Skip to main content

Mitosechromosomen

  • Chapter
Chromosomen

Part of the book series: Springer-Lehrbuch ((SLB))

  • 146 Accesses

Zusammenfassung

Chromosomen im Stadium der Mitose sind die Transportformen, in denen das genetische Material der Zelle bei der Zellteilung erbgleich auf die Tochterzellen verteilt wird. Die sehr großen DNA-Moleküle der Chromosomen müssen dafür zu hochkondensierten Transporteinheiten verpackt werden (Kap. 7.1). Die Chromosomen müssen Ansatzstellen für den Spindelmechanismus ausbilden (Kap. 7.2). Überraschenderweise sind auch die Chromosomenenden wichtig für die mitotische Stabilität (Kap. 7.3). Aus Centromeren, Telomeren, Sequenzen für die autonome Replikation und einer genügenden Menge unspezifischer zusätzlicher DNA kann man funktionierende synthetische Chromosomen herstellen (Kap. 7.4). Wir kennen somit alle für die Funktion als Transporteinheiten des genetischen Materials wichtigen Elemente.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Allshire RC, Cranston G, Gosden JR, Maule JC, Hastie ND, Fantes PA (1987) A fission yeast chromosome can replicate autonomously in mouse cells. Cell 50:391–403

    Article  PubMed  CAS  Google Scholar 

  • Bickmore WA, Sumner AT (1989) Mammalian chromosome banding — an expression of genome organization. TIG 5:144–148

    Article  PubMed  CAS  Google Scholar 

  • Blackburn EH (1985) Artificial chromosomes in yeast. TIG 1:8–12

    Article  CAS  Google Scholar 

  • Blackburn EH, Szostak JW (1984) The molecular structure of centromeres and telomeres. Ann Rev Biochem 53:163–194

    Article  PubMed  CAS  Google Scholar 

  • Brinkley BR, Tousson A, Valdivia MM (1985) The kinetochore of mammalian chromosomes: structure and function in normal mitosis and aneuploidy. In: Dellarco VL, Voytek PE, Hollaender A (eds) Aneuploidy. Etiology and Mechanisms, p 243–265. Plenum Press, New York

    Google Scholar 

  • Chapman GP (1985) The evolved chromosomes of higher plants. Intern Rev Cytol 94:107–126

    Article  Google Scholar 

  • Chikashiga Y, Kinoshita N, Nakaseko Y, Matsumoto T, Murakami S, Niwa O, Yanagida M (1989) Composite motifs and repeat symmetry in S. pombe centromeres: direct analysis by integration of NotI restriction sites. Cell 57:739–751

    Article  Google Scholar 

  • Clarke L, Carbon J (1985) The structure and function of yeast centromeres. Ann Rev Genet 19:29–56

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91:313–321

    Article  PubMed  CAS  Google Scholar 

  • Gall JG (1981) Chromosome structure and C-value paradox. J Cell Biol 91:3s–14s

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Laemmli UK (1987) A glimpse at chromosomal order. Trends in Genetics 3:16–22

    Article  CAS  Google Scholar 

  • Godward MBE (1985) The kinetochore. Intern Rev Cytol 94:77–105

    Article  CAS  Google Scholar 

  • Gottschling DE, Zakian VA (1986) Telomere proteins: specific recognition and protection of the natural termini of Oxytricha macronuclear DNA. Cell 47:195–205

    Article  PubMed  CAS  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  PubMed  CAS  Google Scholar 

  • Haapala O (1985) Structural concepts of chromosome axis. Hereditas 103:23–31

    Article  PubMed  CAS  Google Scholar 

  • Hadlaczky G (1985) Structure of metaphase chromosomes of plants. Intern Rev Cytol 94:57–76

    Article  Google Scholar 

  • Hastie ND, Allshire RC (1989) Human telomeres: fusion and interstitial sites. Trends in Genetics 5:326–331

    Article  PubMed  CAS  Google Scholar 

  • Holmquist GP (1989) Evolution of chromosome bands: molecular ecology of noncoding DNA. J Mol Evol 28:469–486

    Article  PubMed  CAS  Google Scholar 

  • John B, Miklos GLG (1979) Functional aspects of satellite DNA and heterochromatin. Int Rev Cytol 58:1–114

    Article  PubMed  CAS  Google Scholar 

  • Koshland D, Rutledge L, Fitzgerald-Hayes M, Hartwell LH (1987) A genetic analysis of dicentric chromosomes in Saccharomyces cerevisae. Cell 48:801–812

    Article  PubMed  CAS  Google Scholar 

  • Latt SA, Juergens LA, Matthews DJ, Gustashaw KM, Sahar E (1980) Energy transfer-enhanced chromosome banding. Cancer Genet Cytogenet 1:187–196

    Article  Google Scholar 

  • Meyne J, Ratliff RL, Moyzis RK (1989) Conservation of the human telomere sequence (TTAGGG)n among vertebrates. PNAS 86:7049–7053

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Szostak JW (1985) Chromosome segregation in mitosis and meiosis. Ann Rev Cell Biol 1:289–315

    Article  PubMed  CAS  Google Scholar 

  • Murray AW, Szostak JW (1987) Artificial chromosomes. Sci Amer 257(5):60–70

    Article  Google Scholar 

  • Pimpinelli S, Goday C (1989) Unusual kinetochores and chromatin diminution in Parascaris. Trends in Genetics 5:310–315

    Article  PubMed  CAS  Google Scholar 

  • Rattner JB, Lin CC (1985) Radial loops and helical coils coexist in metaphase chromosomes. Cell 42:291–296

    Article  PubMed  CAS  Google Scholar 

  • Rieder CL (1982) The formation, structure, and composition of the mammalian kinetochore and kinetochore fiber. Intern Rev Cytol 79:1–58

    Article  CAS  Google Scholar 

  • Schweizer D (1981) Counterstain-enhanced chromosome banding. Hum Genet 57:1–14

    PubMed  CAS  Google Scholar 

  • Schweizer D, Loidl J (1987) A model for heterochromatin dispersion and the evolution of C-band patterns. Chromosomes Today 9:61–74

    Google Scholar 

  • Schweizer D, Loidl J, Hamilton B (1987) Heterochromatin and the phenomenon of chromosome banding. In: Hennig W (ed) Structure and function of eukaryotic chromosomes. Springer-Verlag, Berlin Heidelberg New York, pp 235–269

    Google Scholar 

  • Steinbrück G (1986) Molecular reorganization during nuclear differentiation in Ciliates. In: Henning W (ed) Germ line-soma differentiation. Springer-Verlag, Berlin Heidelberg New York, pp 105–174

    Google Scholar 

  • Sumner AT (1990) Chromosome banding. Unwin Hyman, London

    Google Scholar 

  • Therman E, Trunca C, Kuhn EM, Sarto GE (1986) Dicentric chromosomes and the inactivation of the centromere. Hum Genet 72:191–195

    Article  PubMed  CAS  Google Scholar 

  • Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K, Yanagida M (1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50:917–925

    Article  PubMed  CAS  Google Scholar 

  • Zakian VA, Runge K, Wang S-S (1990) How does the end begin? Trends in Genetics 6:12–16

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Traut, W. (1991). Mitosechromosomen. In: Chromosomen. Springer-Lehrbuch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-95643-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-95643-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-53319-1

  • Online ISBN: 978-3-642-95643-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics