Skip to main content

Das metrische Kontinuum

  • Chapter
Raum · Zeit · Materie
  • 87 Accesses

Zusammenfassung

Der Zweifel an der Euklidischen Geometrie scheint so alt zu sein wie diese selbst und ist keineswegs erst, wie das von unsern Philosophen meist angenommen wird, eine Ausgeburt moderner mathematischer Hyperkritik. Dieser Zweifel hat sich von jeher an das V. Postulat des Euklid geknüpft. Es besagt im wesentlichen, daß in einer Ebene, in der eine Gerade g und ein nicht auf ihr gelegener Punkt P gegeben sind, nur eine einzige Gerade existiert, welche durch P hindurchgeht und g nicht schneidet; sie heißt die Parallele. Während die übrigen Axiome des Euklid ohne weiteres als evident zugestanden wurden, haben sich schon die ältesten Erklärer bemüht, diesen Satz auf Grund der übrigen Axiome zu beweisen. Heute, wo wir wissen, daß das gesteckte Ziel nicht erreicht werden konnte, müssen wir in diesen Betrachtungen die ersten Anfänge der »Nicht-Euklidischen« Geometrie erblicken, d. h. des Aufbaus eines geometrischen Systems, das zu seinen logischen Grundlagen die sämtlichen Axiome des Euklid mit Ausnahme des Parallelenpostulats annimmt. Wir besitzen von Proklus (5. Jahrh. n. Chr.) einen Bericht über derartige Versuche.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 71. Zu genauerer Orientierung sei auf das in der Teubnerschen Sammlung »Wissenschaft und Hypothese« (Bd. IV) erschienene Buch von Bonola und Liebmann, »Die Nicht-Euklidische Geometrie«, verwiesen.

    Google Scholar 

  2. 74. F. Klein, Über die sogenannte Nicht-Euklidische Geometrie, Math. Ann. Bd. 4 (1871), S. 573. Vgl. auch die ferneren Abhandlungen in Math. Ann. Bd. 6 (1873), S. 112 und Bd. 37 (1890), S. 544.

    Google Scholar 

  3. 76. Sixth Memoir upon Quantics, Philosophical Transactions, t. 149 (1859).

    Google Scholar 

  4. 84. Mathematische Werke (2. Aufl., Leipzig 1892), Nr. XIII, S. 272. Als besondere Schrift herausgegeben und kommentiert vom Verf. (2. Aufl., Springer 1920).

    Google Scholar 

  5. 86. Saggio di interpretazione della geometria non euclidea, Giorn. di Matem. t. VI (1868), S. 204; Opere Matem. (Höpli 1902), t. I, S. 374.

    Google Scholar 

  6. 87. Grundlagen der Geometrie (3. Aufl., Leipzig 1909), Anhang V.

    Google Scholar 

  7. 89. Nozione di parallelismo in una varietà qualunque…, Rend, del Cire. Mat. di Palermo, t. 42 (1917).

    Google Scholar 

  8. 93. In dieser Form rührt die Antwort her vom Verf.: »Reine Infinitesimalgeometrie«, Math. Zeitschrift Bd. 2 (1918); 3. Aufl. dieses Buchs (1920). Vgl. aber auch Hessenberg, Vektorielle Begründung der Differentialgeometrie, Mathem. Annalen Bd. 78 (1917) und J. A. S eh outen, Die direkte Analysis zur neueren Relativitätstheorie, Verh. d. Akad. v. Wetensch. te Amsterdam, 1919.

    Google Scholar 

  9. 96. Diese Auffassung der Krümmung ist in den unter 7) und 8) zitierten Arbeiten entwickelt worden. Auf Grund des von ihm gefundenen Ausdrucks für die Krümmung hatte schon Gauß zeigen können, daß die Totalkrümmung eines geodätischen Dreiecks gleich seinem sphärischen Exzeß ist. O. B o n n e t verallgemeinerte dies Ergebnis auf eine beliebige geschlossene Kurve (vgl. darüber etwa Blaschke, Vorlesungen über Differentialgeometrie I, Berlin 1921, S. 108). Höchst bemerkenswert sind die kinematischen Betrachtungen in dem berühmten Treatise on Natural Philosophy von Thomson u. Tait, Parti, sect. 135—137, S. 105—109 der Ausgabe 1912 (Cambridge), welche im Grunde schon die ganze Theorie der Parallelverschiebung auf einer Fläche und der Krümmung enthalten. Vgl. ferner Car tan, Comptes rendus Paris 174 (1922), S. 437.

    Google Scholar 

  10. 97. Siehe z.B. die unter 9) zitierten Vorlesungen von Blaschke. Ein anschaulicher Beweis des »theorema egregium« von Gauß, welches besagt, daß die Gaußsche Krümmung nur von der Geometrie auf der Fläche abhängt, a. a. O. bei Thomson u. Tait.

    Google Scholar 

  11. 97. Von dem hier eingenommenen Standpunkt aus kurz entwickelt in: Weyl, p-dimensionale Fläche im n-dimensionalen Raum, Math. Zeitschr. 12 (1922), S. 154. Vgl. auch Schouten u. Struik, Rend. Circ. Mat. Palermo 46 (1922) und Ak. v. Wetensch. Amsterdam 24 (1922); Struik, Grundzüge der mehrdimensionalen Differentialgeometrie (Springer 1922).

    Google Scholar 

  12. 98. Diese Erweiterung stammt vom Verf.: »Gravitation und Elektrizität«, Sitzungsber. der Preuß. Ak. d. Wissensch. 1918, S. 465; »Reine Infinitesimalgeometrie«, Math. Zeitschr. Bd. 2 (1918); dieses Buch, 3. Aufl. (1920).

    Google Scholar 

  13. 100. Beltrami, Ann. di Matern. 7, S. 203; Lipschitz, Crelles Journal 72, S. J; F. Schur, Math. Ann. 27, S. 537. Einfachere Beweise in meinem Kommentar zu Riemanns Habilitationsvortrag [Zitat unter 4)], S. 39 und in einer Note des Verf., Nachr. d. Ges. d. Wissensch. Göttingen 1921, S. 109—110. Vgl. ferner die ausführliche Darstellung dieses Satzes sowie der He lmholtz- Li eschen gruppentheoretischen Untersuchungen in den im Vorwort zitierten Vorlesungen des Verf. über die »Mathematische Analyse des Raumproblems« (Barcelona).

    Google Scholar 

  14. 100. »Über die Tatsachen, welche der Geometrie zugrunde liegen«, Nachr. d. Ges. d. Wissensch, zu Göttingen 1868.

    Google Scholar 

  15. 100. Die Lieschen Untersuchungen sind zusammengefaßt und breit entwickelt in dem großen Werk Lie-Engel, Theorie der Transformationsgruppen Bd. 3, Abt. 5. Im Geiste der Mengenlehre sind die zugrunde liegenden Voraussetzungen für den zweidimensionalen Fall weitgehend eingeschränkt worden von Hilbert: Grundlagen der Geometrie (3. Aufl., Leipzig 1909), Anhang IV.

    Google Scholar 

  16. 104. In engstem Anschluß an die unter 8) zitierte Arbeit des Verf.

    Google Scholar 

  17. 130. Hessenberg, 1. c. 8), S. 190.

    Google Scholar 

  18. 139. Von diesem Standpunkt aus, der mir an sich der richtige scheint und der sich in der Durchführung unserer Untersuchung bewährt, kann ich den rein formalen Verallgemeinerungen Schoutens, Mathem. Zeitschr. 13 (1922), S. 56, für das Raumproblem keine Bedeutung beimessen; gerade in der Existenz des metrischen Fundamentaltensors, den Schouten einfach hinnimmt, liegt für mich das Problem. Beachtenswerter scheinen mir die Ansätze von Cartan, Comptes rendus Paris 174 (1922), S. 593, 734, 857, 1104; und von Wirtinger, Transactions of the Cambridge Philos. Soc. Vol. 22 (1922), Nr. 23.

    Google Scholar 

  19. 140. Weyl, Die Einzigartigkeit der Pythagoreischen Maßbestimmung, Math. Zeitschr. 12 (1922), S. 114. Die gruppentheoretische Formulierung des Problems und seine Lösung in einem einfachen Sonderfall sind ausführlich auseinandergesetzt in den beiden letzten meiner spanischen Vorlesungen.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Besonderer Hinweis

Dieses Kapitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieses Kapitel ist aus einem Buch, das in der Zeit vor 1945 erschienen ist und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Rights and permissions

Reprints and permissions

Copyright information

© 1923 Julius Springer in Berlin

About this chapter

Cite this chapter

Weyl, H. (1923). Das metrische Kontinuum. In: Raum · Zeit · Materie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-98950-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-98950-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-98139-5

  • Online ISBN: 978-3-642-98950-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics