. 38, 1–20 (1959).

    Google Scholar 

  • Gjessing, R.: Disturbances of somatic functions in catatonia with a periodic course, and their compensation. J. ment. Sci. 84, 608–621 (1938).

    CAS  Google Scholar 

  • Gjessing, R.: Beiträge zur Kenntnis der Pathophysiologic periodisch katatoner Zustände, IV. Mitteilung. Versuch einer Ausgleichung der Funktionsstörungen. Arch. Psychiat. Nervenkr. 109, 525–595 (1939).

    CAS  Google Scholar 

  • Gore, M. B. R., And H. Mcilwain: Effects of some inorganic salts on the metabolic response of sections of mammalian cerebral cortex to electrical stimulation. J.Physiol. ll7, 471–483 (1952).

    Google Scholar 

  • Gray, I., J. M. Johnston, And C. W. Spearing: Biochemical response to trauma. V. Glutamine, glutamic acid, ammonia in the brain. Fed. Proc. 15, 265 (1956).

    Google Scholar 

  • Guha, S. R., and J. J. Ghosh: Glutamine transaminase activity in rat brain. Ann. Biochem. exp. Med. 19, 33–36 (1959).

    CAS  Google Scholar 

  • Haber, C., And L. Said El: Glutamic acid in neural activity. Fed. Proc. 7, 47 (1948).

    PubMed  CAS  Google Scholar 

  • Hamberger, C. A., And H. Hyden: Cytochemical changes in the cochlear ganglion caused by acoustic stimulation and trauma. Acta oto-laryng. (Stockh.) Suppl. 61, (1945).

    Google Scholar 

  • Hamberger, C. A., And H. Hyden: Production of nucleoproteins in the vestibular ganglion. Acta otolaryng. (Stockh.) Suppl. 75, 53–81 (1949a).

    Google Scholar 

  • Hamberger, C. A., and H. Hyden: Transneuronal chemical changes in Deiters nucleus. Acta otolaryng. (Stockh.) Suppl. 75, 82–113 (1949b).

    Google Scholar 

  • Heath, R. G., S. Martens, B. E. Leach, M. Cohen, and C. Angel: Effect on behavior in humans with the administration of taraxein. Amer. J. Psychiat. 114, 14–24 (1957).

    PubMed  CAS  Google Scholar 

  • Heath, R. G., B. E. Leach, L. W. Byers, S. Martens, And C. A. Feigley: Pharmacological and biological psychotherapy. Amer. J. Psychiat. 114, 683–689 (1958).

    PubMed  CAS  Google Scholar 

  • Heinz, E.: Exchangeability of glycine accumulated by carcinoma cells. J. biol. Chem. 225, 305–315 (1957).

    PubMed  CAS  Google Scholar 

  • Heinz, E., and P. M. Walsh: Exchange diffusion, transport, and intracellular level of amino acids in Ehrlich carcinoma cells. J. biol. Chem. 233, 1488–1493 (1958).

    PubMed  CAS  Google Scholar 

  • Himwich, H. E., and W. A. Himwich: The permeability of the blood-brain barrier to glutamic acid in the developing rat. In: Biochemistry of the developing nervous system. 202–206. ( H. Waelsch, Ed.), New York: Academic Press 1955.

    Google Scholar 

  • Hyden, H.: Protein metabolism in the nerve cell during growth and function. Acta Physiol, scand. 6, Suppl. 17, 5–136 (1943).

    Google Scholar 

  • Hyden, H.: The nucleoproteins in virus reproduction. Cold Spr. Harb. Symp. quant. Biol. 12, 104–114 (1947).

    CAS  Google Scholar 

  • Hyden, H., S. Lovtrup, And A. Pigon: Cytochrome oxidase and succin-oxidase activities in spinal ganglion cells and in glial Capsula cells. J. Neurochem. 2, 304–311 (1958).

    PubMed  CAS  Google Scholar 

  • Hyden, H.: Biochemical changes in glial cells and nerve cells at varying activity. In: Proceedings of the Fourth International Congress of Biochemistry. Vol. Ill: Biochemistry of the central nervous system. 64–89. ( F. Brücke, ed.), London: Pergamon Press Ltd. 1959.

    Google Scholar 

  • Hyden, H., And A. Pigon: A cytophysiological study of the functional relationship between oligodendroglial cells and nerve cells of Deiters’ nucleus. J. Neuro chem. 6, 57 (1960).

    CAS  Google Scholar 

  • Irreverre, F., and R. L. Evans: Isolation of y-guanidinobutyric acid from calf brain. J. biol. Chem. 234, 1438–1440 (1959).

    PubMed  CAS  Google Scholar 

  • Kamin, H., and P. Handler: The metabolism of parenterally administered amino acids. II. Urea synthesis. J. biol. Chem. 188, 193–205 (1951).

    PubMed  CAS  Google Scholar 

  • Katzman, R., and P. H. Leiderman: Brain potassium exchange in normal adult and immature rats. Amer. J. Physiol. 175, 263–270 (1953).

    PubMed  CAS  Google Scholar 

  • Kety, S. S.: Biochemical theories of schizophrenia. Science 129, 1528–1532 and 1590–1596 (1959).

    Google Scholar 

  • Keup, W.: Die Biochemie der Schizophrenie, Eine kritische Stellungnahme. Mschr. Psychiat. Neurol. 128, 56–90 (1954).

    CAS  Google Scholar 

  • Killam, K. F., And J. A. Bain: Convulsant hydrazides I. In vitro and in vivo inhibition of vitamin B6 enzymes by convulsant hydrazides. J. Pharmacol, exp. Ther. 119, 255–262 (1957).

    CAS  Google Scholar 

  • Killam, K. F., S. R.Dasgupta, And E. K. Killam: Studies of the action of convulsant hydrazides as Vitamin B6 antagonists in the central nervous system. In: Inhibition in the nervous system and y-aminobutyric acid ( E. Roberts, Ed.). London: Pergamon Press 1960.

    Google Scholar 

  • Klingmüller, V.: Biochemie, Physiologie und Klinik der Glutaminsäure. Aulendorf/Württ.: Cantor 1955.

    Google Scholar 

  • Koechlin, B. A.: On the chemical composition of the axoplasm of squid giant nerve fibers with particular reference to its ion pattern. J. biophys. biochem. Cytol. 1, 511–529 (1955).

    PubMed  CAS  Google Scholar 

  • Koenig, E., and G. B. Koelle: Mode of regeneration of acetylcholinesterase in cholinergic neurons following irreversible inactivation. J. Neurochem. 8, 169 (1961).

    PubMed  CAS  Google Scholar 

  • Koransky, W.: Fraktionierte Darstellung von Nucleotiden aus dem Gehirn von Ratten im Ruhezustand und im Krampfanfall. Naunyn-Schmiedebergs Arch. exp. Path. Pharmakol. 228, 140–143 (1956).

    CAS  Google Scholar 

  • Korey, S. R., B. De Braganza, And D. Nachmansohn: Choline acetylase. V. Esterification and transacetylations. J. biol. Chem. 189, 705–715 (1951).

    PubMed  CAS  Google Scholar 

  • Krebs, H. A.: Metabolism of amino-acids. IV. The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem. J. 29, 1951–1959 (1935).

    PubMed  CAS  Google Scholar 

  • Krebs, H.A., L. V. Eggleston, and R. Hems: Distribution of glutamine and glutamic acid in animal tissues. Biochem. J. 44, 159–163 (1949).

    CAS  Google Scholar 

  • Lajtha, A.: Amino acid and protein metabolism of the brain. II. The uptake of L-lysine by brain and other organs of the mouse at different ages. J. Neurochem. 2, 209–215 (1958).

    PubMed  CAS  Google Scholar 

  • Lajtha, A.: Amino acid and protein metabolism of the brain. V. Turnover of leucine in mouse tissues. J. Neurochem. 3, 358–365 (1959).

    PubMed  CAS  Google Scholar 

  • Lajtha, A.: Protein metabolism in peripheral nerve. In: Chemical pathology of the nervous system. ( J. Folch, Ed.). London: Pergamon Press. Ltd. 1960.

    Google Scholar 

  • Lajtha, A., S. Berl, and H. Waelsch: Amino acid and protein metabolism of the brain. IV. The metabolism of glutamic acid. J. Neurochem. 3, 322–332 (1959).

    PubMed  CAS  Google Scholar 

  • Lajtha, A., S. Berl, And H. Waelsch: Compartmentalization of glutamic acid metabolism in the central nervous system. In: Inhibition in the central nervous system and y-aminobutyric acid ( E. Roberts, Ed.). London: Pergamon Press Ltd. 1960.

    Google Scholar 

  • Lajtha, A., S. Fürst, A. Gerstein, And H. Waelsch: Amino acid and protein metabolism of the brain. I. Turnover of free and protein bound lysine in brain and other organs. J. Neurochem. 1, 289–300 (1957a).

    CAS  Google Scholar 

  • Lajtha, A., S.Fürst, and H. Waelsch: The metabolism of the proteins of the brain. Experientia (Basel) 13, 168–172 (1957b).

    CAS  Google Scholar 

  • Lajtha, A., And P. Mela: The exchange of free amino acids between plasma and brain. J. Neurochem. 7, 210 (1961).

    CAS  Google Scholar 

  • Lajtha, A., P. Mela, And H. Waelsch: Manganese dependent glutamotransferase, J. biol. Chem. 205, 553 (1953).

    PubMed  CAS  Google Scholar 

  • Lajtha, A., and J. Toth: Uptake and transport of amino acids by the brain. J. Neurochem. 8, 216 (1961).

    PubMed  CAS  Google Scholar 

  • Leach, B. E., M. Cohen, R. G. Heath, and S. Martens: Studies of the role of ceruloplasmin and albumin in adrenaline metabolism. A. M. A. Arch. Neurol. Psychiat. 76, 635–642 (1956).

    CAS  Google Scholar 

  • Maurer, W.: Untersuchungen zur Größe des Eiweißumsatzes von Plasma- und Organeiweiß. Wien. Z. inn. Med. 38, 28 (1957).

    Google Scholar 

  • Mcilwain, H.: Glutamic acid and glucose as substrates for mammalian brain. J. ment. Sci. 97, 674–680 (1951).

    PubMed  CAS  Google Scholar 

  • McIlwain, H.: Phosphates of brain during in vitro metabolism: Effects of oxygen, glucose, glutamate, and calcium and potassium salts. Biochem. J. 52, 289–295 (1952).

    PubMed  CAS  Google Scholar 

  • McIlwain, H.: Substances which support respiration and metabolic response to electrical impulses in human cerebral tissues. J. Neurol. Neurosurg. Psychiat. 16, 257–266 (1953).

    PubMed  CAS  Google Scholar 

  • McIlwain, H., P. J. W. Ayres, and O. Forda: Metabolic response to electrical stimulation in separated portions of human cerebral tissues. J. ment. Sci. 68, 265–272 (1952).

    Google Scholar 

  • McIlwain, H., And M. B. R. Gore: Induced loss in cerebral tissues of respiratory response to electrical impulses, and its partial restoration by additional substrates. Biochem. J. 54, 305–312 (1953).

    PubMed  CAS  Google Scholar 

  • McKhann, G. M., R. W. Albers, L. Sokoloff, O. Mickelsen, and D. B. Tower: The quantitative significance of the y-aminobutyric acid pathway in cerebral oxidative metabolism. In: Inhibition in the nervous system and y-amino-butyric acid (GABA). ( E. Roberts, ed.). London: Pergamon Press Ltd. 1959.

    Google Scholar 

  • Magee, W. L., and R. J. Rossiter: Chemical studies of peripheral nerve during Wallerian degeneration. 6. Incorporation of radioactive phosphate into pentosenucleic acid and phospholipin in vitro. Biochem. J. 58, 243–249 (1954).

    PubMed  CAS  Google Scholar 

  • Meister, A., and S. V. Tice: Transamination from glutamine to a-keto acids. J. biol. Chem. 187, 173–187 (1950).

    PubMed  CAS  Google Scholar 

  • Misani, F., and L. Reiner: Studies on nitrogen trichloride treated prolamines. VIII. Synthesis of the toxic factor. Arch. Biochem. 27, 234–235 (1950).

    PubMed  CAS  Google Scholar 

  • Mycek, M. J., D. D. Clarke, A. Neidle, and H. Waelsch: Amine incorporation into insulin as catalyzed by transglutaminase. Arch. Biochem. 84, 528 (1959).

    PubMed  CAS  Google Scholar 

  • Mycek, M. J., and H. Waelsch: Enzymatic hydrolysis of protein amide groups. Fed. Proc. 19, 336 (1960).

    Google Scholar 

  • Nechaeva, G. A., N. V. Sadikova, And V. A. Skvortsevich: Renewal of amino acids of protein under different functional states. Vop. Biokhim. Nervnoi Sistemy Sbornik 1957,31–39; Chem. Abstr. 53, 1500b (1959).

    Google Scholar 

  • Ochs, S., and E. Burger: Movement of substance proximo-distally in nerve axon as studied with spinal cord injection of radioactive phosphorus. Amer. J. Physiol. 194, 499–506 (1958).

    PubMed  CAS  Google Scholar 

  • Palay, S. L., and G. E. Palade: The fine structure of neurons, J. biophys. biochem. Cytol. 1, 69–88 (1955).

    PubMed  CAS  Google Scholar 

  • Palladin, A. V.: Proteins of the nervous system under various conditions. In: Metabolism of the nervous system (D. Richter, Ed.), 456–458. London: Pergamon Press Ltd. 1957.

    Google Scholar 

  • Palladin, A. V., V. V. Belik, N. M. Polyakova, and T. P. Silich: Proteins of the nervous system. Vop. Biokhim. Nervnoi. Sistemy Sbornik 1959, 9–30. Chem. Abstr. 53, 1499h (1959).

    Google Scholar 

  • Palladin, A. V., And N. Vertaimer: Protein renewal in the central nervous system in different functional states. Dokl. Akad. Nauk SSSR 102, 319–321 (1955); Chem. Abstr. 49, 14971g (1955).

    PubMed  CAS  Google Scholar 

  • Pisano, J. J., C. Mitoma, And S. Udenfriend: Biosynthesis of y-guanidinobutyric acid from y-aminobutyric acid and arginine. Nature (Lond.) 180, 1125–1126 (1957).

    CAS  Google Scholar 

  • Pisano, J. J., J. D. Wilson, L. Cohne, D. Abraham, And S. Udenfriend: Isolation of y-aminobutyrylhistidine (homocarnosine) from brain. J. biol. Chem. 236, 499 (1961).

    PubMed  CAS  Google Scholar 

  • Price, J. C., H. Waelsch, and T. J. Putnam: dl-glutamic acid hydrochloride in treatment of petit mal and psychomotor Scezures. J. Amer. med. Ass. 122, 1153–1156 (1943).

    CAS  Google Scholar 

  • Purpura, D. P., S. Berl, O. Gonzalez-Monteagudo, And A. Wyatt: Brain amino acid changes during methoxypyridoxine-induced Scezures (cat). In: Inhibition in the nervous system and y-aminobutyric acid (E. Roberts, Ed.). London: Pergamon Press 1960.

    Google Scholar 

  • Purpura, D. P., M. Girado, and H. Grundfest: Selective blockade of excitatory synapses in the cat brain by y-aminobutyric acid. Science 125, 1200–1201 (1957).

    PubMed  CAS  Google Scholar 

  • Purpura, D. P., M. Girado, and H. Grundfest: Central synaptic effects of co-guanidino acids and amino acid derivatives. Science 127, 1179–1181 (1958).

    PubMed  CAS  Google Scholar 

  • Purpura, D. P., M. Girado, T. G. Smith, D. A. Callan and H. Grundfest: Structure-activity determinants of pharmacological effects of amino acids and related compounds on central synapses. J. Neurochem. 3, 238–238 (1959).

    PubMed  CAS  Google Scholar 

  • Richter, D., and R. M. C. Dawson: The ammonia and glutamine content of the brain. J. biol. Chem. 176, 1199–1210 (1948).

    PubMed  CAS  Google Scholar 

  • Roberts, E., and H. M. Bregoff: Transamination of y-amino-butyric acid and a-alanine in brain and liver. J. biol. Chem. 201,393–398 (1953).–

    Google Scholar 

  • Roberts, E., And S. Frankel: y-Aminobutyric acid in brain: its formation from glutamic Acid. J. Biol. Chem. 187, 55–63 (1950).

    Google Scholar 

  • Robins, E., K. Smith, and I. P. Lowe: IN: Neuro-pharmacology, Transactions of the Fourth Conference of the Josiah Macy, Jr. Foundation. New York: 1957.

    Google Scholar 

  • Ruisseau, J. P. Du, J. P. Greenstein, M. Winitz, and S. M. Birnbaum: Studies on the metabolism of free amino acids and related compounds in vivo. VI. Free amino acid levels in the tissues of rats protected against ammonia toxicity. Arch. Biochem. 68, 161–171 (1957).

    Google Scholar 

  • Sachs, H.: Vasopressin biosynthesis. Biochim. biophys. Acta 34, 572–573 (1959).

    PubMed  CAS  Google Scholar 

  • Samuels, A. J., L. L. Boyarsky, and R. W. Gerard: Distribution, exchanges and migration of phosphate compounds in the nervous system. Amer. J. Physiol. 164, 1–15 (1951).

    PubMed  CAS  Google Scholar 

  • Sarkar, N. K., D. D. Clarke, and H. Waelsch: An enzymically catalyzed incorporation of amines into proteins. Biochim. biophys. Acta 25, 451 (1957).

    PubMed  CAS  Google Scholar 

  • Scheinberg, I. H., A. G. Morell, R. S. Harris, and A. Berger: Concentration of ceruloplasmin in plasma of schizo-phrenic patients. Science 126, 925–926 (1957).

    PubMed  CAS  Google Scholar 

  • Schurr, P. E., H. T. Thompson, L. M. Henderson, J. N. Williams Jr., and C. A. Elvehjem: The determination of free amino acids in rat tissues. J. biol. Chem. 182, 39–45 (1950).

    CAS  Google Scholar 

  • Schwerin, P., S. P. Bessman, and H. Waelsch: The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. J. biol. Chem. 184, 37–44 (1950).

    PubMed  CAS  Google Scholar 

  • Shapot, V. S.: Brain metabolism in relation to the functional state of the central nervous system. In: Metabolism of the nervous system. 257–262. ( D. Richter, Ed.). London: Pergamon Press 1957.

    Google Scholar 

  • Silber, R. H.: The free amino acids of lobster nerve. J. cell. comp. Physiol. 18, 21–30 (1941).

    CAS  Google Scholar 

  • Speck, J. F.: The enzymatic synthesis of glutamine, a reaction utilizing adenosine triphosphate. J. biol. Chem. 179, 1405–1426 (1949).

    PubMed  CAS  Google Scholar 

  • Sporn, M. B., W. Dingman, and A. Defalco: A method for studying metabolic pathways in the brain of the intact animal. The conversion of proline to other amino acids. J. Neurochem. 4, 141–147 (1959).

    PubMed  CAS  Google Scholar 

  • Stern, J. R., L. V. Eggleston, R. Hems, and H. A. Krebs: Accumulation of glutamic acid in isolated brain tissue. Biochem. J. 44, 410–418 (1949).

    CAS  Google Scholar 

  • Strecker, H. J.: Glutamic dehydrogenase. Arch. Biochem. 46, 128–140 (1953).

    PubMed  CAS  Google Scholar 

  • Takagaki, G., S. Berl, D. D. Clarke, D. P. Purpura, and H. Waelsch: Glutamic acid metabolism in brain and liver during infusion with ammonia labelled with nitrogen-15. Nature (Lond.) 189, 326 (1961).

    CAS  Google Scholar 

  • Takagaki, G., S. Hirano,And Y. Nagata: Some observations on the effect of D-glutamate on the glucose metabolism and the accumulation of potassium ions in brain cortex slices. J. Neurochem. 4, 124 (1959).

    PubMed  CAS  Google Scholar 

  • Tallan, H. H., S. Moore, and W. H. Stein: Studies on the free amino acids and related compounds in the tissues of the cat. J. biol. Chem. 211, 927–939 (1954).

    PubMed  CAS  Google Scholar 

  • Tallan, H. H., S. Moore, and W. H. Stein: L-Cystathionine in human brain. J. biol. Chem. 230, 707–716 (1958).

    PubMed  CAS  Google Scholar 

  • Tashiro, S.: Studies of alkaligenesis in tissues. I. Ammonia production in the nerve fiber during excitation. Amer. J. Physiol. 60, 519–543 (1922).

    CAS  Google Scholar 

  • Terner, C., L. V. Eggleston, and H. A. Krebs: The role of glutamic acid in the transport of potassium in brain and retina. Biochem. J. 47, 139–149 (1950).

    PubMed  CAS  Google Scholar 

  • Thorn, W., and J. Heimann: The effects of anoxia, ischaemia, asphyxia and reduced temperature on the ammonia level in the brain and other organs. J. Neurochem. 2, 166–177 (1958).

    PubMed  CAS  Google Scholar 

  • Torda, C.: Effect of convulsion-inducing agents on the acetylcholine content and on the electrical activity of the brain. Amer. J. Physiol. 173, 179–183 (1953).

    PubMed  CAS  Google Scholar 

  • Tower, D. B.: Nature and extent of the biochemical lesion in human epileptogenic cerebral cortex. Neurology 5, 113–130 (1955).

    PubMed  CAS  Google Scholar 

  • Tower, D. B.: Glutamic metabolism in the mammalian central nervous system. In: Proceedings of the Fourth International Congress of Biochemistry, Vol. Ill: Biochemistry of the central nervous system. 213–250. ( F. Brücke, Ed.) London: Pergamon Press Ltd. 1959.

    Google Scholar 

  • Tower, D. B.: The administration of y-aminobutyric acid to man: systemic effects and anticonvulsant action. In: Inhibition in the nervous system and y-amino-butyric acid ( E. Roberts, Ed.), London: Pergamon Press 1960.

    Google Scholar 

  • Tsukada, Y., And G. Takagaki: Ammonia-formation systems in brain tissue, Nature (Lond.) 173, 1138 (1954).

    CAS  Google Scholar 

  • Tsukada, Y., G. Takagaki, S. Sugimoto, and S. Hirano: Changes in the ammonia and glutamine content of the rat brain induced by electric shock. J. Neurochem. 2, 295–303 (1958).

    PubMed  CAS  Google Scholar 

  • Ungar, G., E. Aschheim, S. Psychoyqs, And D. V. Romano: Reversible changes of protein configuration in stimulated nerve structures. J. gen. Physiol. 40, 635–652 (1957).

    PubMed  CAS  Google Scholar 

  • Ungar, G., And D. V. Romano: Sulfhydryl groups in resting and stimulated rat brain; their relationship with protein structure. Proc. Soc. exp. Biol. (N. Y.) 97, 324–326 (1958).

    CAS  Google Scholar 

  • Vladimirova, E. A.: Changes in the content of preformed ammonia in the hemispheres of the cerebrum of rats under conditions of block caused by the action of conditional irritants. Dokl. Akad. Nauk SSSR 95, 905–908 (1954); Chem. Abstr. 48, 9509e (1954).

    PubMed  CAS  Google Scholar 

  • Vladimirova, E. A.: The ammonia and glutamine content of the cerebral hemispheres of rats in conditioned reflex stimulation and inhibition. Akad. Nauk SSSR 1956, 440–448; Chem. Abstr. 51, 11526e (1957).

    Google Scholar 

  • Vladimirov, G. E.: Functional biochemistry of the brain. Fiziol. Zhur. SSSR 39, 3–16 (1953); Chem. Abstr. 47, 4983e (1953).

    CAS  Google Scholar 

  • Vladimirov, G. E., and A. P. Urinson: Glycine metabolism in the cerebral tissue of the rat in normal resting and in amytal-induced sleep. Biochemistry 22, 665–670 (1957).

    CAS  Google Scholar 

  • Vrba, R.: Beitrag zum Studium des Gehirnmetabolismus im Zusammenhang mit körperlicher Anstrengung. III. Über Ammoniak-Bildung Und Strukturale Eiweißveränderungen Im Gehirn. Physiol. Bohemoslov. 4, 397–408 (1955).

    CAS  Google Scholar 

  • Vrba, R., and J. Folbergrova: Observations on endogenous metabolism in brain in vitro and in vivo. J. Neurochem. 4, 338–349 (1959).

    CAS  Google Scholar 

  • Waelsch, H.: Glutamic acid and cerebral function. Advanc. Protein Chem. 6, 301–341 (1951).

    Google Scholar 

  • Waelsch, H.: Certain aspects of intermediary metabolism of glutamine, asparagine and glutathione. Advanc. Enzymol. 13, 237 (1952).

    CAS  Google Scholar 

  • Waelsch, H.: Metabolism of proteins and amino acids. In: Metabolism of the nervous system. 431–447. ( D. Richter, Ed.), London: Pergamon Press 1957.

    Google Scholar 

  • Waelsch, H.: Some aspects of amino acid and protein-metabolism of the nervous system. J. nerv. ment. Dis. 126, 33–39 (1958).

    PubMed  CAS  Google Scholar 

  • Waelsch, H.: Some problems of metabolism in relation to the structure of the nervous system. In: Proceedings of the Fourth International Congress of Biochemistry. Vol. Ill; Biochemistry of the central nervous system. 36–45. ( F. Brücke, Ed.), London: Pergamon Press Ltd. 1959.

    Google Scholar 

  • Waelsch, H.: An attempt at integration of structure and metabolism in the nervous system. In: Structure and function of the cerebral cortex. Elsevier Publishing Company 1960.

    Google Scholar 

  • Waelsch, H.: Com-partmentalized biosynthetic reactions in the central nervous system. In Regional Neurochemistry (S. S. Kety and J. Elkes, Eds); p. 57. London: Pergamon Press Ltd. 1961.

    Google Scholar 

  • Waelsch, H., and A. Lajtha: Protein metabolism in the nervous system. Physiol. Rev. 41, 709 (1961).

    PubMed  CAS  Google Scholar 

  • Waelsch, H., P. Owades, H. K. Miller, and E. Borek: Glutamic acid antimetabolites: The sulfoxide derived from methionine. J. biol. Chem. 166, 273–281 (1946).

    PubMed  CAS  Google Scholar 

  • Webster Jr., L. T., and G. J. Gabuzda: Ammonium uptake by the extremities and brain in hepatic coma. J. clin. Invest. 37, 414–424 (1958).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H.: Studies on brain metabolism. I. The metabolism of glutamic acid in brain. Biochem. J. 30, 665–676 (1936).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H.: Observations on tissue glycolysis. Biochem. J. 32, 2257–2275 (1938).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., and A. C. Drysdale: Ammonia formation in brain. III. The role of the protein amide groups and of hexosamines. J. Neurochem. 1, 250–255 (1957).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., and R. H. Green: Ammonia formation in brain. 1. Studies on slices and suspension. Biochem. J. 61, 210–218 (1955a).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., And R. H. Green: Ammonia formation in brain. 2. Brain adenylic deaminase. Biochem. J. 61, 218–224 (1955b).

    PubMed  CAS  Google Scholar 

  • Weiss, P., And H. B. Hiscoe: Experiments in the mechanism of nerve growth. J. exp. Zool. 107, 315–395 (1948).

    PubMed  CAS  Google Scholar 

  • Winnick, T., R. E. Winnick, R. Acher, and C. Fromageot: Amino acids and peptides of posterior pituitary and hypothalamus tissues. Biochim. biophys. Acta 18, 488 (1955).

    PubMed  CAS  Google Scholar 

  • Winterstein, H., and E. Hirschberg: Über Ammoniakbildung im Nervensystem. Biochem. Z. 156, 138 (1925).

    CAS  Google Scholar 

E. Lipids

  • Abood, L. G., and A. Geiger: Breakdown of proteins and lipids during glucose-free perfusion of the cat’s brain. Amer. J. Physiol. 182, 557–560 (1955).

    PubMed  CAS  Google Scholar 

  • Adams, R. D., And E. P. Richardson: The chemistry of demyelination. In: Chemical pathology of the nervous system (J. Folch, Ed.), Proceedings of the Third International Neurochemical Symposium. London: Pergamon Press. In press.

    Google Scholar 

  • Ansell, G. B., and R. M. C. Dawson: Ethanolamine O-phosphoric acid in rat brain. Biochem. J. 50, 241–246 (1951).

    PubMed  CAS  Google Scholar 

  • Blix, G.: Zur Kenntnis der schwefelhaltigen Lipoidstoffe des Gehirns. Über Cerebronschwefelsäure. Hoppe-Seylers Z. physiol. Chem. 219, 82–98 (1933).

    CAS  Google Scholar 

  • Blix, G.: Über die Kohlenhydratgruppen des Submaxillarismucins. Hoppe-Seylers Z. physiol. Chem. 240, 43–45 (1936).

    CAS  Google Scholar 

  • Blix, G.: Einige Beobachtungen über eine hexosaminhaltige Substanz in der Protagon-Fraktion des Gehirns. Skand. Arch. Physiol. 80, 46–51 (1938).

    CAS  Google Scholar 

  • Blix, G., L. Svennerholm, And I. Werner: The isolation of Chondrosamine from gangliosides and from submaxillary mucin. Acta chem. scand. 6, 358–362 (1952).

    CAS  Google Scholar 

  • Bodian, D., and D. Dziewiat- Kowski: The disposition of radioactive phosphorus in normal, as compared with regenerating and degenerating nervous tissue. J. cell. Comp. Physiol. 35, 155–177 (1950).

    CAS  Google Scholar 

  • Brady, R. O., and G. J. Koval: The enzymatic synthesis of sphingosine. J. biol. Chem. 233, 26–31 (1958).

    PubMed  CAS  Google Scholar 

  • Brante, G.: Filter paper chromatography in lipid analysis. Upsala Läk.-Foren, Förh. 53, 301–308 (1948).

    PubMed  CAS  Google Scholar 

  • Burton, R. M., M. A. Sodd, And R. O. Brady: The incorporation of galactose into galactolipides. J. biol. Chem. 233, 1053–1060 (1958).

    PubMed  CAS  Google Scholar 

  • Carter, H. E., And F. L. Greenwood: Biochemistry of the sphingolipides. VII. Structure of the cerebrosides. J. biol. Chem. 199, 283–288 (1952).

    PubMed  CAS  Google Scholar 

  • Chibnall, A. C., S. H. Piper, and E. F. Williams: The fatty acids of phrenosin and kerasin. Biochem. J. 30, 100–114 (1936).

    PubMed  CAS  Google Scholar 

  • Davison, A. N., And M. Wajda: Metabolism of myelin lipids: estimation and separation of brain lipids in the developing rabbit. J. Neurochem. In press.

    Google Scholar 

  • Dawson, R. M. C.: Studies on the labelling of brain phospholipids with radioactive phosphorus. Biochem. J. 57, 237–245 (1954).

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C.: Studies on the phosphorylcholine of rat liver. Biochem. J. 62, 693–696 (1956).

    PubMed  CAS  Google Scholar 

  • Dawson, R. M. C., and D. Richter: Phosphorus metabolism of the brain. Proc. roy. Soc. 137 B, 252–267 (1950).

    Google Scholar 

  • Dittmer, J. C., and R. M. C. Dawson: The isolation Of A New Lipid, Triphosphoinositide, And Monophosphoinositide From Ox Brain. Biochem. J. 81, 535 (1961).

    PubMed  CAS  Google Scholar 

  • Donaldson, H.: The Rat. Memoirs. Wistar Inst. Anat. Biol. 6, 228–233 (1924).

    Google Scholar 

  • Ehrlich, G., and H. Waelsch: The position of the higher fatty acid metabolism of rat muscle. J. biol. Chem. 168, 195–202 (1946).

    Google Scholar 

  • Findlay, M., W. L. Magee, and R. J. Rossiter: Incorporation of radioactive phosphate into lipids and pentosenucleic acid of cat-brain slices. The effect of inorganic ions. Biochem. J. 58, 236–242 (1954).

    PubMed  CAS  Google Scholar 

  • Folch, J.: Brain cephalin, a mixture of phosphatides. Separation from it of phosphatidyl serine, phosphatidyl ethanolamine, and a fraction containing an inositol phosphatide. J. biol. Chem. 146, 35–44 (1942).

    CAS  Google Scholar 

  • Folch, J.: The chemical structure of phosphatidyl serine. J. biol. Chem. 174, 439–450 (1948).

    PubMed  CAS  Google Scholar 

  • Folch, J., S. Arsove, and J. A. Meath: Isolation of brain strandin. A new type of large molecule tissue component. J. biol. Chem. 191, 819–831 (1951).

    PubMed  CAS  Google Scholar 

  • Fries, B. A., G. W. Changus, and I. L. Chaikoff: Radioactive phosphorus as an indicator of phospholipoid metabolism. IX. The influence of age on the phospholipid metabolism of various parts of the central nervous system of the rat. The comparative phospholipid activity of various parts of the central nervous system of the rat. J. biol. Chem. 182, 23–34 (1940).

    Google Scholar 

  • Fries, B. A., H. Schachner, and I. L. Chaikoff: The in vitro formation of phospholipid by brain and nerve with radioactive phosphorus as indicator. J. biol. Chem. 144, 59–66 (1942).

    CAS  Google Scholar 

  • Geiger, A., S. Yamasaki, and R. Lyons: Changes in nitrogenous compounds of brain produced by stimulation of short duration. Amer. J. Physiol. 184, 239–243 (1956).

    PubMed  CAS  Google Scholar 

  • Gibson, D. M., E. B. Tictchener, and S. J. Wakil: Studies on the mechanism of fatty acid synthesis. V. Bicarbonate requirement for the synthesis of longchain fatty acids. Biochim. biophys. Acta 30, 376–383 (1958).

    PubMed  CAS  Google Scholar 

  • Gottschalk, A.: Neuraminic acid; the functional group of some biologically active mucoproteins. Yale J. Biol. Med. 28, 525–537 (1956).

    CAS  Google Scholar 

  • Hokin, M. R., and L. E. Hokin: Enzyme secretion and the incorporation of P32 into phospholipides of pancreas slices. J. biol. Chem. 203, 967–977 (1953).

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., and M. R. Hokin: Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim. biophys. Acta. 18, 102–110 (1955).

    PubMed  CAS  Google Scholar 

  • Kennedy, E. P., and S. B. Weiss: The function of cytidine coenzymes in the biosynthesis of phospholipides. J. biol. Chem. 222, 193–214 (1956a).

    PubMed  CAS  Google Scholar 

  • Kennedy, E. P., and S. B. Weiss: The enzymatic synthesis of triglycerides. J. Amer. chem. Soc. 78, 3550 (1956b).

    Google Scholar 

  • Klenk, E.: Über die Cerebroside des Gehirns. Hoppe-Seylers Z. physiol. Chem. 166, 268–286 (1927).

    CAS  Google Scholar 

  • Klenk, E.: Neuraminic acid, the cleavage product of a new brain lipoid. Hoppe-Seylers Z. physiol. Chem. 268, 50–58 (1941).

    CAS  Google Scholar 

  • Klenk, E.: Incorporation of 14C-labelled acetate into some lipids of nervous tissue. In: Metabolism of the nervous system. 369–398. ( D. Richter, Ed.). London: Pergamon Press 1957.

    Google Scholar 

  • Klenk, E., and H. Faillard: Zur Kenntnis der Fettsäuren der Gehirncerebroside. Die Konstitution der ungesättigten Oxysäuren. Hoppe-Seylers Z. physiol. Chem. 292, 268–275 (1953).

    PubMed  CAS  Google Scholar 

  • Korey, S. R., And M. Orchen: Plasmologens of the nervous system. Arch. Biochem. 83. In press.

    Google Scholar 

  • Kornberg, A., and W. E. Pricer Jr.: Enzymatic synthesis of the coenzyme and derivatives of long chain fatty acids. J. biol. Chem. 204, 329–343 (1953a).

    PubMed  CAS  Google Scholar 

  • Kornberg, A., and W. E. Pricer Jr.: Enzymatic esterification of a-glycerophosphate by long chain fatty acids. J. biol. Chem. 204, 345–357 (1953b).

    PubMed  CAS  Google Scholar 

  • Lees, M., J. Folch, G. H. Sloane Stanley, and S. Carr: A simple procedure for the preparation of brain sulphatides. J. Neurochem. 4, 9–18 (1959).

    PubMed  CAS  Google Scholar 

  • Lindberg, O., and L. Ernster: The turnover of radioactive phosphate injected into the subarachnoid space of the brain of the rat. Biochem. J. 46, 43–47 (1950).

    PubMed  CAS  Google Scholar 

  • Lynen, F.: Fatty acid metabolism. In: Metabolism of the nervous system. 381–398. ( D. Richter, Ed.). London: Pergamon Press 1957.

    Google Scholar 

  • Lynen, F., and S. Ochoa: Enzymes of fatty acid metabolism. Biochim. biophys. Acta 12, 299–314 (1953).

    PubMed  CAS  Google Scholar 

  • Mcconnell, P., and R. G. Sinclair: Evidence of selection in the building up of brain lecithins and cephalins. J. biol. Chem. 118, 131–136 (1937).

    CAS  Google Scholar 

  • Mcmillan, P. J., G. W. Douglas, and R. A. Mortensen: Incorporation of C14 of acetate -1-C14 and pyruvate-2-C14 into brain cholesterol in the intact rat. Proc. Soc. exp. Biol. (N. Y.) 96, 738–740 (1957).

    CAS  Google Scholar 

  • Mcmurray, W. C., J. F. Berry, and R. J. Rossiter: Labelling of phospholipid phosphorus in rat-brain mitochondria. Biochem. J. 66, 629–633 (1957).

    PubMed  CAS  Google Scholar 

  • Magee, W. L., J. F. Berry, and R. J. Rossiter: Effect of chlorpromazine and azacyclonol on the labelling of phosphatides in brain slices. Biochim. biophys Acta 21, 408–409 (1956).

    PubMed  CAS  Google Scholar 

  • Magee, W. L., And R. J. Rossiter: Chemical studies of peripheral nerve during Wallerian degeneration. 6. Incorporation of radioactive phosphate into pentosenucleic acid and phospholipin in vitro. Biochem. J. 58, 243–249 (1954).

    PubMed  CAS  Google Scholar 

  • Majno, G., And M. L. Karnovsky: A biochemical and morphologic study of myelination and demyelination. I. Lipide biosynthesis in vitro by normal nervous tissue. J. exp. Med. 107, 475–496 (1958).

    PubMed  CAS  Google Scholar 

  • Moser, H., And M. L. Karnovsky: Studies on the bio-synthesis of cerebroside galactose. Neurology (Minneap.) 8, Suppl. 1, 81–83 (1958).

    CAS  Google Scholar 

  • Bach and S. Udenfriend: The distribution of serotonin, 5-hydroxytryptophane decarboxylase and monoamine oxidase in brain. J. Neurochem. 1, 272 (1957).

    Google Scholar 

  • Bogoch, S.: Effect of synthetic diet low in aromatic amino acids on schizophrenic patients. Arch. Neurol. Psychiat. (Chicago) 78, 539 (1957).

    CAS  Google Scholar 

  • Brengelmann, J. D., C. M. B. Pare, And M. Sandler: Alleviation of the psychological effects of LSD in man by 5-hydroxytryptophan. J. ment. Sci. 104, 1237 (1958).

    PubMed  CAS  Google Scholar 

  • Brome, B. B., J. S. Olin, R. G. Kuntzman, and P. A. Shore: Possible interrelationship between release of brain norepinephrine and serotonin by reserpine. Science 125, 1293 (1957).

    Google Scholar 

  • Brodie, B. B., A. Pletscher, And P. A. Shore: Possible role of serotonin in brain function and in reserpine action. J. Pharmacol. 116, 9 (1956).

    Google Scholar 

  • Brodie, B. B., A. Pletscher, and P. A. Shore: Evidence that serotonin has a role in brain function. Science 122, 968 (1955).

    PubMed  CAS  Google Scholar 

  • Brodie, B. B., S. Spector, R. G. Kuntzman, and P. A. Shore: Rapid biosynthesis of brain serotonin before and after reserpine administration. Naturwissenschaften 45, 243 (1958).

    Google Scholar 

  • Brown, G. L., H. H. Dale, and W. Feldberg: Reactions of the normal mammalian muscle to acetylcholine and eserine. J. Physiol. (Lond.) 87, 394 (1936).

    CAS  Google Scholar 

  • Bruce, L. C.: The clinical significance of indoxyl in the urine. J. ment. Sci. 52, 501–505 (1906).

    Google Scholar 

  • Bülbring, E., and H. H. Burn: Observations bearing on synaptic transmission by acetylcholine in spinal cord. J. Physiol. (Lond.) 100, 337–368 (1941).

    Google Scholar 

  • Bulle, P. H., And L. Konchegul: Action of serotonin and cerebral fluid of schizophrenics on the brain of the dog. J. clin. exp. Psychopath. 18, 287 (1957).

    PubMed  CAS  Google Scholar 

  • Burgen, A. S. V., and L. M. Chipman: Cholinesterase and succinic dehydrogenase in the central nervous system of the dog. J. Physiol. (Lond.) 114, 296–305 (1951).

    CAS  Google Scholar 

  • Burgen, A. S. V., And F. C. Macintosh: Physiological significance of acetylcholine. IN: Neurochemistry p. 311. (K. A. C. Elliott, I. H. Page, and J. H. Quastel, Ed.) Springfield, 111.: C. C. Thomas 1955.

    Google Scholar 

  • Buscaino, V. M.: Pathogénèse et étiologie biologiques de la schizophrénie. Acta Neurol. (Naples) 16, 1–26 (1958).

    Google Scholar 

  • Buscaino, G. A., and L. Stefanachi: Urinary excretion of 5-hydroxyindoleacetic acid in psychotic and normal subjects. Arch. Neurol. Psychiat. (Chicago) 80, 78 (1958).

    CAS  Google Scholar 

  • Carlsson, A., M. Lixdqvist, and T. Magnusson: 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature (Lond.) 180, 1200 (1957).

    CAS  Google Scholar 

  • Carlsson, A., M. Lindqvist, T. Magnusson, and B. Waldeck: On the presence of 3-hydroxytyramine in brain. Science 127, 471 (1958).

    PubMed  CAS  Google Scholar 

  • Cerletti, A., and E. Rothlin: Role of 5-hydroxy- tryptamine in mental diseases and its antagonism to lysergic acid derivatives. Nature (Lond.) 176, 785 (1955).

    CAS  Google Scholar 

  • Chang, H. C., K. F. Chia, C. H. Hsu, and R. K. S. Lim: Humoral transmission of nerve impulses at central synapses. I. Sinus and vagus afferent nerves. Chin. J. Physiol. 12, 1–36 (1937).

    CAS  Google Scholar 

  • Chang, H. C., W. M. Hsieh, T. H. Li, and R. K. S. Lim: Humoral transmission of nerve impulses at central synapses. IV. Liberation of acetylcholine into the cerebrospinal fluid by the afferent vagus. Chin. J. Physiol. 13, 153–166 (1938).

    CAS  Google Scholar 

  • Chute, A. L., W. Feldberg, and D. H. Smyth: Liberation of acetylcholine from the perfused cat’s brain. Quart. J. exp. Physiol. 30, 65–72 (1940).

    CAS  Google Scholar 

  • Cohen, M.: Concentration of choline acetylase in conducting tissue. Arch. Biochem. 60, 284 (1956).

    PubMed  CAS  Google Scholar 

  • Cohen, G., B. Holland, And M. Goldenberg: The stability of epinephrine and arterenol in plasma and serum. Arch. Neurol. Psychiat. (Chicago) 80, 484 (1958).

    CAS  Google Scholar 

  • Cooper, J. R., and I. Melcer: The enzymic oxidation of tryptophan to 5-hydroxytryptophan in the biosynthesis of serotonin. J. Pharmacol. 132, 265 (1961).

    CAS  Google Scholar 

  • Corne, S. J., and J. D. P. Graham: The effect of inhibition of amine oxidase in vivo on administered adrenaline, noradrenaline, tyramine and serotonin. J. Physiol. (Lond.) 135, 339 (1957).

    CAS  Google Scholar 

  • Costa, E.: Effects of hallucinogenic and tranquilizing drugs on serotonin-evoked uterine contractions. Proc. Soc. exp. Biol. (N. Y.) 91, 39 (1956).

    CAS  Google Scholar 

  • Crane, G. E.: Further studies on iproniazid phosphate. J. nerv. ment. Dis. 124, 322 (1956).

    PubMed  CAS  Google Scholar 

  • Crossland, J., K. A. C. Elliott, and H. M. Pappius: Acetylcholine content of brain during insulin hypoglycaemia. Amer. J. Physiol. 183, 32 (1955).

    PubMed  CAS  Google Scholar 

  • Crossland, J., and A. J. Merrick: The effect of anaesthesia on the acetylcholine content of brain. J. Physiol. (Lond.) 125, 56 (1954).

    CAS  Google Scholar 

  • Dale, H. H.: The action of certain esters and ethers of choline and their relation to muscarine. J. Pharmacol. 6, 147 (1914).

    CAS  Google Scholar 

  • Dale, H.H.: Junctional transmission of nervous effects by chemical agents. Proc. Mayo Clin. 30, 5–20 (1955).

    CAS  Google Scholar 

  • Dale, H. H., W. Feldberg, And M. Vogt: Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (Lond.) 86, 353 (1936).

    CAS  Google Scholar 

  • Elliott, T. R.: The action of adrenaline. J. Physiol. (Lond.) 32, 401 (1905).

    Google Scholar 

  • Elmadjian, F., J. M. Hope, and E. T. Lamson: Excretion of epinephrine and norepinephrine in various emotional states. J. clin. Endocrinol. 17, 608 (1957).

    CAS  Google Scholar 

  • Elmadjian, F., J. M. Hope, and E. T. Lamson: Excretion of epinephrine and norepinephrine under stress. Recent Progr. Hormone Res. 14, 513–553 (1958).

    CAS  Google Scholar 

  • Erspamer, V.: Pharmakologische Studien über Enteramin: II. Mitteilung, über einige Eigenschaften des Enteramins, sowie über die Abgrenzung des Enteramins von den anderen kreislauf wirksamen Gewebsprodukten. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 196, 366–390 (1940).

    CAS  Google Scholar 

  • Erspamer, V.: The metabolism of endogenous 5-hydroxytryptamine (enteramine) in the rat. Experientia (Basel) 10, 471 (1954).

    CAS  Google Scholar 

  • Erspamer, V., and B. Asero: Identity of enteramine, the specific hormone of the enterochromaffin cell system as 5-hydroxytryptamine. Nature (Lond.) 169, 800–801 (1952).

    CAS  Google Scholar 

  • Euler, U. S., V.: A specific sympathomimetic ergone in adrenergic nerve fibres (sympathin) and its relation to adrenaline and noradrenaline. Acta physiol. scand. 12, 73–97 (1946).

    Google Scholar 

  • Euler, U. S., V.: Identification of the sympathomimetic ergone in adrenergic nerves of cattle (sympathin N) with laevo-noradrenaline. Acta physiol. scand. 16, 63–74 (1948).

    Google Scholar 

  • Euler, U. S., V.: Noradrenaline. Springfield, 111.: Charles C. Thomas 1956.

    Google Scholar 

  • Euler, U. S. V., and N.-Ä. Hillarp: Evidence for the presence of noradrenaline in submicroscopic structures of adrenergic axons. Nature (Lond.) 177, 45 (1956).

    Google Scholar 

  • Euler, U. S.V., and F. Lishajko: Dopamine in mammalian lung and spleen. Acta physiol. pharmacol. neerl. 6, 295 (1957).

    Google Scholar 

  • Euler, U. S. V., and U. Lundberg: Effect of flying on the epinephrinexcretion in Air Force personnel. J. Appl. Physiol. 6, 551 (1954).

    Google Scholar 

  • Evarts, E. V.: Some effects of bufotenine and lysergic acid diethylamide on the monkey. Arch. Neurol. Psychiat. (Chicago) 75, 49–53 (1956).

    CAS  Google Scholar 

  • Falck, B., N.-Ä. Hillarp, and B. Högberg: Content and intracellular distribution of adenosine triphosphate in cow adrenal medulla. Acta physiol. scand. 36, 360–376 (1956).

    PubMed  CAS  Google Scholar 

  • Feldberg, W.: Acetylcholine. In: Metabolism of the nervous system, p. 493. (Ed. D. Richter) New York: Pergamon Press 1957.

    Google Scholar 

  • Feldberg, W., and J. H. Gaddum: The chemical transmitter at synapses in a sympathetic ganglion. J. Physiol. 81, 305 (1934).

    PubMed  CAS  Google Scholar 

  • Feldberg, W., and T. Mann: Properties and distribution of the enzyme system which synthesizes acetylcholine in nervous tissue. J. Physiol. 104, 411–425 (1946).

    CAS  Google Scholar 

  • Feldberg, W., and H. Schrie-Ver: Acetylcholine content of cerebrospinal fluid of dogs. J. Physiol. 86, 277–284 (1936).

    PubMed  CAS  Google Scholar 

  • Feldberg, W., and M. Vogt: Acetylcholine synthesis in different regions of the central nervous system. J. Physiol. 107, 372–381 (1948).

    PubMed  CAS  Google Scholar 

  • Feldstein, A., I. M. Dibner, and H. Hoagland: Two-dimensional paper chromatography of urinary indoles in normal subjects and chronic schizophrenic patients. In: Chemical concepts of psychosis, p. 204–218. (Eds. M. Kinkel and H. C. B. Denber ). New York: McDowell-Obolensky 1958.

    Google Scholar 

  • Feldstein, A., H. Hoagland, and H. Freeman: On the relationship of serotonin to schizophrenia. Science 128, 358 (1958).

    PubMed  CAS  Google Scholar 

  • Freedland, R. A., I. M. Wadzinski, and A. Waisman: The enzymatic hydroxylation of tryptophan. Biochem. biophys. Res. Commun. 5, 94 (1961a).

    CAS  Google Scholar 

  • Freedland, R. A., I. M. Wadzinski, and H. A. Waisman: The effect of aromatic amino acids on the hydroxylation of tryptophan. Biochem. biophys. Res. Commun. 6, 227 (1961b).

    PubMed  CAS  Google Scholar 

  • Folin, O.: Some metabolism studies, with special reference to mental disorders. Amer. J. Insan. 61, 299–364 (1904).

    Google Scholar 

  • Fukuda, T., And G. B. Koelle: The cytological localization of intracellular neuronal acetylcholinesterase. J. biophys. biochem. Cytol. 5, 433–440 (1959).

    PubMed  CAS  Google Scholar 

  • Gaddum, J. H., And K. A. Hameed: Drugs which antagonize 5-hydroxytryptamine. Brit. J. Pharmacol. 9, 240 (1954).

    PubMed  CAS  Google Scholar 

  • Giarman, N. J., And S. Schanberg: The intracellular distribution of 5-hydroxytryptamine in the rat’s brain. Biochem. Pharmacol. 1, 301 (1959).

    Google Scholar 

  • Goddard, P. J.: Effect of alcohol on excretion of catechol amines in conditions giving rise to anxiety. J. appl. Physiol. 13, 118 (1958).

    PubMed  CAS  Google Scholar 

  • Goldstein, M., and F. Contrera: Inhibition of dopamine ß-oxidase by imipramine. Biochem. Pharmacol. 7, 278 (1961).

    PubMed  CAS  Google Scholar 

  • Goldstein, M., A. J. Friedhoff, and C. Simmons: Metabolic pathways of 3-hydroxy-tyramine. Biochim. biophys. Acta 33, 572 (1959).

    PubMed  CAS  Google Scholar 

  • Goodall, Mcc.: Metabolic products of adrenaline and noradrenaline in human urine. Pharmacol. Rev. 11, 416–425 (1959).

    PubMed  CAS  Google Scholar 

  • Goodall, McC., and N. Kirshner: Biosynthesis of adrenaline and noradrenaline in vitro. J. biol. Chem. 226, 213 (1957).

    PubMed  CAS  Google Scholar 

  • Goodman, J. R., L. H. Marrone, and M. C. Squire: Effect of in vivo inhibition of Cholinesterase on potassium diffusion from the human red cell. Amer. J. Physiol. 180, 118 (1955).

    PubMed  CAS  Google Scholar 

  • Green, D. E.: Enzymes in metabolic sequences. In: Chemical pathways of metabolism, p. 27–65. (Ed. D. M. Greenberg ). New York: Acad. Press Inc. 1954.

    Google Scholar 

  • Grundfest, H.: Electrical inexcitability of synapses and some consequences in the central nervous system. Physiol. Rev. 37, 337–361 (1957).

    PubMed  CAS  Google Scholar 

  • Gullotta, S.: Untersuchungen über den Harn von Amentia- und Dementia praecox-Kranken. Zyklische Komplexe (Beitrag zum Studium der Aromaturie). Biochem. Z. 218, 472 (1930).

    CAS  Google Scholar 

  • Hagen, P.: Biosynthesis of norepinephrine from 3,4-dihydroxyphenylethylamine (dopamine). J. Pharmacol, exp. Ther. 116, 26 (1956).

    Google Scholar 

  • Hawkins, R. D., and B. Mendel: True cholinesterases with pronounced resistance to eserine. J. cell comp. Physiol. 27, 69–85 (1946).

    CAS  Google Scholar 

  • Hawkins, R. D., and B. Mendel: Selective inhibition of pseudoCholinesterase by di-isopropylfluorophosphonate. Brit. J. Pharmacol. 2, 173–180 (1947).

    CAS  Google Scholar 

  • Hawkins, R. D., and B. Mendel: Cholinesterase. VI. Selective inhibition of true Cholinesterase in vivo. Biochem. J. 44, 260 (1949).

    CAS  Google Scholar 

  • Herken, H., and D. Neubert: Der Acetylcholingehalt des Gehirns bei verschiedenen Funktionszuständen. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 219, 223 (1953).

    CAS  Google Scholar 

  • Hess, S. M., R. H. Connamacher, M. Ozaki, and S. Udenfriend: The effects of a-methyl-dopa and a-methyl-meta-tyrosine on the metabolism of norepinephrine and serotonin in vivo. J. Pharmacol. 134, 129 (1961).

    CAS  Google Scholar 

  • Hillarp, N.-A., and B. Hökfelt: Evidence of adrenaline and noradrenaline in separate adrenal medullary cells. Acta physiol. scand. 30, 55–68 (1953).

    PubMed  CAS  Google Scholar 

  • Hillarp, N.-Ä., and B. Hökfelt: Cytological Demonstration Of Noradrenaline In The Suprarenal Medulla Under Conditions Of Varied Secretory Activity. Endocrinology 55, 255–260 (1954).

    PubMed  CAS  Google Scholar 

  • Hillari, N.-A., and B. Hök-Felt: Histochemical demonstration of noradrenaline and adrenaline in the adrenal medulla. J. Histochem. Cytochem. 3, 1–5 (1955).

    Google Scholar 

  • Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26, 339–409 (1951).

    CAS  Google Scholar 

  • Hoffer, A.: Adrenochrome and adrenolutin and their relationship to mental disease. IN: Psychotropic drugs, p. 127–140. (Eds. S. Garattini and V. Ghetti ). New York: Elsevier 1957.

    Google Scholar 

  • Hoffer, A.: Adrenochrome in blood plasma. Amer. J. Psychiat. 114, 752–753 (1958).

    PubMed  CAS  Google Scholar 

  • Hoffer, A., and H. Osmond: The adrenochrome model and schizophrenia. J. nerv. ment. Dis. 128,18–35(1959).

    Google Scholar 

  • Hoffer, A., H. Osmond, and J. Smythies: Schizophrenia: a new approach. Part II. Result of a year’s research. J. ment. Sci. 100, 29–45 (1954).

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., and M. R. Hokin: Acetylcholine and the exchange of phosphate in phosphatidic acid in brain microsomes. J. biol. Chem. 233, 822 (1958).

    PubMed  CAS  Google Scholar 

  • Hokin, L. E., and M. R. Hokin: The mechanism of phosphate exchange in phosphatidic acid in response to acetylcholine. J. biol. Chem. 234, 1387 (1959).

    PubMed  CAS  Google Scholar 

  • Holtz, P., H. Balzer, and W. Westermann: Die Beeinflussung der Reserpinwirkung auf das Nebennierenmark durch Hemmung der Mono-amino-oxydase. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 231, 361–372 (1957).

    CAS  Google Scholar 

  • Holtz, P., H. Balzer, E. Westermann, and E. Wezler: Beeinflussung der Evipannarkose durch Reserpin, Iproniazid und biogene Amine. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 231, 333 (1957).

    CAS  Google Scholar 

  • Holtz, P., and E. Westermann: Über die Dopadecarboxylase und Histidindecarboxylase des Nervengewebes. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 227, 538 (1956).

    CAS  Google Scholar 

  • Holzbauer, M., and M. Vogt: Depression by reserpine of the noradrenaline concentration in the hypothalamus of the cat. J. Neurochem. 1, 8–11 (1956).

    PubMed  CAS  Google Scholar 

  • Horita, A.: ß-Phenylisopropylhydrazine, a potent and long acting monoamine oxidase inhibitor. J. Pharmacol. 122, 176 (1958).

    CAS  Google Scholar 

  • Horita, A., and J. H. Gogerty: The pyretogenic effect of 5-hydroxytryptophan and its comparison with that of LSD. J. Pharmacol, exp. Ther. 122, 195 (1958).

    CAS  Google Scholar 

  • Iggo, A., And M. Vogt: The effect of reserpine on the electrical activity in preganglionic sympathetic fibres. J. Physiol. (Lond.) 147, 14 P (1959).

    Google Scholar 

  • Jackson, S. L. O.: Psychosis due to isoniazid. Brit. med. J. 1957, II 743.

    Google Scholar 

  • Kamijo, K., Koelle, G. B., and H. H. Wagner: Modification of the effects of sympatho-mimetic amines and of adrenergic nerve stimulation by l-isonicotinyl-2-isopropylhydrazine (IIH) and isonicotinic acidhydrazide (INH). J. Pharmacol, exp. Ther. 117, 213 (1956).

    CAS  Google Scholar 

  • Kemali, D., and V. M. Buscaino: Indolic substances in schizophrenic patients. In: Chemical concepts of psychosis, p. 219–222. (Eds. M. Rinkel, and H.C.B. Denber ). New York: McDowell- Obolensky 1958.

    Google Scholar 

  • Keynes, R. D.: Electrolytes and nerve activity. In: Metabolism of the nervous system, p. 159–173. (Ed. D. Richter) New York: Pergamon Press 1957.

    Google Scholar 

  • Kibjakow, A. W.: Über humorale Übertragung der Erregung von einem Neuron auf das andere. Pflügers Arch. ges. Physiol. 232, 432 (1933).

    Google Scholar 

  • Kirshner, N., And Mcc. Goodall: Formation of adrenaline from noradrenaline. Fed. Proc. 16, 73 (1957).

    Google Scholar 

  • Koelle, G. B.: The localization of acetylcholinesterase in neurons. In: Ultrastructure and cellular chemistry of neural tissue, p. 164–173. (Ed. H. Waelsch ), New York: Hoeber-Harper 1957.

    Google Scholar 

  • Koelle, W. A., And G. B. Koelle: The localization of external or functional acetylcholinesterase at the synapses of autonomic ganglia. J. Pharmacol, exp. Ther. 126, 1–8 (1959).

    CAS  Google Scholar 

  • Kopin, I. J.: Tryptophane loading and excretion of 5-hydroxyindoleacetic acid in normal and schizophrenic subjects. Science 129, 853 (1959).

    Google Scholar 

  • Leach, B. E., and R. G. Heath: The in vitro oxidation of epinephrine in plasma. A. M. A. Arch. Neurol. Psychiat. 76, 444–450 (1956).

    CAS  Google Scholar 

  • Levin, E. Y., B. Levenberg, and S. Kaufman: The enzymatic conversion of 3,4-dihydroxyphenylethylamine to nore-pinephrine. J. biol. Chem. 235, 2080 (1960).

    PubMed  CAS  Google Scholar 

  • Lewis, P. R., and A. F. W. Hughes: The Cholinesterase of developing neurones of Xenopus laevis. In: Metabolism of the nervous system, p. 511–514 (Ed. D. Richter) New York: Pergamon Press 1957.

    Google Scholar 

  • Leyton, G. B.: Indolic compounds in the urine of schizophrenics. Brit. med. J. 1958 II, 1136.

    Google Scholar 

  • Lipmann, F., And N. O. Kaplan: Report on a coenzyme for acetylation. Fed. Proc. 5, 145 (1946).

    PubMed  CAS  Google Scholar 

  • Loewi, O.: Über humorale Übertragbarkeit der Herznervenwirkung. Pflügers Arch. ges. Physiol. 189, 239–242 (1921).

    Google Scholar 

  • Macintosh, F. C.: Formation, storage and release of acetylcholine at nerve endings. Canad. J. Biochem. 37, 343–356 (1959).

    PubMed  CAS  Google Scholar 

  • Macintosh, F. C., R.I. Birks, And P. B. Sastry: Pharmacological inhibition of acetylcholine synthesis. Nature (Lond.) 178, 1181 (1956).

    CAS  Google Scholar 

  • Macintosh, F. C., and P. E. Oborin: Abstr. XIX. Internal. Physiol. Congr. 580 (1953).

    Google Scholar 

  • Mann, P. J. G., and J. H. Quastel: Benzedrine (ß-phenylisopropylamine) and brain meta-bolism. Biochem. J. 34, 414–431 (1940).

    PubMed  CAS  Google Scholar 

  • Mann, P. J. G., M. Tennenbaum, and J. H. Quastel: On the mechanism of acetylcholine formation in brain in vitro. Biochem. J. 32, 243–261 (1938).

    PubMed  CAS  Google Scholar 

  • Mann, P. J. G., M. Tennenbaum, And J. H. Quastel: Acetylcholine metabolism in the central nervous system. The effects of potassium and other cations on acetylcholine liberation. Biochem. J. 33, 822–835 (1939).

    PubMed  CAS  Google Scholar 

  • Marrazzi, A. S., and E. R. Hart: Relationship Of Hallucinogens To Adrenergic Cerebral Neurohumors. Science 121, 365 (1955).

    PubMed  CAS  Google Scholar 

  • Mcgeer, E. G., W. T. Brown, and P. L. Mcgeer: Aromatic metabolism in schizophrenia, II. Bidimensional urinary chromatograms. J. nerv. ment. Dis. 125, 176 (1957).

    PubMed  CAS  Google Scholar 

  • Mcgeer, P. L., E. G.Mcgeer, and J. E. Boulding: Relation of aromatic amino acids to excretory pattern of schizophrenics. Science 123, 1078–1080 (1956).

    PubMed  CAS  Google Scholar 

  • Mcgeer, P. L., F. E. Mcnair, E. G. Mcgeer, And W. C. Gibson: Aromatic metabolism in schizophrenia. I. Statistical evidence for aromaturia. J. nerv. ment. Dis. 125, 166 (1957).

    PubMed  CAS  Google Scholar 

  • Mclennan, H., and K. A. C. Elliott: Factors affecting the synthesis of acetylcholine by brain slices. Amer. J. Physiol. 163, 605–613 (1950).

    PubMed  CAS  Google Scholar 

  • Mclennan, H., and K. A. C. Elliott: Effects of convulsant and narcotic drugs on acetylcholine synthesis. J.Pharmacol. exp.Ther. 103,35(1951).

    Google Scholar 

  • Montagu, K. A.: Catechol compounds in rat tissues and in brains of different animals. Nature (Lond.) 180, 244–245 (1957).

    CAS  Google Scholar 

  • Muscholl, E., and M. Vogt: The action of reserpine on the peripheral sympathetic system. J. Physiol. (Lond.) 141, 132 (1958).

    CAS  Google Scholar 

  • Nachmansohn, D.: On the role of acetylcholine in the mechanism of nerve activity. In: Recent progress in hormone research vol. I, 1–26. (Ed. G. Pincus ), Academic Press, Inc. 1947.

    Google Scholar 

  • Nachmansohn, D.: Symposium on the physiology of acetylcholine. I. The role of acetylcholine in conduction. Johns Hopk. Hosp. Bull. 83, 463–493 (1948).

    CAS  Google Scholar 

  • Nachmansohn, D.: Metabolism and function of the nerve cell. In: Neurochemistry, p. 390–425. (Ed. K. A. C. Elliott, I. H. Page, and J. H. Quastel ). Springfield, Ill.: Charles C. Thomas 1955.

    Google Scholar 

  • Nachmansohn, D.: Chemical and molecular basis of nerve activity. New York: Academic Press 1959.

    Google Scholar 

  • Nachmansohn, D., and M. Berman: Studies on choline acetylase. III. On the preparation of the coenzyme and its effect on the enzyme. J. biol. Chem. 165, 551–563 (1946).

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D., and A. L. Machado: The formation of acetylcholine. A new enzyme: “choline acetylase”. J. Neurophysiol. 6, 397–404 (1943).

    CAS  Google Scholar 

  • Nakao, A., And M. Ball: The appearance of a skatole derivative in the urine of schizophrenics. J. nerv. ment. Dis. 130, 417 (1960).

    PubMed  CAS  Google Scholar 

  • Neri, R., M. Hayano, D. Stone, R. I. Dorfman, And F. Elmadjian: Conversion of hydroxytyramine to norepinephrine-like material. Arch. Biochem. 60, 297 (1956).

    PubMed  CAS  Google Scholar 

  • Novelli, G. D.: Metabolic functions of pantothenic acid. Physiol. Rev. 33, 525–543 (1953).

    PubMed  CAS  Google Scholar 

  • Orlans, B. F., F. Sulser, And B. B. Brodie: Depletion of brain norepinephrine by reserpine without producing sedation. Fed. Proc. 19, 268 (1960).

    Google Scholar 

  • Osmond, H., And J. Smythies: Schizophrenia: A new approach. J. ment. Sci. 98, 309–315 (1952).

    PubMed  CAS  Google Scholar 

  • Paasonen, M. K., And N. J. Giarman: Brain levels of 5-hydroxytryptamine after various agents. Arch. int. Pharmacodyn. 114, 189 (1958).

    CAS  Google Scholar 

  • Paasonen, M. K., P. D. Maclean, And N. J. Giarman: 5-Hydroxytryptamine content of structures of the limbic system. J. Neurochem. 1, 326 (1957).

    PubMed  CAS  Google Scholar 

  • Pappius, H. M., and K. A. C. Elliott: Acetylcholine metabolism in normal and epileptogenic brain tissues. Failure to repeat previous findings. J. appl. Physiol. 12, 319 (1958).

    PubMed  CAS  Google Scholar 

  • Pellerin, J., and A. D’iorio: Metabolism of DL-3,4-dihydroxyphenylalanine-a-C14 in bovine adrenal homogenate. Canad. J. Biochem. 35, 151 (1957).

    PubMed  CAS  Google Scholar 

  • Pleasure, H.: Psychiatric and neurological side-effects of isoniazid and iproniazid. Arch. Neurol. Psychiat. 72, 313 (1954).

    CAS  Google Scholar 

  • Pletscher, A., P. A. Shore, and B. B. Brodie: Release of brain serotonin by reserpine. J. Pharmacol. 116, 46 (1956).

    Google Scholar 

  • Pletscher, A., P. A. Shore, and B. B. Brodie: Serotonin as a mediator of reserpine action in brain. J. Pharmacol. 116, 84–89 (1956).

    CAS  Google Scholar 

  • Pope, A., W. Caveness, and K. E. Livingston: Architectonic distribution of acetylcholinesterase in the frontal isocortex of psychotic and nonpsychotic patients. Arch. Neurol. Psychiat. 68, 425 (1952).

    CAS  Google Scholar 

  • Porter, C. C., J. A. Totaro, and C. M. Leiby: Some biochemical effects of a-methyl-3,4-dihydroxyphenylalanine and related compounds in mice. J. Pharmacol. 134, 139 (1961).

    CAS  Google Scholar 

  • Price, J. M., R. R. Brown, and H. A. Peters: Tryptophan metabolism in porphyria, schizophrenia and a variety of neurologic and psychiatric diseases. Neurology 9, 456 (1959).

    PubMed  CAS  Google Scholar 

  • Quastel, J. H., M. Tennenbaum, and A. H. M. Wiieatley: Choline ester formation in, and choline esterase activities of, tissues in vitro. Biochem. J. 30, 1668–1681 (1936).

    PubMed  CAS  Google Scholar 

  • Raper, H. S.: The tyrosinase-tyrosine reaction. VI. Production from tyrosine of 5,6-di- hydroxyindole and 5:6-dihydroxyindole-2-carboxylic acid — the precursors of melanine. Biochem. J. 21, 89 (1927).

    PubMed  CAS  Google Scholar 

  • Rapport, M. M., A. A. Green, And I. H. Page: Serum vaso-constrictor (serotonin): Part IV. Isolation and characterization. J. biol. Chem. 176, 1243–1251 (1948).

    PubMed  CAS  Google Scholar 

  • Renson, J., F. Goodwin, H. Weissbach and S. Udenfriend: Conversion of tryptophan to 5-hydroxytryptophan by phenylalanine hydroxylase. Biochem. biophys. Res. Commun. 6,20(1961).

    Google Scholar 

  • Resnick,O., and F. Elmadjian: Excretion and metabolism of DL-epinephrine-7-C14 D-bitartrate infused into schizophrenic patients. Amer. J. Physiol. 187, 626 (1956).

    Google Scholar 

  • Richter, D., and J. Crossland: Variation in acetylcholine content of the brain with physiological state. Amer. J. Physiol. 159, 247 (1949).

    PubMed  CAS  Google Scholar 

  • Riegelhaupt, L. M.: Investigations of the urinary excretion pattern in psychotic patients. J. nerv. ment. Dis. 127, 228 (1958).

    PubMed  CAS  Google Scholar 

  • Rinkel, M., R. W. Hyde, and H. C. Solomon: Experimental psychiatry, III. A chemical concept of psychosis. Dis. nerv. Syst. 15, 259 (1954).

    PubMed  CAS  Google Scholar 

  • Robins, E., I. P. Lowe, and N. M. Havner: THe Urinary Excretion Of 5-Hydroxy-3-Indoleacetic Acid In Patients With Schizophrenia And In Control Subjects. Clin. Res. Proc. 4, 149 (1956).

    Google Scholar 

  • Rodnight, R., and E. K. Aves: Body fluid indoles of normal and mentally-ill subjects. I. Preliminary survey of the occurrence of some urinary indoles. J. ment Sci. 104, 1149–1159 (1958).

    PubMed  CAS  Google Scholar 

  • Rosenfeld, F., L. C. Leeper, and S. Udenfriend: Biosynthesis of norepinephrine and epinephrine by the isolated, perfused calf adrenal. Fed. Proc. 16, 331 (1957).

    Google Scholar 

  • Rosengren, E.: Are dihydroxyphenylalanine decarboxylase and 5-hydroxytryptophan decarboxylase individual enzymes ? Acta physiol. scand. 49, 364 (1960).

    PubMed  CAS  Google Scholar 

  • Rosenzweig, M. R., D. Krech, And E. L. Bennett: Brain chemistry and adaptive behavior. In: Biological and biochemical bases of behavior, p. 367–400. ( Ed. H. F. Harlow and C. N. Woolsey,) Univ. of Wisconsin Press 1958.

    Google Scholar 

  • Salmoiraghi, G. C., and I. H. Page: Effects of LSD-25, BOL-148, bufotenine, mescaline and ibogaine on the potentiation of hexobarbital hypnosis produced by serotonin and reserpine. J. Pharmacol. exp. Ther. 120, 20 (1957).

    Google Scholar 

  • Sano, I.: Über die kalte Millon-Reaktion beim schizophrenen Formenkreis und den Träger derselben. Folia psychiat. neurol. jap. 8, 218 (1954).

    PubMed  CAS  Google Scholar 

  • Sano, I., T.Gamo, Y. Kakimoto, K. Taniguchi, M. Takesada, And K. Nishinuma,: Distribution of catechol compounds in human brain. Biochim. biophys. Acta 32, 586 (1959).

    PubMed  CAS  Google Scholar 

  • Sano, I., Y. Kakimoto, T. Okamoto, H. Nakajima, and Y. Kudo: 5-Hydroxyindoleacetic acid (HIAA) excretion in the urine of schizophrenics with reference to the influence of reserpine and chlorpromazine on serotonin (5-HT) metabolism. Schweiz, med. Wschr. 87, 214 (1957).

    CAS  Google Scholar 

  • Schayer, R. W., and R. L. Smiley: The metabolism of epinephrine containing isotopic carbon. J. biol. Chem. 202, 425–430 (1953).

    PubMed  CAS  Google Scholar 

  • Schmitt, H., and P. Gonnard: Action de l’iproniazide sur les effets des sympathicomimetiques sur la membrane nictitante du chat. C. R. Acad. Sci. 240, 2573–2575 (1955).

    CAS  Google Scholar 

  • Schneckloth, R., I. H. Page, F. Del Greco, and A. C. Corcoran: Effects of serotonin antagonists in normal subjects and patients with carcinoid tumors. Circulation 16, 523–532 (1957).

    PubMed  CAS  Google Scholar 

  • Schümann, H. J.: The distribution of adrenaline and noradrenaline in chromaffin granules from the chicken. J. Physiol. (Lond.) 137, 318–326 (1957).

    Google Scholar 

  • Schümann, H. J.: Über die Verteilung von Noradrenalin and Hydroxytyramin im sympathischen Nerven (Milznerven). Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 234, 17 (1958).

    Google Scholar 

  • Shaw, E., And D. W. Woolley: Serotonin-like activities of lysergic acid diethylamide (LSD-25) Science 124, 121 (1956).

    PubMed  CAS  Google Scholar 

  • Sherwood, S. L.: The response of psychotic patients to intraventricular injections. Proc. roy. Soc. Med. 48, 855 (1955).

    CAS  Google Scholar 

  • Shoje, T., M. Ohashi, and S. Tada: Millon reaction at room temperature on the urine of schizophrenic patients. Jap. J. Neurol. Psychiat. 58, 19 (1956).

    Google Scholar 

  • Shore, P. A., J. A. R. Mead, R. G. Kuntzman, S. Spector, and B. B. Brodie: On the physiologic significance of monoamine oxidase in brain. Science 126, 1063 (1957).

    PubMed  CAS  Google Scholar 

  • Shore, P. A., S. L. Silver, And B. B. Brodie: Interaction of reserpine, serotonin and lysergic acid diethylamide in brain. Science 122, 284–285 (1955).

    PubMed  CAS  Google Scholar 

  • Sjoerdsma, A., L. Gillespie Jr., And S. Udenfriend: A simple method for the measurement of monoamine oxidase inhibition in man. Lancet 1958 II, 159.

    Google Scholar 

  • Spiro, M. J., And E. G. Ball: Adrenal cytochromes. Fed. Proc. 17, 314 (1958).

    Google Scholar 

  • Sprince, H., E. Hoijser, D. Jameson, And F. C. Dohan: Differential extraction of indoles from the urine of schizophrenic and normal subjects. Arch. gen. Psychiat. 3, 268 (1960).

    Google Scholar 

  • Sprince, H., C. M. Parker, D. Jameson, J. T. Dawson, Jr., M. Knowlton, and F. C. Dohan: Detection and isolation of indole acetamide from human urine: results with schizophrenic and normal subjects. J. Lab. clin. Med. 57, 763 (1961).

    CAS  Google Scholar 

  • Stone, W. E.: Acetylcholine in the brain. I. “Free”, “bound” and total acetylcholine. Arch. Biochem. 59, 181–192 (1955).

    PubMed  CAS  Google Scholar 

  • Strickland, K. P., and R. H. S. Thompson: On the mechanism of the potassium loss from Brain slices induced by Cholinesterase Inhibitors. Biochem. J. 60, 468 (1955).

    PubMed  CAS  Google Scholar 

  • Ström-Olsen, R., and H. Weil-Malherbe: Humoral changes in manic depressive psychosis with particular reference to the excretion of catechol amines in urine. J. ment. Sci. 104, 696–704 (1958).

    PubMed  Google Scholar 

  • Szara, S., J. Axelrod, and S. Perlin: IS adrenochrome present in the blood? Amer. J. Psychiat. 115, 162–163 (1958).

    PubMed  CAS  Google Scholar 

  • Taubmann, G.,V., and H. Jantz: Untersuchungen über die dem Adrenochrom zugeschriebenen psychotoxischen Wirkungen. Nervenarzt 20, 485–488 (1957).

    Google Scholar 

  • Taylor, I. M., J. M. Weller, and A. B. Hastings: Effect of Cholinesterase and cholinacetylase inhibitors on the potassium concentration gradient and potassium exchange of human erythrocytes. Amer. J. Physiol. 168, 658 (1952).

    PubMed  CAS  Google Scholar 

  • Toman, J. E. P., J. W. Woodbury, and L. A. Woodbury: Mechanism of nerve conduction block produced by anticholinesterases. J. Neurophysiol. 10, 429 (1947).

    PubMed  CAS  Google Scholar 

  • Toschi, G.: A biochemical study of brain microsomes. Exp. Cell Res. 16, 232–255 (1959).

    PubMed  CAS  Google Scholar 

  • Townsend, A. A. D.: Mental depression and melancholia considered in regard to auto-intoxication, with special reference to the presence of indoxyl in the urine and its clinical significance. J. ment. Sci. 51, 51–62 (1905).

    Google Scholar 

  • Twarog, B. M., and I. H. Page: Serotonin content of some mammalian tissues and urine and a method for its determination. Amer. J. Physiol. 175, 157–161 (1953).

    PubMed  CAS  Google Scholar 

  • Udenfriend, S., D. F. Bogdanski, and H. Weissbach: Biochemistry and metabolism of serotonin as it relates to the nervous system. In: Metabolism of the nervous system, p. 566–577 (Ed. D. Richter ), New York: Pergamon Press 1957.

    Google Scholar 

  • Udenfriend, S., and H. Weissbach: Turnover of 5-hydroxytryptamine (serotonin) in tissues. Proc. Soo. exp. Biol. (N. Y.) 97, 748 (1958).

    CAS  Google Scholar 

  • Udenfriend, S., H. Weissbach, and D. F. Bogdanski: Increase in tissue serotonin following administration of its precursor 5-hydroxytryptophan. J. biol. Chem. 224, 803 (1957).

    PubMed  CAS  Google Scholar 

  • Udenfriend, S., H. Weissbach, and D. F. Bogdanski: Effect of iproniazid on serotonin metabolism in vivo. J. Pharmacol, exp. Ther. 120, 255 (1957).

    CAS  Google Scholar 

  • Udenfriend, S., and J. B. Wyngaarden: Precursors of adrenal epinephrine and norepinephrine in vivo. Biochim. biophys. Acta 20, 48 (1956).

    PubMed  CAS  Google Scholar 

  • Vogt, M.: The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J. Physiol. (Lond.) 123, 451 (1954).

    CAS  Google Scholar 

  • Vogt, M.: Sympathomimetic amines in the central nervous system. Brit. med. Bull. 13, 166–171 (1957).

    PubMed  CAS  Google Scholar 

  • Walaszek, E., and L. G. Abood: Fixation of 5-hydroxytryptamine by brain mitochondria. Proc. Soc. exp. Biol. (N. Y.) 101, 37 (1959).

    CAS  Google Scholar 

  • Weil-Malherbe, H.: The effect of convulsive therapy on plasma adrenaline and noradrenaline. J. ment. Sci. 101, 156–162 (1955).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., J. Axelrod, and R. Tomchick: Blood-brain barrier for adrenaline. Science 129, 1226–1227 (1959).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., and A. D. Bone: Intracellular distribution of catecholamines in the brain. Nature (Lond.) 180, 1050–1051 (1957).

    CAS  Google Scholar 

  • Weil-Malherbe, H. and A. D. Bone: The association of adrenaline and noradrenaline with blood platelets. Biochem. J. 70, 14–22 (1958).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., and A. D. Bone: The effect of reserpine on the intracellular distribution of catecholamines in the brain stem of the rabbit. J. Neurochem. 4, 251–263 (1959).

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., H. S. Posner, And G. R. Bowles: Changes in the concentration and intracellular distribution of brain catecholamines: the effects of reserpine, ß-phenylisopropylhydrazine, pyrogallol and 3,4-dihydroxyphenylalanine. alone and in combination. J. Pharmacol. 132, 278 (1961).

    CAS  Google Scholar 

  • Whittaker, Y. P.: The isolation and characterization of acetylcholine containing particles from brain. Biochem J. 72, 694 (1959).

    PubMed  CAS  Google Scholar 

  • Wiedorn, W. S., and F. Ervin: Schizophrenic-like psychotic reactions with administration of isoniazid. Arch. Neurol. Psychiat. (Chicago) 72, 321 (1954).

    CAS  Google Scholar 

  • Wilson, I. B.: The mechanism of enzyme hydrolysis studied with acetylcholinesterase. In: The mechanism of enzyme action, p. 642–657 (Ed. W. D. McElroy and B. Glass ). Baltimore: Johns Hopkins Press 1954.

    Google Scholar 

  • Wilson, I. B.: Designing of a new drug with antidotal properties against the nerve gas sarin. Biochim. biophys. Acta 27, 196–199 (1958).

    PubMed  CAS  Google Scholar 

  • Young, M. K., Jr., H. K. Berry, E. Beerstecher Jr., And J. S. Berry: Metabolic patterns of schizophrenic and control groups. Biochemical Institute Studies IV. Austin, the Univ. of Texas Publication No. 5109, 1951.

    Google Scholar 

  • Zeller, E. A., J. Bernsohn, W. M. Inskip, and J. W. Lauer: On the effect of a mono-amine oxidase inhibitor on the behaviour and tryptophan metabolism of schizophrenic patients. Naturwissenschaften 44, 427 (1957).

    CAS  Google Scholar 

  • Zile, M., and H. A. Lardy: Monoamine oxidase activity in liver of thyroid-fed rats. Arch. Biochem. 82, 411–421 (1959).

    PubMed  CAS  Google Scholar 

G. Biochemistry of the developing nervous system

  • Ashby, W., and E. M. Schuster: Carbonic anhydrase in the brain of the newborn in relation to functional maturity. J. biol. Chem. 184, 109–116 (1950).

    PubMed  CAS  Google Scholar 

  • Baxter, C. F., J. P. Schade, and E. Roberts: Maturational changes in cerebral cortex. II. Levels of glutamic acid decarboxylase, y-aminobutyric acid and some related amino acids. In: Inhibition in the central nervous system and y-aminobutyric acid. London: Pergamon Press Ltd. 1960.

    Google Scholar 

  • Bennett, E. L., M. R. Rosenzweig, D. Krech, H. Karlsson, N. Dye, and A. Ohlander: Individual, strain and age differences in Cholinesterase activity of the rat brain. J. Neurochem. 3, 144–152 (1958).

    PubMed  CAS  Google Scholar 

  • Cumings, J. N., H. Goodwin, E. M. Woodward, And G. Cürzon: Lipids in the brains of infants and children. J. Neurochem. 2, 289–294 (1958).

    PubMed  CAS  Google Scholar 

  • Elkes, J., and A. Todrick: Development of the cholinesterases in the rat brain. In: Biochemistry of the developing nervous system, 309–314 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.

    Google Scholar 

  • Flexner, J. B., And L. B. Flexner: Biological and physiological differentiation during morphogenesis. VII. Adenyl-pyrophosphatase and phosphatase activities in the developing cerebral cortex and liver of the fetal guinea pig. J. cell. comp. Physiol. 31, 311–320 (1948).

    CAS  Google Scholar 

  • Flexner, L. B.: Enzymic and functional patterns of the developing mammalian brain. In: Biochemistry of the developing nervous system, 281–300 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.

    Google Scholar 

  • Flexner, L. B., E. L. Belknap, And J. B. Flexner: Biochemical and physiological differentiation during morphogenesis. XVI. Cytochrome oxidase, succinic dehydrogenase and succinoxidase in the developing cerebral cortex and liver of the fetal guinea pig. J. cell. comp. Physiol. Suppl. 42, 151–161 (1953).

    CAS  Google Scholar 

  • Folch-Pi, J.: Composition of the Brain In Relation To Maturation. In: Biochemistry of the developing nervous system, 121–136 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.

    Google Scholar 

  • Himwich, H. E.: Brain metabolism and cerebral disorders. Baltimore, Maryland: The Williams and Wilkins Company 1951.

    Google Scholar 

  • Himwich, H. E., And M. H. Aprison: The effect of age on cholinesterase activity of rabbit brain. In: Biochemistry of the developing nervous system, 301–307 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955a.

    Google Scholar 

  • Himwich, H. E., and W. A. Himwich: The permeability of the blood-brain barrier to glutamic acid in the deloping rat. In: Biochemistry of the developing nervous system, 202–207 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955b.

    Google Scholar 

  • Himwich, W. A., And J. C. Petersen: Correlation of chemical maturation of the brain in various species with neurologic behavior. In: Biological psychiatry, 2–16 ( J. H. Masserman, Ed.). New York: Grune and Stratton, Inc. 1959.

    Google Scholar 

  • Johnson, A. C., A. R. Mcnabb, and R. J. Rossiter: Lipids of normal brain. Biochem. J. 43, 573–577 (1948).

    PubMed  CAS  Google Scholar 

  • Kavaler, F., and V. M. Kimel: Biochemical and physiological differentiation during morphogenesis. XV. Acetylcholinesterase activity of the motor cortex of the fetal guinea pig. J. Comp. Neurol. 96, 113–119 (1952).

    PubMed  CAS  Google Scholar 

  • Lajtha, A.: The development of the blood-brain barrier. J. Neurochem. 1, 216–277 (1957a).

    PubMed  CAS  Google Scholar 

  • Lajtha, A.: Amino acid and protein metabolism of the brain. II. The uptake of L-lysine by brain and other organs of the mouse at different ages. J. Neurochem. 2, 209–215 (1958).

    PubMed  CAS  Google Scholar 

  • Lajtha, A.: Amino acid and protein metabolism of the brain. V. Turnover of leucine in mouse tissues. J. Neurochem. 3, 358–365 (1959).

    PubMed  CAS  Google Scholar 

  • Lajtha, A., S. Furst, A. Ger-Stein, And H. Waelsch: Amino acid and protein metabolism of the brain. I. Turnover of free and protein bound lysine in brain and other organs. J. Neurochem. 1, 289–300 (1957 b).

    Google Scholar 

  • Metzler, C. J., and D. G. Humm: The determination of cholinesterase activity in whole brains of developing rats. Science 113, 382–383 (1951).

    PubMed  CAS  Google Scholar 

  • Nachmansohn, D.: Cholinesterase in the central nervous system. Bull. Soc. Chim. biol. (Paris) 21, 761–796 (1939).

    CAS  Google Scholar 

  • Nachmansohn, D.: Choline esterase in brain and spinal cord of sheep embryos. J. Neurophysiol. 3, 396–402 (1940).

    CAS  Google Scholar 

  • Potter, V. R., W. C. Schneider, and G. J. Lieble: Enzymic changes during growth and differentiation in the tissue of the newborn rat. Cancer Res. 5, 21–24 (1945).

    CAS  Google Scholar 

  • Roberts, E., P. J. Harman, and S. Frankel: y-Aminobutyric acid content and glutamic decarboxylase activity in developing mouse brain. Proc. Soc. exp. Biol. (N. Y.) 78, 799–803 (1951).

    CAS  Google Scholar 

  • Roberts, R. B., J. B. Flexner, And L. B. Flexner: Biochemical and physiological differentiation during morphogenesis. — XXIII. Further Observations Relating To The Synthesis Of Amino Acids And Proteins By The Cerebral Cortex And Liver Of The Mouse. J. Neuro Chem 4, 78–90 (1959).

    CAS  Google Scholar 

  • Rudnick, D., P. Mela, And H. Waelsch: Enzymes of glutamine metabolism in the developing chick embryo: a study of glutamotransferase and glutamine synthetase. J. exp. Zool. 126, 297–321 (1954).

    CAS  Google Scholar 

  • Sperry, W. M., And H. Waelsch: The chemistry of myelination and demyelination. Multiple Sclerosis and the Demyelinating Diseases 28, 255–267 (1952).

    Google Scholar 

  • Waelsch, H.: Glutamic acid and cerebral function. Adv. Protein Chem. 6, 299–341 (1951).

    PubMed  CAS  Google Scholar 

  • Waelsch, H.: The turnover of components of the developing brain; the blood- brain barrier. In: Biochemistry of the developing nervous system, 187–199 ( H. Waelsch, Ed.). New York: Academic Press Inc. 1955.

    Google Scholar 

  • Waelsch, H., W. M. Sperry, and V. A. Stoyanoff: The influence of growth and myelination on the deposition and metabolism of lipids in the brain. J. biol. Chem. 140, 885–897 (1941).

    CAS  Google Scholar 

H. Inborn errors of metabolism

  • Armstrong, M. D., and K. S. Robinson: On the excretion of indole derivatives in phenyl-ketonuria. Arch. Biochem. 52, 287 (1954).

    PubMed  CAS  Google Scholar 

  • Armstrong, M. D., and K. N. F. Shaw: Studies on phenylketonuria. III. The metabolism of o-tyrosine. J. biol. Chem. 213, 805 (1955).

    PubMed  CAS  Google Scholar 

  • Armstrong, M. D., K. N. F. Shaw, And K. S. Robinson: Studies on phenylketonuria. II. The excretion of o-hydroxyphenylacetic acid in phenylketonuria. J. biol. Chem. 213, 797 (1955).

    PubMed  CAS  Google Scholar 

  • Baldridge, R. C., L. Borofsky, H. Baird, III, F. Reichle, And D. Bullock: Relationship of serum phenylalanine levels and ability of phenylketonurics to hydroxy late tryptophan. Proc. Soc. exp. Biol. (N. Y.) 100, 529 (1959).

    CAS  Google Scholar 

  • Baron, D. N., C. E. Dent, H. Harris, E. W. Hart, And J. B. Jepson: Hereditary pellagra-like skin rash, with temporary cerebellar ataxia, constant renal amino-aciduria, and other bizarre biochemical features. Lancet 1956 II, 421.

    Google Scholar 

  • Berendes, H., J. A. Anderson, M. R. Ziegler, And D. Ruttenberg: Disturbance in tryptophane metabolism in phenylketonuria. A.M.A. J. Dis. Child. 96, 1 (1958).

    Google Scholar 

  • Bickel, H., J. Gerrard, And E. M. Hickmans: Influence of phenylalanine intake on phenylketonuria. Lancet 1953 II, 812.

    Google Scholar 

  • Borek, E., A. Brecher, G. A. Jervis, and H. Waelsch: Oligophrenia phenylpyruvica. II. Constancy of the metabolic error. Proc. Soc. exp. Biol. (N. Y.) 75, 86–89 (1950).

    CAS  Google Scholar 

  • Boscott, R. J., and H. Bickel: Phenylalanine and tyrosine metabolism in patients with phenylketonuria. Biochem. J. 56, 1 (1954).

    Google Scholar 

  • Brodie, B. B., J. Axelrod, P. A. Shore, and S. Udenfriend: Ascorbic acid in aromatic hydroxylation. II. Products formed by reaction of substrates with ascorbic acid, ferrous ion, and oxygen. J. biol. Chem. 208, 741–750 (1954).

    PubMed  CAS  Google Scholar 

  • Cori, G. T.: Glycogen structure and enzyme deficiencies in glycogen storage disease. Harvey Lect. 48, 145–171 (1953).

    CAS  Google Scholar 

  • Dancis, J., And M. E. Balis: A possible mechanism for the disturbance in tyrosine metabolism of phenylpyruvic oligophrenia. Pediatrics 15, 63 (1955).

    PubMed  CAS  Google Scholar 

  • Davison, A. N., and M. Sandler: Inhibition of 5-hydroxytryptophan decarboxylase by phenylalanine metabolites. Nature (Lond.) 181, 186 (1958).

    CAS  Google Scholar 

  • FÖlling, A.: Über Ausscheidung von Phenylbrenztraubensäure im Harn als Stoffwechsclanomalie in Verbindung mit Imbezillität. Hoppe-Scelers Z. physiol. Chem. 227, 169 (1934).

    Google Scholar 

  • Harris, H.: Human biochemical genetics. Cambridge University Press 1959.

    Google Scholar 

  • Hsia, D. Y.-Y., K. W. Driscoll, W. Troll, and W. E. Knox: Detection by phenylalanine tolerance tests of heterozygous carriers of phenylketonuria. Nature (Lond.) 178, 1239–1240 (1956).

    CAS  Google Scholar 

  • Hsia, D. Y.-Y., W. E. Knox, K. V. Quinn, and R. S. Paine: A one-year, controlled study of the effect of low-phenjdalanine diet on phenylketonuria. Pediatrics 21, 178 (1958a).

    PubMed  CAS  Google Scholar 

  • Hsia, D. Y.-Y., I. Huang, and S. G. Driscoll: The heterozygous carrier in galactosaemia. Nature (Lond.) 182, 1389–1390 (1958b).

    CAS  Google Scholar 

  • Hsia, D. Y.-Y.: Inborn errors of metabolism. Chicago: The Year Book Publishers 1959.

    Google Scholar 

  • Isselbacher, K. J., E. P. Anderson, K. Kurahashi, and H. M. Kalckar: Congenital galactosemia, a single enzymatic block in galactose metabolism. Science 123, 635–636 (1956).

    PubMed  CAS  Google Scholar 

  • Jervis, G. A.: Studies on phenylpyruvic oligophrenia. The position of the metabolic error. J. biol. Chem. 169, 651–656 (1947).

    PubMed  CAS  Google Scholar 

  • Jervis, G. A.: Phenylpyruvic oligophrenia: deficiency of phenylalanine oxidizing system. Proc. Soc. exp. Biol. (N. Y.) 82, 514 (1953).

    CAS  Google Scholar 

  • Jervis, G. A.: Chemical pathology of the nervous system (J. Folch, Ed.). London: Pergamon Press Ltd. (in press).

    Google Scholar 

  • Klenk, E.: Über die Verteilung der Neuraminsäure im Gehirn bei der familiären amaurotischen Idiotie und bei der Niemann-Pickschen Krankheit. Hoppe Seylers Z. physiol. Chem. 282, 84–88 (1947).

    CAS  Google Scholar 

  • Klenk, E., and H. Langerbeins: Über die Verteilung der Neuraminsäure im Gehirn. (Mit einer Mikromethode zur quantitativen Bestimmung der Substanz im Nervengewebe). Hoppe-Seylers Z. physiol. Chem. 270, 185–193 (1941).

    CAS  Google Scholar 

  • Milne, M. D., M. A. Crawford, C. B. Girao, and L. Loughridge: The metabolic ab-normality of Hartnup disease. Biochem. J. 72, 30 (1959).

    Google Scholar 

  • Mitoma, C., R. M. Auld, and S. Udenfriend: On the nature of enzymatic defect in phenylpyruvic oligophrenia. Proc. Soc. exp. Biol. (N. Y.) 94, 634–635 (1957a).

    CAS  Google Scholar 

  • Mitoma, C., H. S. Posner, D. F. Bogdanski, And S. Udenfriend: Biochemical and pharmacological studies on o-tyrosine and its meta- and paraanalogues. A suggestion concerning phenylketonuria. J. Pharmacol, exp. Ther. 120, 188 (1957 b).

    Google Scholar 

  • Pare, C. M. B., M. Sandler, And R. S. Stacey: 5-Hydroxytryptamine deficiency in phenylketonuria. Lancet 1957 I, 551.

    Google Scholar 

  • Udenfriend, S., C. T. Clark, J. Axelrod, and B. B. Brodie: Ascorbic acid in aromatic hydroxylation. I. A model system for aromatic hydroxylation. J. biol.Chem. 208,731–739 (1954.)

    PubMed  CAS  Google Scholar 

  • Wallace, H. W., K. Moldave, and A. Meister: Studies on conversion of phenylalanine to tyrosine in phenylpyruvic oligophrenia. Proc. Soc. exp. Biol. (N. Y.) 94, 632 (1957).

    CAS  Google Scholar 

  • Westall, R. G.: Argininosuccinicaciduria. Identification of the metabolic defect in a newly described form of mental deficiency. IVth Int. Congr. Biochem., Abstracts 168 (1958).

    Google Scholar 

  • Westall, R. G., J. Demis, and S. Miller: Maple sugar urine disease. A.M.A. J. Dis. Child. 94, 571 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1964 Springer-Verlag OHG. Berlin · Göttingen · Heidelberg

About this chapter

Cite this chapter

Waelsch, H., Weil-Malherbe, H. (1964). Neurochemistry and Psychiatry. In: Bleuler, M., et al. Grundlagenforschung zur Psychiatrie. Psychiatrie der Gegenwart, vol 1 / 1 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-94902-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-94902-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-94903-6

  • Online ISBN: 978-3-642-94902-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics