Skip to main content

Part of the book series: Symbolic Computation ((1064))

  • 74 Accesses

Abstract

The representation of an image quantity (e.g. zero-crossings) over a range (which may in theory vary continuously) of scales at which the image is perceived. The “scale” concerned is generally the width parameter of a Gaussian function with which the image is convolved; thus at small scales the image detail is faithfully represented and at large scales the detail is blurred as the result tends to the image mean.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Witkin, A.P. Scale-space filtering, Proceedings of IJCAI-83, pages 1019–1022. International Joint Conference on Artificial Intelligence, 1983.

    Google Scholar 

  • Schank, R. and Abelson, R. Scripts, Plans, Goals and Understanding. Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1977.

    MATH  Google Scholar 

  • Azmoodeh, M., Lavington, S.H. and Standring, M. The semantic binary relation model of information. Department of Computer Science, University of Essex, 1984.

    Google Scholar 

  • Azmoodeh M. and Dunnion, J.N. A BRM machine and its interface procedures. Internal Report IFS/4/84, Dept. of Computer Science, University of Manchester, 1984

    Google Scholar 

  • Gelernter, H. Realisation of a Geometry theorem-proving machine. McGraw-Hill, New York, 1963.

    Google Scholar 

  • Brownm, J.S. and Burton, R. Multiple representations of knowledge for tutorial reasoning. In D.G. Bobrow and A. Collins, editors, Representation and Understanding, pages 311–349. Academic Press, New York, 1975.

    Google Scholar 

  • Findler, N.V. (editor). Associative Networks, Academic Press, New York, 1979.

    MATH  Google Scholar 

  • Charniak, E. and Wilks, Y. Computational Semantics. North-Holland, Amsterdam and Oxford, 1976.

    MATH  Google Scholar 

  • Simons, G.L. Robots in Industry. NCC Publications, 1980.

    Google Scholar 

  • Nevins, J.L. and Whitney, D.E. Computer controlled assembly. Scientific American, 238(2):62–74, February 1978.

    Article  Google Scholar 

  • Dorf, R.C. Modern Control Systems. Addison-Wesley, Reading, Mass. and Wokingham, 1980.

    Google Scholar 

  • Gallier, J.H. Logic for Computer science: foundations of automatic theorem proving. Harper & Row, New York and London, 1986.

    MATH  Google Scholar 

  • Horn, R.K.P. Obtaining shape from shading information. In P.H. Winston, editor, The Psychology of Computer Vision. McGraw-Hill, New York, 1975.

    Google Scholar 

  • Witkin, A.P. Recovering surface shape and orientation from texture. Artificial Intelligence, 17:17–45, 1981.

    Article  Google Scholar 

  • Kirkparick, S., Gelatt, C.D. and Vecchi, M.P. Optimisation by simulated annealing. Science, 220:671–680, 1983

    Article  MathSciNet  Google Scholar 

  • Nilsson, N.J. Principles of Artificial Intelligence. Tioga Pub. Co., San Mateo, California, 1980.

    MATH  Google Scholar 

  • Tsao, Y.F. and Fu, K.S. A parallel thinning algorithm for 3-d pictures. Computer Graphics and Image Processing, 17:315–331, 1981.

    Article  Google Scholar 

  • Chang, C. and Lee, R.C. Symbolic Logic and Mechanical Theorem Proving. Academic Press, New York, 1973.

    MATH  Google Scholar 

  • Wilson, H.R. and Bergen, J.R. A fourier mechanism model for spatial vision. Vision Research, 19:19–32, 1979.

    Article  Google Scholar 

  • Pollock, J.J. Spelling error detection and correction by Computer: some notes and a bibliography. Journal of Documentation, 38:282–291, 1982

    Article  Google Scholar 

  • Harper, R., MacQueen, D. and Milner, R. Standard ML. LFCS Report ECS-LFCS-86-2, Department of Computer Science, Edinburgh University, Scotland.

    Google Scholar 

  • A. Wikström. Functional Programming Using Standard ML. Prentice Hall, Hemel hemstead, 1987.

    MATH  Google Scholar 

  • Barr, A. and Feigenbaum, E.A. (editors). The Handbook of Artificial Intelligence, Volume 1. W. Kaufmann, Los Altos, California, 1981.

    MATH  Google Scholar 

  • Mayhew, J.E.W. Stereopsis. In Braddick and Sleigh, editors, Physical and Biological Processing of Images, 1983.

    Google Scholar 

  • Ayache, N. and Faugeras, O.D. Building, registrating and fusing noisy visual maps. International Journal of Robotics Research, 7(6):pp45–65, 1988.

    Article  Google Scholar 

  • Pearl, J. Probabilistic Reasoning in Intelligent Systems: networks of plausible inference. Morgan Kaufmann, San Mateo, California, 1988.

    Google Scholar 

  • Shapiro, A. and Niblett, R.B. Automatic induction of Classification rules for a chess end-game. In Advances in Computer Chess, 3, Pergamon Press, Oxford, 1982.

    Google Scholar 

  • Popplestone, R.J., Brown, C.M., Ambler, A. P. and Crawford, G. F., Forming models of plane-and-cylinder faceted bodies from light stripes. Proceedings of IJCAI-75, pp 664–668, International Joint Conference on Artificial Intelligence, 1975.

    Google Scholar 

  • Faugeras, O. D., Lustman, F. and Toscani, G. Motion and structure from motion from point and line matches Proceedings ofthe First International Conference on Computer Vision, pp25–34, 1987.

    Google Scholar 

  • Nilsson, N.J. Principles of Artificial Intelligence, Tioga Pub. Co., Palo Alto, California, 1980.

    MATH  Google Scholar 

  • Stefik, M.J. Planning with constraints (Molgen: part 1) and planning and meta-planning (Molgen: part2). Artificial Intelligence, 16:111–139 and 16:141–169, 1981.

    Article  Google Scholar 

  • Sussman, G.J. A Computer model of skill acquisition. Elsevier, New York, 1975.

    Google Scholar 

  • Barr, A.H. Superquadrics and angle-preserving transformations. IEEE Computer Graphics and Applications, 1:1–20.

    Google Scholar 

  • Terzopoulos, D. Multilevel computational processes for visual surface reconstruction. Computer Vision, Graphics and Image Processing, 24:52–96, 1983.

    Article  Google Scholar 

  • Besl, P. Surfaces in Range Image Understanding. Springer-Verlag, New York and London, 1988.

    Book  MATH  Google Scholar 

  • Charniak, E. Passing markers: a theory of contextual influence in language comprehension. Cognitive Science, 7:171–190, 1983

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bundy, A. (1990). S. In: Bundy, A. (eds) Catalogue of Artificial Intelligence Techniques. Symbolic Computation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-97276-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-97276-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-97278-2

  • Online ISBN: 978-3-642-97276-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics