Skip to main content

Part of the book series: Springer Series on Atoms + Plasmas ((SSAOPP,volume 6))

  • 344 Accesses

Abstract

The method of spectroscopy, using a suitable light source and spectral apparatus for radiation analysis, has its natural field of application in the determination of the general energy-level structure in the energy range corresponding to UV, visible and IR light. The energy-level scheme for atoms and ions of many different charge states has been established from spectral analysis in different wavelength regions, as discussed in Chap.2. Many of the observed spectral lines are listed in standard monographs [6.1–5]. Hyperfine structure can also be studied in many cases using high-resolution instruments. The first observations of hyperfine structure in optical spectra were made at the end of the 19th century by A. Michelson (1891), and by Ch. Fabry and A. Perot (1897). An interpretation of the structure was put forward at the end of the 1920’s. The optical method for studies of hyperfine structure is particularly suitable when unpaired s-electrons are present (large hyperfine structure). A large number of nuclei have been studied with regard to nuclear spin and moments through the years. Many radioactive isotopes have also been studied using very small samples. Although the classical optical method has low accuracy, compared with resonance methods (Chap.7) or laser techniques (Chap.9), its field of application is wide. A very large number of excited levels can be studied through the structure in the large number of lines emitted by a light source. The structure in spectral lines, connecting a ground state or a well-populated metastable state with higher-lying, short-lived states can also be studied in absorption experiments, in which the atomic absorption in a continuous spectral distribution is recorded. The techniques of classical optical spectroscopy have been covered in [6.6–8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. MIT Wavelength Tables, ed. by G.R. Harrison (Wiley, New York 1969)

    Google Scholar 

  2. F.M. Phelps III: MIT Wavelength Tables, Vol. 2: Wavelengths by Element (MIT Press, Cambridge, Mass. 1982)

    Google Scholar 

  3. R.L. Kelly, L.J. Palumbo: Atomic and ionic emission lines below 2000 Angstroms, hydrogen through krypton. NRL Report 7599 (Naval Research Laboratory, Washington, DC 1973)

    Google Scholar 

  4. R.L. Kelly: Atomic and ionic spectral lines below 2000 Angstroms, hydrogen through krypton. J. Phys. Chem. Ref. Data, Suppl. No.1 to Vol.16 (1987)

    Google Scholar 

  5. J. Reader, C.H. Corliss, W.L. Wiese, G.A. Martin: Wavelengths and Transition Probabilities for Atoms and Atomic Ions. NSRDS-NBS 68 (US Govt. Prtg. Off., Washington, DC 1980)

    Google Scholar 

  6. A.R. Striganov, N.S. Sventitskii: Tables of Spectral Lines in Neutral and Ionized Atoms (IFI/Plenum, New York 1968)

    Google Scholar 

  7. A. Thorne: Spectrophysics (Chapman & Hall, London 1974)

    Google Scholar 

  8. B.P. Straugan, S. Walken: Spectroscopy, Vols. 1, 2, and 3 (Chapman & Hall, London 1976)

    Google Scholar 

  9. P.F.A. Klinkenberg: In Methods of Experimental Physics, Vol.13, Spectroscopy (Academic, New York 1976) p.253

    Google Scholar 

  10. P. Bousquet: Spectroscopy and its Instrumentation (Hilger, London 1971)

    Google Scholar 

  11. J. Kuba, L. Kucera, F. Plzak, M. Dvorak, J. Mraz: Coincidence Tables for Atomic Spectroscopy (Elsvier, Amsterdam 1965)

    Google Scholar 

  12. R. Beck, W. Englisch, K. Gürs: Tables of Laser Lines in Gases and Vapors, 3rd. ed., Springer Ser. Opt. Sci., Vol.2 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  13. A.C.G. Mitchell, M.W. Zemansky: Resonance Radiation and Excited Atoms (Cambridge Univ. Press, Cambridge 1961)

    MATH  Google Scholar 

  14. I.I. Sobelmann, L.A. Vainshtein, E.A. Yukov: Excitation of Atoms and Broadening of Spectral Lines, Springer Ser. Chem. Phys., Vol.7 (Springer, Berlin, Heidelberg 1981)

    Google Scholar 

  15. B. Wende (ed.): Spectral Line Shapes (Conf. Proc.) (de Gruyter, Berlin 1981)

    Google Scholar 

  16. K. Burnett (ed.): Spectral Line Shapes (Conf. Proc.) (de Gruyter, Berlin 1983)

    Google Scholar 

  17. C.H. Corliss, W.R. Bozman: Experimental Transition Probabilities for Spectral Lines of Seventy Elements, NBS Monograph 53 (National Bureau of Standards, Wash., DC 1962)

    Google Scholar 

  18. C.H. Corliss, J.L. Tech: Revised lifetimes of energy levels in neutral iron. J. Res. Nat. Bur. Stand. Sect. A 80, 787 (1976)

    Google Scholar 

  19. C. de Michelis, M. Mattioli: Spectroscopy and impurity behaviour in fusion plasmas. Rep. Prog. Phys. 47, 1233 (1984)

    ADS  Google Scholar 

  20. E.T. Kennedy: Plasmas and intense laser light. Contemp. Phys. 25, 31 (1984)

    ADS  Google Scholar 

  21. T.P. Hughes: Plasmas and Laser Light (Wiley, New York 1975)

    Google Scholar 

  22. G. Bekefi (ed.): Principles of Laser Plasmas (Wiley, New York 1976)

    Google Scholar 

  23. K. Laqua: Analytical Spectroscopy using Laser Atomizers, in Analytical Laser Spectroscopy, ed. by N. Omenetto (Wiley, New York 1979)

    Google Scholar 

  24. R.J. Rosner, R. Feder, A. Ng, F. Adams, P. Celliers, R.J. Speer: Nondestructive single-shot soft X-ray lithography and contact microscopy using a laser-produced plasma source. Appl. Spectr. 26, 4313 (1987)

    ADS  Google Scholar 

  25. G. Schmahl, D. Rudolph (eds.): X-Ray Microscopy, Springer Ser. Opt. Sci., Vol.43 (Springer, Berlin, Heidelberg 1984)

    Google Scholar 

  26. Sayre, M. Howells, J. Kirz, H. Rarback (eds.): X-Ray Microscopy 11, Springer Ser. Opt. Sci., Vol.56 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  27. A.G. Michette: X-ray microscopy. Rep. Prog. Phys. 51, 1525 (1988)

    ADS  Google Scholar 

  28. N.G. Basov, Yu. A. Zakharenkov, N.N. Zorev, G.V. Sklizkov, A.A. Rupasov, A.S. Shikanov: Heating and Compression of Thermonuclear Targets by Laser Beams (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  29. R.D. Cowan: Progress in the spectroscopy of highly ionized atoms and its use in plasma diagnostics. Phys. Scr. 24, 615 (1981)

    ADS  Google Scholar 

  30. H.W. Drawin: Atomic physics and thermonuclear fusion research. Phys. Scr. 24, 622 (1981)

    ADS  Google Scholar 

  31. R.C. Isler: Impurities in Tokamaks. Nuclear Fusion 24, 1599 (1984)

    Google Scholar 

  32. Kallne, J. Kallne: X-ray spectroscopy in fusion research. Phys. Scr. T17, 152 (1987)

    ADS  Google Scholar 

  33. S. Bashkin: Optical spectroscopy with van de Graaff accelerators. Nucl. Instr. Meth. 28, 88 (1964)

    Google Scholar 

  34. L. Kay: A van de Graaff beam as a source of atomic emission spectra. Phys. Lett. 5, 36 (1963)

    ADS  Google Scholar 

  35. J.O. Stoner, J.A. Leavitt: Reduction in Doppler broadening of spectral lines in fast-beam spectroscopy. Appl. Phys. Lett. 18, 477 (1971)

    ADS  Google Scholar 

  36. R. Hutton, L. Engstrom, E. Trabert: Nucl. Instrum. Meth. in Phys. Res. B 31, 294 (1988)

    Google Scholar 

  37. L.J. Curtis, H.J. Berry, J. Bromander: A meanlife measurement of the 3d D resonance doublet in Sill by a technique which exactly accounts for cascading. Phys. Lett. 34 A, 169 (1971)

    ADS  Google Scholar 

  38. L.J. Curtis: In [6.37]

    Google Scholar 

  39. L. Engstrom: CANDY, a computer program to perform ANDC analysis of cascade corrected decay curves. Nucl. Instr. Meth. 202, 369 (1982)

    Google Scholar 

  40. I. Martinson, A. Gaupp: Atomic physics with ion accelerators — beam-foil spectroscopy. Phys. Rep. 15, 113 (1974)

    ADS  Google Scholar 

  41. H.G. Berry, L.J. Curtis, D.G. Ellis, R.M. Schectman: Hyperfine quantum beats in oriented one IV. Phys. Rev. Lett. 35, 274 (1975)

    ADS  Google Scholar 

  42. U. Fano, J.H. Macek: Impact excitation and polarizadon of the emitted light. Rev. Mod. Phys. 45, 553 (1973)

    ADS  Google Scholar 

  43. W. Wittmann, K. Tillmann, H.J. Andrä, P. Dobberstein: Fine-structure measurement of 4 He by zero-field quantum beats. Z. Physik 257, 279 (1972)

    ADS  Google Scholar 

  44. O. Poulsen, J.L. Sub Hyperfine structure measurement in Be III. J. Phys. B 7, 31 (1974)

    ADS  Google Scholar 

  45. S. Bashkin (ed.): Beam-Foil Spectroscopy, Topics Current Phys., Vol.1 (Springer, Berlin, Heidelberg 1976)

    Google Scholar 

  46. I.A. Sellin, D.J. Pegg (eds.): Beam-Foil Spectroscopy, Vols. 1, 2 (Plenum, New York 1976)

    Google Scholar 

  47. S. Bashkin (ed.): Beam-Foil Spectroscopy, Proc. 3rd Int’l Conf. Nucl. Instr. Meth. 110 (1973).

    Google Scholar 

  48. Proc. Int. Conf. on Fast Ion Beam Spectroscopy, Proc. Colloque No. 1. J. Physique 40 (1978)

    Google Scholar 

  49. E.J. Knystautas, R. Drouin (eds.): Proc. 6th Int’l Conf. on Fast Ion Beam Spectroscopy. Nucl. Instr. Meth. 202 (1982)

    Google Scholar 

  50. J. D. Silver, N.J. Peacock (eds): The Physics of Highly Ionized Atoms. Nucl. Instr. Meth. in Phys. Res. B9, 359–787 (1985)

    Google Scholar 

  51. H.J. Andrä: Fast Beam (Beam-Foil) Spectroscopy, in Progress in Atomic Spectroscopy, Pt.B, ed. by W. Hanle, H. Kleinpoppen (Plenum, New York 1979) p.829

    Google Scholar 

  52. D.J. Pegg: In Methods of Experimental Physics, Vol.17, ed. by P. Richard (Academic, New York 1980) p.529

    Google Scholar 

  53. I. Martinson: Recent progress in the studies of atomic spectra and transition probabilities by beam-foil spectroscopy. Nucl. Instr. Meth. 202, 1 (1982)

    Google Scholar 

  54. I. Martinson: Beam-Foil Spectroscopy, in Treatise on Heavy-Ion Science, Vol.5, ed. by D.A Bromley (Plenum, New York 1985)

    Google Scholar 

  55. I. Martinson: The spectroscopy of highly ionized atoms. Rep. Prog. Phys. 52, 157 (1989)

    ADS  Google Scholar 

  56. C.L. Cocke: Beam-Foil Spectroscopy, in Methods of Experimental Physics, Vol.13 (Academic, New York 1976)

    Google Scholar 

  57. H.G. Berry: Beam-foil spectroscopy. Rep. Progr. Phys. 40, 155 (1977)

    ADS  Google Scholar 

  58. H.G. Berry, M. Mass: Beam-foil spectroscopy. Ann. Rev. Nucl. Part. Sci. 32, 1 (1982)

    ADS  Google Scholar 

  59. J. Schwingen On the classical radiation of accelerated electrons. Phys. Rev. 75, 1912 (1949)

    ADS  Google Scholar 

  60. R.P. Madden, K. Codling: Phys. Rev. Lett. 10, 516 (1963)

    ADS  Google Scholar 

  61. K. Codling: Applications of synchrotron radiation. Rep. Progr. Phys. 36, 541 (1973)

    Google Scholar 

  62. See also O.J. Jackson: Classical Electrodynamics, 2nd. ed. (Wiley, New York 1975)

    MATH  Google Scholar 

  63. D.H. Tomboulian, P.L. Hartman: Spectral and angular distribution of ultraviolet radiation from the 300 M Cornell synchrotron. Phys. Rev. 102, 1423 (1956)

    ADS  Google Scholar 

  64. E. Matthias, R.A. Rosenberg, E.D. Poliakoff, M.G. White, S.-T. Lee, D.A. Shirley: Time resolved VUV spectroscopy using synchrotron radiation: Fluorescent lifetimes of atomic Kr and Xe. Chem. Phys. Lett. 52, 239 (1977).

    ADS  Google Scholar 

  65. T. Möller, G. Zimmeren Time-resolved spectroscopy with synchrotron radiation in the vacuum ultraviolet. Phys. Scr. T17, 177 (1987)

    ADS  Google Scholar 

  66. R. Rigler, O. Kristensen, J. Roslund, P. Thyberg, K. Oba, M. Eriksson: Molecular structures and dynamics: Beamline for time resolved spectroscopy at the MAX synchrotron in Lund. Phys. Scr. T17, 204 (1987)

    ADS  Google Scholar 

  67. H. Motz: Undulators and free-electron lasers. Contemp. Phys. 20, 547 (1979)

    ADS  Google Scholar 

  68. H.P. Freund, R.K. Parker. Free-electron lasers. Sci. Am. 260/4, 56 (1989)

    Google Scholar 

  69. V.L. Granatstein, C.W. Robertson (eds.): Third special issue on free electron lasers. IEEE J. QE-21, 804–1113 (1985)

    Google Scholar 

  70. J.M.J. Madey, A. Renieri (eds.): Free Electron Lasers (Conf. Proc.) (North Holland, Amsterdam 1985)

    Google Scholar 

  71. F.C. Marshall: Free Electron Lasers (Macmillan, New York 1985)

    Google Scholar 

  72. J.M. Ortega, Y. Lapierre, B. Girard, M. Billardon, P. Elleaume, C. Bazin, M. Bergher, M. Velghe, Y. Petroff: Ultraviolet coherent generation from an optical klystron. IEEE J. QE-21, 909 (1985)

    Google Scholar 

  73. S. Werin, M. Eriksson, J. Larsson, A. Persson, S. Svanberg: First results in coherent harmonic generation using the undulator at the MAX-Lab electron storage ring. Nucl. Instr. Meth. Phys. Res. A 290, 589 (1990)

    ADS  Google Scholar 

  74. C. Joshi, T. Katsouleas (eds.): Laser Accelerators of Particles. AIP Conf. Proc. 130 (Am. Inst. Physics, New York 1985)

    Google Scholar 

  75. K. Siegbahn: Electron spectroscopy for solids, surfaces, liquids and free molecules, in Molecular Spectroscopy (Heyden & Son, London 1983) Chap. 15, p.227

    Google Scholar 

  76. C. Kunz (ed.): Synchrotron Radiation. Techniques and Applications, Topics Current Phys., Vol.10 (Springer, Berlin, Heidelberg 1979).

    Google Scholar 

  77. H. Winich, S. Doniach (eds.): Synchrotron Radiation Research (Plenum, New York 1980)

    Google Scholar 

  78. E.E. Koch (ed.): Handbook on Synchrotron Radiation, Vols. 1–3, (North Holland, Amsterdam 1983, 1986, 1987)

    Google Scholar 

  79. E.J. Ansaldo: Uses of synchrotron radiation. Contemp. Phys. 18, 527 (1977)

    ADS  Google Scholar 

  80. W. Jitschin: Inner-Shell Spectroscopy with Hard Synchrotron Radiation, in Progress in Atomic Spectroscopy, Pt.D, ed. by H.J. Beyer, H. Kleinpoppen (Plenum, New York 1987) p.295

    Google Scholar 

  81. H.H. Malitson: The solar energy spectrum. Sky and Telescope 29/4, 162 (1965)

    ADS  Google Scholar 

  82. W.K. Pratt: Laser Communication Systems (Wiley, New York 1969)

    Google Scholar 

  83. S.P. Davis: Diffraction Grating Spectrometers (Holt, Rinehard, Winston, New York 1970)

    Google Scholar 

  84. R.A. Sawyer: Experimental Spectroscopy (Dover, New York 1963)

    Google Scholar 

  85. D.A. Skoog, D.M. WestPrinciples of Instrumental Analysis (Holt-Saunders, Philadelphia 1980)

    Google Scholar 

  86. M.C. Hutley: Diffraction Gratings (Academic, London 1982)

    Google Scholar 

  87. Handbook of Diffraction Gratings, Ruled and Holographic (Jobin-Yvon Optical Systems, 20 Highland Ave., Metuchen, NJ 1970)

    Google Scholar 

  88. H. Walther: Das Kernquadrupolmoment des Mn. Z. Physik 170, 507 (1962)

    Google Scholar 

  89. J.M. Vaughan: The Fabry-Pérot Interferometer (Hilger, Bristol 1989)

    Google Scholar 

  90. W. Demtroder: Laser Spectroscopy, 2nd prt., Springer Ser. Chem. Phys., Vol.5 (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  91. W. Demtroder: Laser Spetroskopie, 2. Aufl. (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  92. R.W. Ramirez: The FFT: Fundamentals and Concepts (Prentice Hall, Englewood Cliffs, NJ 1985)

    Google Scholar 

  93. H.J. Nussbaumer: Fast Fourier Transform and Convolution Algorithms, 2nd. ed. Springer Ser. Inf. Sci., Vol.2 (Springer, Berlin, Heidelberg 1982)

    Google Scholar 

  94. G. Guelachvili: High accuracy Doppler-limited 10® samples Fourier transform spectroscopy. Appl. Opt. 17, 1322 (1978)

    ADS  Google Scholar 

  95. S. Tolansky: An Introduction to Interferometry (Longmans, London 1973)

    Google Scholar 

  96. W.H. Steel: Interferometry, 2nd ed. (Cambridge Univ. Press, Cambridge 1983)

    Google Scholar 

  97. P. Hariharan: Optical Interferometry (Academic, New York 1986)

    Google Scholar 

  98. R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic, New York 1972)

    Google Scholar 

  99. The Optical Industry & Systems Purchasing Directory, 26th edn. (Laurin Publ. Co., Pittsfield, MA 1980) p.B-114

    Google Scholar 

  100. R.J. Keyes (éd.): Optical and Infrared Detectors, 2nd. ed., Topics Appl. Phys., Vol.19 (Springer, Berlin, Heidelberg 1980)

    Google Scholar 

  101. R.H. Kingston: Detection of Optical and Infrared Radiation, 2nd Pr., Springer Ser. Opt. Sci., Vol.10 (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  102. R.W. Boyd: Radiometry and the Detection of Optical Radiation (Wiley, New York 1983)

    Google Scholar 

  103. H.H. Melchior: Demodulation and photodetection techniques, in Laser Handbook, Vol.1, ed. by T. Arecchi, E.O. Schulz-Dubois (North-Holland, Amsterdam 1972) Chap.7

    Google Scholar 

  104. E.L. Dereniak, D.G. Crowe: Optical Radiation Detectors (Wiley, New York 1984)

    Google Scholar 

  105. M. Lampton: The microchannel image intensifier. Sci. Am. 245/5, 46 (1981)

    Google Scholar 

  106. Proc. Topical Meeting on Quantum-Limited Imaging and Image Processing (Optical Society of America, Washington, DC 1986)

    Google Scholar 

  107. The Photonics Design & Application Handbook (Laurin Publ. Comp., Pittsfield, MA 1990)

    Google Scholar 

  108. G.R. Fowles: Introduction to Modern Optics (Holt, Rinehart and Winston, New York 1968)

    Google Scholar 

  109. J. Strong: Procedures in Experimental Physics (Prentice Hall, New York 1945)

    Google Scholar 

  110. M. Kasha: Transmission filters for the ultraviolet. J. Opt. Soc. Am. 38, 929 (1948)

    ADS  Google Scholar 

  111. K. Bennett, R.L. Byen: Computer controllable wedge-plate optical variable attenuator. Appl. Opt. 19, 2408 (1980)

    ADS  Google Scholar 

  112. B. Edlén: The refractive index of air. Metrologia 2, 71 (1966)

    ADS  Google Scholar 

  113. R. Revelle: Carbon dioxide and world climate. Sci. Am. 247/5, 33 (1982)

    Google Scholar 

  114. R.A. Houghton, G.W. Woodwell: Global climatic change. Sci. Am. 260/4, 18 (1989)

    Google Scholar 

  115. S.H. Schneider The changing climate. Sci. Am. 261/3, 38 (1989)

    Google Scholar 

  116. B.J. Mason: The greenhouse effect. Contemp. Phys. 30, 417 (1989)

    ADS  Google Scholar 

  117. J.C. Farman, B.G. Gardiner, J.D. Shanklin: Large losses of total ozon in Antarctica reveal seasonal C10x/N02 interaction. Nature 315, 207 (1985)

    ADS  Google Scholar 

  118. R.S. Stolarski: The Antarctic ozon hole. Sci. Am. 258/1, 30 (1988)

    ADS  Google Scholar 

  119. J.H. Seinfeld: Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York 1986)

    Google Scholar 

  120. R.P. Wayne: Chemistry of Atmospheres (Clarendon, Oxford 1985)

    Google Scholar 

  121. T.E. Graedel, D.T. Hawkins, L.D. Claxton: Atmospheric Chemical Compounds: Sources, Ocurrence, Bioassay (Academic, Orlando 1986)

    Google Scholar 

  122. B.A. Thrush: The chemistry of the stratosphere. Rep. Prog. Phys. 51, 1341 (1988)

    ADS  Google Scholar 

  123. T.H. Graedel, P.J. Crutzen: The changing atmosphere. Sci. Am. 261/3, 28 (1989)

    Google Scholar 

  124. S.L. Valley (ed.): Handbook of Geophysics and Space Environments (McGraw-Hill, New York 1965)

    Google Scholar 

  125. M. Vergez-Deloncle: Absorption des radiations infrarouges par les gas atmosphériques. J. Physique 25, 773 (1964)

    Google Scholar 

  126. Hudson and Hudson (1975), quoted in [6.106] L.S. Rotman et al.: The HITRAN Database: 1986 edition, Appl. Opt. 26, 4058

    Google Scholar 

  127. B.A. Thompson, P. Harteck, R.R. Reeves, Jr.: Ultraviolet absorption coefficients of CO2, CO, O2, H2O, N2O, NH3, NO, SO2, and CH4 between 1850 and 4000 A. J. Geophys. Res. 68, 6431 (1963)

    ADS  Google Scholar 

  128. W. Eppers: Atmospheric Transmission, in Handbook of Lasers with Selected Data on Optical Technology, ed. by R.J. Pressley (CRC Press, Cleveland 1977)

    Google Scholar 

  129. N.G. Jerlov: Optical Oceanography (EXsqvïqt, Amsterdam 1968)

    Google Scholar 

  130. T. Stefanick: The nonacoustic detection of submarines. Sci. Am. 258/3, 25

    Google Scholar 

  131. R.M. Measures: Laser Remote Sensing (Wiley-Interscience, New York 1984)

    Google Scholar 

  132. D.B. Northam, M.A. Guerra, M.E. Mock, I. Itzkan, C. Deradourian: High repetition rate frequency-doubled Nd:YAG laser for airborne bathymetry. Appl. Opt. 20, 968 (1981)

    ADS  Google Scholar 

  133. B. Welz: Atomic Absorption Spectroscopy (VCH, Weinheim 1985)

    Google Scholar 

  134. C.Th.J. Alkemade, R. Herrmann: Fundamentals of Analytical Flame Spectroscopy (Hilger, Bristol 1979)

    Google Scholar 

  135. D.A. Skoog: Principles of Instrumental Analysis, 3rd ed. (Saunders, Philadelphia 1985)

    Google Scholar 

  136. D.A. Skoog, M.D. WestFundamentals of Analytical Chemistry, 4th ed. (Saunders, Philadelphia 1986)

    Google Scholar 

  137. G.D. Christian, J.E. O’Reilly (eds.): Instrumental Analysis, 2nd ed. (Allyn and Bacon, Boston 1986)

    Google Scholar 

  138. H.H. Willard, L.L. Merritt, Jr., J.A. Dean, F.A. Settle, Jr.: Instrumental Methods of Analysis, 6th ed. (Wadsworth, Belmont, Calif. 1981)

    Google Scholar 

  139. J.U. White: Long optical paths of large aperture. J. Opt. Soc. Am. 32, 285 (1942)

    ADS  Google Scholar 

  140. J.U. White: Very long paths in air. J. Opt. Soc. Am. 66, 411 (1976)

    ADS  Google Scholar 

  141. H. Edner, A. Sunesson, S. Svanberg, L. Uneus, S. Wallin: Differential optical absorption spectroscopy system used for atmospheric mercury monitoring. Appl. Opt. 25, 403 (1986)

    ADS  Google Scholar 

  142. J.E. Steward: Infrared Spectroscopy (Marcel Dekker, New York 1970)

    Google Scholar 

  143. H.A. Szymanski: Interpreted Infrared Spectra, Vols.1–3 (Plenum, New York 1964–67)

    Google Scholar 

  144. S. Hüfnen: Optical Spectra of Transparent Rare Earth Compomids (Academic, New York 1978)

    Google Scholar 

  145. A.P.B. Leven: Inorganic Electronic Spectroscopy, 2nd ed. (Elsvier, Amsterdam 1984)

    Google Scholar 

  146. H.A. Szymanski, R.E. Erickson: Infrared Band Handbook, Vols.1, 2 (IFI/ Plenum, New York 1970)

    Google Scholar 

  147. PAP Tables of Wavenumbers for the Calibration of Infrared Spectrometers (Butterworths, London 1961) p.560

    Google Scholar 

  148. R.J. Pressley (ed.): Handbock of Lasers (with Selected Data on Optical Technology (CRC Press, Cleveland, Ohio 1971) p.407

    Google Scholar 

  149. H.A. Szymanski (ed.): Raman Spectroscopy (Plenum, New York 1967)

    Google Scholar 

  150. A. Weber (ed.): Raman Spectroscopy of Gases and Liquids (Springer, Berlin, Heidelberg 1979)

    Google Scholar 

  151. D.P. Strommen, K. Nakamoto: Laboratory Raman Spectroscopy (Wiley, New York 1984)

    Google Scholar 

  152. M.M. Sushchinskii: Raman Spectra of Molecules and Crystals (Israel Progr. for Sci. Transl., Jerusalem 1972)

    Google Scholar 

  153. H. Bergström, Lund Institute of Technology (unpublished)

    Google Scholar 

  154. G.L. Lesley: Coherent Raman Spectroscopy (Pergamon, Oxford 1981)

    Google Scholar 

  155. S. Svanberg: Lasers as probes for air and sea. Contemp. Phys. 21, 541 (1980)

    ADS  Google Scholar 

  156. E. Schanda: Physical Fundamentals of Remote Sensing (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  157. S. Svanberg: Fundamentals of atmospheric spectroscopy, in Surveillance of Electromagnetic Pollution and Resources by Electromagnetic Waves, ed. by T. Lund (Reidel, Dordrecht 1978)

    Google Scholar 

  158. E.J. Martney: Absorption and Emission by Gases: Physical Processes (Wiley, New York 1983)

    Google Scholar 

  159. C.B. Ludwig, M. Griggs, W. Malkmus, E.R. Bartle: Measurements of air pollutants from satellites 1: Feasibility considerations. Appl. Opt. 13, 1494 (1974)

    ADS  Google Scholar 

  160. U. Piatt, D. Perner, H.W. Pätz: Simultaneous measurement of atmospheric CH, O3, and NO2 by differential optical absorption. J. Geophys. Res. 84, 6329 (1979)

    ADS  Google Scholar 

  161. U. Platt, D. Pernen: Measurements of atmospheric trace gases by long path differential UV/visible absorption spectroscopy, in Optical and Laser Remote Sensing, ed. by D.K. Killinger, A. Mooradian, Springer Ser. Opt. Sci., Vol.39 (Springer, Berlin, Heidelberg 1983).

    Google Scholar 

  162. P.V. Johnston, R.L. Menzie: Long-path absorption measurements of tropospheric NO2 in rural New Zealand. Geophys. Lett. 11, 69 (1984)

    ADS  Google Scholar 

  163. M.M. Millan, R.M. Hoff: Dispersive correlation spectroscopy: a study of mask optimization procedures. Appl. Opt. 16, 1609 (1977)

    ADS  Google Scholar 

  164. D.M. Hamilton, H.R. Varey, M.M. Millan: Atmos. Env. 12, 127 (1978)

    Google Scholar 

  165. J.A. Hodgeson, W.A. Mlenney, P.L. Hanst Science 182, 248 (1973)

    Google Scholar 

  166. T.V. Ward, H.H. Zwick: Gas cell correlation spectrometer GASPEC. Appl. Opt. 14, 2896 (1975)

    ADS  Google Scholar 

  167. H.S. Lee, H.H. Zwick: Gas filter correlation instrument for the remote sensing of gas leaks. Rev. Sci. Instr. 56, 1812 (1985)

    ADS  Google Scholar 

  168. S.C. Cox (ed.): The Multispectral Imaging Sciences Working Group: Final Report, NASA Conf. Publ. No 2260 (NASA, Washington, DC 1983)

    Google Scholar 

  169. Earth Observing Systems Reports, Vol. lie. High Resolution Imaging Spectrometry (NASA, Washington, DC 1986)

    Google Scholar 

  170. G. Vane (ed.): Imaging spectroscopy 11. Proc. Soc. Photo. Opt. Instrum. Eng. 834 (1987)

    Google Scholar 

  171. P.N. Slater: Remote Sensing: Optics and Optical Systems (Addison Wesley, Reading, Mass. 1980)

    Google Scholar 

  172. A.F.H. Goertz, J. Wellman, W. Barnes: Optical remote sensing of the Earth. Proc. IEEE 73 (June 1985)

    Google Scholar 

  173. H.S. Chen: Space Remote Sensing Systems (Academic, Orlando 1985)

    Google Scholar 

  174. T.A. Croft Nighttime images of the Earth from space. Sci. Am. 239/1, 68 (1978)

    Google Scholar 

  175. A. Dalgarno, D. Layzer (eds): Spectroscopy of Astrophysical Plasmas (Cambridge Univ. Press, Cambridge 1987)

    Google Scholar 

  176. G.B. Rybicki, A.P. Lightmaa: Radiative Processes in Astrophysics (Wiley, New York 1979)

    Google Scholar 

  177. D.F. Gray: The Observation and Analysis of Stellar Photospheres (Wiley, New York 1976)

    Google Scholar 

  178. R.H. Baker: Astronomy (van Nostrand, Princeton, NJ 1964)

    Google Scholar 

  179. D.J. Schroeder: Astronomical Optics (Academic, San Diego 1987)

    Google Scholar 

  180. B. Aschenbach: X-ray telescopes. Rep. Prog. Phys. 48, 579 (1985)

    ADS  Google Scholar 

  181. R.F. Griffin: A Photometric Atlas of the Spectrum of Arcturus (Cambridge Phil. Soc., Cambridge 1968)

    Google Scholar 

  182. J.M. Beckers, C.A. Bridges, L.B. Gilliam: A high resolution atlas of the solar irradiance from 380–700 nm. Sacramento Peak Observatory (1983)

    Google Scholar 

  183. D. Dravins: In KOSMOS 1980. Swedish Phys. Soc., Stockholm (1980)

    Google Scholar 

  184. B. Edlèn: Z. Astrophysik 22, 30 (1942)

    ADS  Google Scholar 

  185. B. Edlèn: Forbidden lines in hot plasmas. Phys. Scr. T 8, 5 (1984)

    ADS  Google Scholar 

  186. R. Giacconi: The Einstein X-ray observatory. Sci. Am. 242/2, 70 (1980)

    ADS  Google Scholar 

  187. A. Vidal-Madjar, Th. Encrenaz, R. Ferlet, J.C. Henoux, R. Lallement, G. Vaudair Galacdc ultraviolet astronomy. Rep. Progr. Phys. 50, 65 (1987)

    ADS  Google Scholar 

  188. HJ. Habing, G. Neugebauer The infrared sky. Sci. Am. 251/5, 42 (1984)

    ADS  Google Scholar 

  189. J.B. Bahcall, L. Spitzer, Jr.: The space telescope. Sci. Am. 247/1, 38 (1982)

    ADS  Google Scholar 

  190. D.W. Weedman: Quasar Astronomy (Cambridge Univ. Press, Cambridge 1986)

    Google Scholar 

  191. P.S. Osmer: Quasars as probes of the distant and early universe. Sci. Am 246/2, 96 (1982)

    ADS  Google Scholar 

  192. P. Murdin: The supernova in the Large Magellanic Cloud. Contemp. Phys. 28, 441 (1987)

    ADS  Google Scholar 

  193. W. Hillebrandt, P. Höflich: The supernova 1987A in the Large Magellanic Cloud. Rep. Progr. Phys. 52, 1421 (1989)

    ADS  Google Scholar 

  194. S. Woosley, T. Weaver The great supernova of 1987. Sci Am. 261/2, 24 (1989)

    ADS  Google Scholar 

  195. R. Fosburg: The spectrum of supernova 1987A. ESO Messenger 47, 32 (1987)

    ADS  Google Scholar 

  196. P. Andreani, R. Ferlet, R. Vidal-Madjan: ESO Messenger 47, 33 (1987)

    ADS  Google Scholar 

  197. P. Connes, G. Michel: Astronomical Fourier spectrometer. Appl. Opt. 14, 2067 (1975)

    ADS  Google Scholar 

  198. L.A. Soderblom, T.V. Johnson: The moons of Saturn. Sci. Am. 246/1, 72 (1982)

    ADS  Google Scholar 

  199. T. Oen: Titan. Sci. Am. 246/2, 76 (1982)

    ADS  Google Scholar 

  200. R.P. Laeser, W.I. Maughlin, D.M. Wolff: Engineering Voyager 2’s encounter with Uranus. Sci. Am. 255/5, 34 (1986)

    ADS  Google Scholar 

  201. A.P. Ingersoll: Uranus. Sci. Am. 256/1, 30 (1987)

    ADS  Google Scholar 

  202. T.J. Johnson, R.H. Brown, L.A. Soderblom: The moons of Uranus. Sci. Am. 256/4, 40 (1987)

    ADS  Google Scholar 

  203. J. Kinoshita: Neptune. Sci. Am. 261/5, 60 (1989)

    ADS  Google Scholar 

  204. J.N. Cuzzi, L.W. Esposito: The rings of Uranus. Sci. Am. 257/1, 42 (1987)

    ADS  Google Scholar 

  205. Sky and Telescope 73, No.3 (1987) (Feature issue)

    Google Scholar 

  206. Nature 321, No.6067 (1987) (Feature issue)

    Google Scholar 

  207. H. Balsiger, H. Fechtig, J. Geiss: A close look at Halley’s comet. Sci. Am. 259/3, 62 (1988)

    ADS  Google Scholar 

  208. C. Arpigny, F. Dossin, J. Manfroid, P. Magain, A.C. Danks, D.L. Lambert, C. Sterken: Spectroscopy, photometry and direct filter imagery of comet P/Halley. ESO Messenger 45, 10 (1986)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Svanberg, S. (1991). Optical Spectroscopy. In: Atomic and Molecular Spectroscopy. Springer Series on Atoms + Plasmas, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97258-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97258-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97260-7

  • Online ISBN: 978-3-642-97258-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics