Skip to main content

Einfluss von Wassertropfen oder Partikeln in der Verdichterluft

  • Chapter
  • First Online:
Aerodynamik axialer Turbokompressoren
  • 2738 Accesses

Zusammenfassung

Wassertropfen in der Ansaugluft von Verdichtern können unterschiedliche Ursachen haben. Einerseits kann eine wasserbeladene Strömung aufgrund von Wetterbedingungen, wie Regen und Schnee entstehen. Unterkühlte Wassertröpfchen können unter Reiseflugbedingungen zu plötzlicher Vereisung führen. Durch Vulkanausbrüche können aber auch Partikel bis in hohe Flughöhen gelangen, die die Verdichterbeschaufelung schädigen können. Andererseits wird zur Leistungserhöhung einer Gasturbine bzw. zur Reduktion der Verdichterarbeit bei Industriekompressoren Wasser in den Einlauf eingedüst. Die Wassereindüsung kann aber auch durch Verdichterwaschen erfolgen oder aber unter bestimmten Temperaturen durch Auskondensieren der Luftfeuchte. Die dabei entstehenden Wassertröpfchen können unter bestimmten Umgebungsbedingungen, die bei 60 % relativer Luftfeuchte durchaus bei Temperaturen um 15 °C liegen, zu Eisablagerungen an der Verdichterbeschaufelung führen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Bhargava RK, Meher-Homji CB, Chaker MA, Bianchi M, Melino F, Peretto A (2005) Fogging technology: a state-of-the-art review, part I: inlet evaporative fogging analytical and experimental aspects. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 4: Turbo Expo 2005, paper GT2005-68336, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  2. Bhargava RK, Meher-Homji CB, Chaker MA, Bianchi M, Melino F, Peretto A (2005) Fogging technology: a state-of-the-art review, part II: overspray fogging analytical and experimental aspects. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 4: Turbo Expo 2005, paper GT2005-68337, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  3. Bhargava RK, Meher-Homji CB, Chaker MA, Bianchi M, Melino F, Peretto A (2005) Fogging technology: a state-of-the-art review, part III: inlet evaporative fogging analytical and experimental aspects. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 4: Turbo Expo 2005, paper GT2005-69144, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  4. Hill JP (1963) Aerodynamic and thermodynamic effects on coolant injection on axial compressors. Aeronaut Q 14:331–348

    Google Scholar 

  5. Zheng Q, Li M, Sun Y (2003a) Thermodynamic performance of wet compression and regenerative gas turbine. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 2: Turbo Expo 2003, paper GT2003-38517, Atlanta, Georgia, USA, 16–19 June

    Google Scholar 

  6. Günther C (2019) Wet compression – considering non-equilibrium thermodynamics. Dissertation, Helmut-Schmidt-Universität, Hamburg

    Google Scholar 

  7. White AJ, Meacock AJ (2004) An evaluation of the effects of water injection on compressor performance. ASME J Eng Gas Turbine Power 126(4):748–754

    Google Scholar 

  8. Horlock JH (2001) Compressor performance with water injection. In: Proceedings of ASME Turbo Expo 2001: power for land, sea, and air, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 2001-GT-0343, New Orleans, Louisiana, USA, 4–7 June

    Google Scholar 

  9. Härtel C, Pfeiffer P (2003) Model analysis of high-fogging effects on the work of compression. In: ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 2: Turbo Expo 2003, paper GT2003-38117, Atlanta, Georgia, USA, 16–19 June

    Google Scholar 

  10. Zheng Q, Sun Y, Li S, Wang Y (2003) Thermodynamic analysis of wet compression process in the compressor of gas turbine. ASME J Turbomach 125(3):489–496

    Google Scholar 

  11. Baehr HD, Kabelac S (2016) Thermodynamik – Grundlagen und technische Anwendungen, 16. aktualisierte Aufl. Springer Vieweg, Berlin

    MATH  Google Scholar 

  12. VDI Verein Deutscher Ingenieure (2003) VDI 4670, Thermodynamische Stoffwerte von feuchter Luft und Verbrennungsgasen. Beuth, Berlin

    Google Scholar 

  13. IAPWS The international Association for the Properties of Water and Steam (1997) Revised release on the IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. Lucerne, Switzerland

    Google Scholar 

  14. Kretzschmar H-J, Stöcker I, Hellriegel T, Kleemann L, Seibt D (2002) Berechnung der thermophysikalischen Eigenschaften von trockener und feuchter Luft unter Druck. Erhältlich unter: http://thermodynamik.hszigr.de/cmsfg/_data/Ver_ff_Druckluft_Kretzschmar_2002.pdf

  15. Lemmon EW, Jacobsen RT, Penoncello SG, Friend DG (2000) Thermodynamic properties of air and mixtures of nitrogen, argon and oxygen from 60 to 2000 K at pressures to 2000 MPa. J Phys Chem Ref Data Bd. 3(Data 29, Nr. 2):331–385

    Google Scholar 

  16. Hermann S, Kretzschmar H-J, Teske V, Vogel E, Ulbig P, Span R, Gatley DP (2009) Berechnung der thermodynamischen Zustandsgrößen und Transporteigenschaften von feuchter Luft für energietechnische Prozessmodellierungen. Braunschweig, ISBN 978-3-86509-917-4

    Google Scholar 

  17. Prandtl L, Oswatitsch K, Wieghardt K, Dettmering W, Küchemann D, Ludwieg H, Rotta J, Schneider W, Sündermann J, Wippermann F (Hrsg) (1990) Führer durch die Strömungslehre, 9. verbesserte und überarbeitete Aufl. Vieweg, Braunschweig

    Google Scholar 

  18. Dring RP, Caspar JR, Suo M (1979) Particle trajectories in turbine cascades. J Energy 3(3):161–166

    Google Scholar 

  19. Dring RP (1982) Sizing criteria for laser anemometry particles. ASME J Fluid Eng 104(1):15–17

    Google Scholar 

  20. Ruck B (1990) Einfluss der Tracerteilchengröße auf die Signalinformation in der Laser-Doppler-Anemometrie. Tech Mess 57:284–295

    Google Scholar 

  21. Mei R (1996) Velocity fidelity of flow transfer particles. Exp Fluids 22(1):1–13

    MathSciNet  Google Scholar 

  22. Melling A (1997) Transfer particles and seeding for particle image velocimetry. Meas Sci Technol 8(12):1406–1416

    Google Scholar 

  23. Crowe C, Sommerfeld M, Tsuji Y (1997) Multiphase flows with droplets and particles. CRC Press, Boca Raton

    Google Scholar 

  24. Lefebvre AH (1989) Atomisation and sprays, Combustion, 1. Aufl. Taylor & Francis, London

    Google Scholar 

  25. Savic S, Mitsis G, Härtel C, Khaidarov S, Pfeiffer P (2002) Spray interaction and droplet coalescence in turbulent air-flow. An experimental study with application to gas turbine high fogging. In: Proceedings of ILASS-Europe 2002, Zaragoza, Spain

    Google Scholar 

  26. Chaker MA, Meher-Homji CB, Mee T III (2004) Inlet fogging of gas turbine engines – part i: fog droplet thermodynamics, heat transfer and practical considerations. ASME J Eng Gas Turbine Power 126(3):545–558

    Google Scholar 

  27. Mitsis G, Savic S (2004) Interaction of neighbouring high fogging sprays: influence of nozzle placement and air velocity on droplet coalescence. In: Proceedings of ILASS-Europe 2004, Nottingham, UK

    Google Scholar 

  28. Chaker MA, Meher-Homji CB, Mee III, T (2002) Inlet fogging of gas turbine engines. Part C: Fog behaviour in inlet duts. CFD analysis and wind tunnel experiments. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 4: Turbo Expo 2002, parts A and B, paper GT2002-30564, Amsterdam, The Netherlands, 3–6 June

    Google Scholar 

  29. Mitsis G, Savic S (2002) Interaction of neighbouring high fogging sprays: Influence of nozzle placement and air velocity on droplet coalescence. In: Procedings of 19th annual meeting of the ILASS, Nottingham, UK

    Google Scholar 

  30. Chaker MA (2005) Key parameter for the performance of impaction Pin Nozzles used in inlet fogging of gas turbine engines. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 4: Turbo Expo 2005, paper GT2005-68346, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  31. Pilch M, Erdmann CA (1987) Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Int J Multiphase Flow 13(6):741–757

    Google Scholar 

  32. Schmelz F (2002) Tropfenzerfall in beschleunigten Strömungen. Dissertation, Universität Dortmund

    Google Scholar 

  33. Matysiak A (2007) Euler-Lagrange Verfahren zur Simulation tropfenbeladener Strömung in einem Verdichtergitter. Dissertation, Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg

    Google Scholar 

  34. Ulrichs E (2007) Experimental investigations into the behaviour and influence of water droplets in a compressor cascade flow. Dissertation, Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg

    Google Scholar 

  35. Tabakoff W (1984) Review – turbomachinery performance deterioration exposed to solid particulates environment. ASME J Fluid Eng 106(2):125–134

    Google Scholar 

  36. Tabakoff W, Hussein F (1971) Pressure distribution on blades in cascade nozzle for particulate flow. J Aircr 8(9)

    Google Scholar 

  37. Tabakoff W, Balan C (1981) Effects of solid particles suspended in fluid flow through an axial flow compressor. In: Proceedings of the fifth international symposium on airbreathing engines, Bangalore, India

    Google Scholar 

  38. Joos F (2006) Technische Verbrennung. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  39. Neupert N (2017) Experimentelle Untersuchung einer tropfenbeladenen Strömung in einer ebenen Verdichterkaskade. Dissertation, Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg

    Google Scholar 

  40. Gooma H (2014) Modeling of Liquid Dynamics in Spray Laden Compressor Flows. PhD Thesis, Universität Stuttgart

    Google Scholar 

  41. Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic Press, New York

    Google Scholar 

  42. White FM (1991) Viscous fluid flow, 2. Aufl. McGraw-Hill, New York

    Google Scholar 

  43. Spedding P, Hand N (1997) Prediction in stratified gas-liquid co-current flow in horizontal pipelines. Int J Heat Mass Transf 40(8):1923–1935

    Google Scholar 

  44. Clift R, Gauvin WH (1970) On the motion of particles in turbulent gas streams. Proc Chemea 1:14–28

    Google Scholar 

  45. Saffman PG (1962) On the stability of laminar flow of a dusty gas. J Fluid Mech 13(1):120–128

    Google Scholar 

  46. Samenfink W, Elsäßer A, Dullenkopf S, Wittig S (1999) Droplet interaction with shear-driven liquid films: analysis of deposition and secondary droplet characteristics. Int J Heat Fluid Flow 20(5):462–469

    Google Scholar 

  47. Ashgriz N (2011) Handbook of atomization and sprays. Theory and applications, 1. Aufl. Springer, New York

    Google Scholar 

  48. Schiller L, Naumann AZ (1933) Über die grundlegende Berechnung bei der Schwerkraftausbreitung. Zeitschrift des Vereins Deutscher Ingenieure 77:318–320

    Google Scholar 

  49. Happel J, Brenner H (1973) Low Reynolds number hydrodynamics, 2. Aufl. Noordhoff, Leyden

    MATH  Google Scholar 

  50. Hadamard JS (1911) Mouvement permanent lent d’une sphere liquid et visquese dans une liquid visquese. CR Acad Sci 152:1735–1738

    MATH  Google Scholar 

  51. Rybzynski W (1911) Über die fortschreitende Bewegung einer flüssigen Kugel in einem zähen Medium. Acad Sci Cracovie A:40

    Google Scholar 

  52. Wen CY, Yu YH (1966) Mechanics of fluidization. Chem Eng Prog Symp Ser 62:100

    Google Scholar 

  53. Richardson JF, Zaki WN (1954) Sedimentation and fluidization – part 1. Chem Eng Trans Inst Chem Eng 32:35–53

    Google Scholar 

  54. Di Felice R (1994) The voidade function for fluid-particle interaction systems. Int J Multiphase Flow 20(1):153–159

    MATH  Google Scholar 

  55. Basset AB (1961) A treatise on hydrodynamics, 2. Aufl. Dover, New York

    Google Scholar 

  56. Boussinesq J (1885) Sur la résistance qu’oppose un liquid indéfini en repos, sans pesanteur, au movement varié une sphere solide qu’il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables. CR Acad Sci 100:935

    MATH  Google Scholar 

  57. Oseen CW (1961) Hydromechanik. Akademische Verlagsgesellschaft, Leipzig

    Google Scholar 

  58. Hjemfeldt AT, Mockros LF (1966) Motion of discrete particles in a turbulent fluid. Appl Sci Res 16(1):149–161

    Google Scholar 

  59. Saffman PG (1965) The lift an a small sphere in a low shear flow. J Fluid Mech 22(2):385–400

    Google Scholar 

  60. McLaughlin JB (1991) Inertial migration of small spere in linear shear flows. J Fluid Mech 224:261–274

    MATH  Google Scholar 

  61. Rubinov SI, Keller JB (1961) The transverse force on spinning sphere moving in a viscous fluid. J Fluid Mech 11(3):447–459

    MathSciNet  MATH  Google Scholar 

  62. Tanaka T, Yamagata K, Tsuji Y (1990) Experiment on fluid forces on a rotating sphere and spheroid. Proc Sec KSME-JSME Fluids Eng Conf 1:366

    Google Scholar 

  63. Maccoll JW (1928) Aerodynamics of s spinning sphere. J Roy Aero Soc 32:777

    Google Scholar 

  64. Davis JM (1994) The aerodynamics of golf balls. J Appl Phys 20(9):821

    Google Scholar 

  65. Oertel H (2008) Prandtl – Führer durch die Strömungslehre: Grundlagen und Phänomene, 12. Aufl. Vieweg + Teubner, Wiesbaden

    MATH  Google Scholar 

  66. Neve RS, Shansonga T (1989) The effects of turbulence and surface roughness on the drag of spheres in thin jets. Int J Heat Fluid Flow 10:318–321

    Google Scholar 

  67. Horner SF (1992) Fluid-dynamic drag. Published by author, Midland Park

    Google Scholar 

  68. Torobin LB, Gauvin WH (1961) The drag coefficients of single spheres moving in steady and accelerated motion in a turbulent fluid. AICHE J 7(4):615–619

    Google Scholar 

  69. Eaton JK, Fessler JR (1994) Preferential concentration of particels by turbulence. Int J Multiphase Flow 20(1):169–209

    MATH  Google Scholar 

  70. Gore RA, Crowe T (1989) Effect of particle size on modulating turbulence intensity. Int J Multiphase Flow 15(2):279–285

    Google Scholar 

  71. Yarin LP, Hetsroni G (2004) Combustion of two-phase reactive media. Springer, Berlin

    Google Scholar 

  72. Yarin LP, Hetsroni G (1994) Turbulence intensity in dilute two-phase flows – 1. effect of particle size distribution on the turbulence of the carrier fluid. Int J Multiphase Flow 20(1):1–15

    MATH  Google Scholar 

  73. Brennen CE (2005) Fundamentals of multphase flow. Cambride University Press, Cambridge, UK/New York

    MATH  Google Scholar 

  74. O’Rouke PJ, Amsden AA (1987) The tab method for numerical calculation of spray droplet breakup. Conference paper, SAE-paper 872089, 1987 SAE international fall fuels and lubricants meeting and exhibition

    Google Scholar 

  75. Schmehl R (2004) Tropfendeformation und Nachzerfall bei der technischen Gemischaufbereitung. Dissertation, Universität Karlsruhe

    Google Scholar 

  76. Hsiang LP, Faeth GM (1995) Drop deformation and breakup due to shock wave and steady disturbances. Int J Multiphase Flow 21(4):545–560

    MATH  Google Scholar 

  77. Schmehl R (2002) Advanced modelling of droplet deformation and breakup for cfd analysis of mixture preparation. ILASS-Europe, Saragossa, Spain, 9–11 September

    Google Scholar 

  78. Chou WH, Faeth GM (1998) Temporal properties of secondary drop breakup in the bag breakup regime. Int J Multiphase Flow 24(6):889–912

    MATH  Google Scholar 

  79. Rimbert N, Casternet G (2011) Crossover between Rayleigh-taylor instability and turbulent cascading atomization mechanism in the bag-breakup regime. Phys Rev E 84:016318

    Google Scholar 

  80. Liu Z, Reitz RD (1997) An analysis of the distortion and breakup mechanisms of high speed liquid drops. Int J Multiphase Flow 23(4):631–650

    MATH  Google Scholar 

  81. Khosla S, Smith CE, Throckmorton RP (2006) Detailed understanding of drop atomization by gas crossflow using the Bd of fluid method. In: Proceedings 19th ILASS Americas, Toronto, Canada, May 2006

    Google Scholar 

  82. Hsiang LP, Faeth GM (1992) Near-limit drop deformation and secondary breakup. Int J Multiphase Flow 18(5):635–652

    MATH  Google Scholar 

  83. Hamed A, Tabakoff W, Wenglarz R (2006) Erosion and deposition in turbomachinery. J Propuls Power 22(2):350–360

    Google Scholar 

  84. Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38(1):159–192

    MathSciNet  MATH  Google Scholar 

  85. Cossali GE, Santini M, Marengo M (2005) Single-drop empirical models for spray impact on solid walls: a review. Atomiz Spray 15(6):699–736

    Google Scholar 

  86. Mundo C, Sommerfeld MM, Tropea C (1998) On the modelling of liquid sprays impinging on surfaces. Atomiz Spray 8(6):625–652

    Google Scholar 

  87. Mishra NK, Zhang Y, Ratner A (2011) Effect of chamber pressure on spreading and splashing of liquid drops upon impact on a dry smooth stationary surface. Exp Fluids 51(2):483–491

    Google Scholar 

  88. Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94(18):184505

    Google Scholar 

  89. Xu L, Barcos L, Nagel SR (2007) Splashing of liquids: interplay of surface roughness with surrounding gas. Phys Rev E 76:066311

    Google Scholar 

  90. Li H (2013) Drop impact on dry surfaces with phase change. Dissertation, Technische Universität Darmstadt

    Google Scholar 

  91. Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33(1):112–124

    Google Scholar 

  92. Vadillo DC, Soucemarianadin A, Delattre C, Roux CD (2009) Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys Fluids 21:12002-1-8

    MATH  Google Scholar 

  93. Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluid 8(3):650–659

    Google Scholar 

  94. Rioboo R, Bauthier C, Conti J, Voue M, de Coninck J (2003) Experimental investigation of splash and crown formation during single drop impact wetted surfaces. Exp Fluids 35(6):648–652

    Google Scholar 

  95. Mundo C (2012) Zur Sekundärzerstäubung newtonischer Fluide an Oberflächen. PhD Thesis, Universität Erlangen-Nürnberg

    Google Scholar 

  96. Cossali GE (1997) The impact of a single drop on a wetted solid surface. Exp Fluids 22(6):463–472

    Google Scholar 

  97. Levin Z, Hobbs PV (1971) Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation. Philos Trans R Soc Lond A 269(1200):555–585

    Google Scholar 

  98. Urban J (2009) Numerische Untersuchung und Modellierung von Tropfen-Wand-Interaktionen. PhD thesis, Universität Stuttgart

    Google Scholar 

  99. Bird JC, Tsai SS, Stone HA (2009) Inclined to splash: triggering and inhibiting a splash with tangential velocity. New J Phys 11:063017

    Google Scholar 

  100. Roisman IV, Horvat K, Tropea C (2006) Spray impact: rim transverse instability initiating fingering and splash, and description of a secondary spray. Phys Fluids 18(10):102104

    MathSciNet  MATH  Google Scholar 

  101. Barnes HA, Hardalupas Y, Taylor AMKP, Wilkins JH (1999) An investigation of the interaction between two adjacent droplets. Conference paper, ILASS-Europe 1999, Toulouse, Frankreich, 15–17 July

    Google Scholar 

  102. Cossali GE, Santini M, Marengo M (2004) Impact of single and multiple drop array on aliquid film. Conference paper, ILASS-Europe 2004, Nottingham, England, 6–9 September

    Google Scholar 

  103. Roisman IV, Tropea C (2005) Fluctuating flow in a liquid layer and secondary spray created by an impacting spray. Int J Multiphase Flow 31(2):179–200

    MATH  Google Scholar 

  104. Matz C, Kappis W, Cataldi G, Mundinger G, Bischoff S, Helland E, Ripken M (2010) Prediction of evaporative effects within the blading of an industrial axial compressor. ASME J Turbomach 132(4):041013

    Google Scholar 

  105. Samenfink W (1997) Grundlegende Untersuchung zur Tropfeninteraktion mit schubspannungsgetriebenen Wandfilmen. PhD thesis, Universität Karlsruhe

    Google Scholar 

  106. Rein M (2002) Drop-surface interactions. CISM International Centre for Mechanical Sciences. Springer, Wien

    Google Scholar 

  107. Budakli M (2015) Hydrodynamics and heat transfer in gas-driven liquid film flows. PhD thesis, Technische Universität Darmstadt

    Google Scholar 

  108. Hu C-C (2009) Mechanistic modeling of evaporating thin liquid film instability on a BWR fuel rod with parallel and cross vapor flow. PhD thesis, Georgia Tech. Copyright – Copyright ProQuest, UMI Dissertations Publishing 2009; zuletzt aktualisiert – 2015-08-23; Erste Seite – n/a

    Google Scholar 

  109. Schober P (2009) Berührungsfreie Erfassung beschleunigter schubspannungsgetriebener Kraftstoffwandfilme unter Druckeinfluss. PhD thesis, Universität Karlsruhe (TH)

    Google Scholar 

  110. Hammitt FG (1981) Liquid film and droplet stability consideration as applied to wet steam flow. Forsch Ingenieurwes 47(1):1–14

    Google Scholar 

  111. aus der Wiesche S, Joos F (2018) Handbuch Dampfturbinen, Grundlagen, Konstruktion, Betrieb. Springer Vieweg, Wiesbaden

    Google Scholar 

  112. Yellot J, Holland C (1937) The condensation of flowing stream: condensation in diverging nozzles. Engineering 143:647

    Google Scholar 

  113. Haller B, Unsworth R, Walters P, Lord M (1989) Wetness measurements in a model multistage low pressure steam turbine. Technology of turbine plant operating with wet steam. In: 20, Proceedings of an international conference held in London on 11–13 October 1988, British Nuclear Energy Society, London (UK); Institution of Mechanical Engineers, London (UK); European Nuclear Society, Petit-Lancy (Switzerland); 240 p; ISBN 0 7277 1395 7; Worldcat; 1989; S 161–169

    Google Scholar 

  114. Joos F (2018) Experimental investigations of droplet laden flow around blade profiles. In: Proceedings 50. Kraftwerkstechnisches Kolloquium Dresden, 23. – 24.10.2018, Dresden

    Google Scholar 

  115. Gyarmathy G (1962) Grundlagen einer Theorie der Nassdampfturbine. PhD thesis, ETH Zürich

    Google Scholar 

  116. Kirillov II, Yablonik RM (1970) Fundamentals of the theory of turbines operating on wet steam (Washington): National Aeronautics and Space Administration; for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, Va., Translation of Osnovy teorii vlazhnoparovykh turbine

    Google Scholar 

  117. Fernandino M, Ytrehus T (2006) Determination of flow sub-regimes in stratified airwater channelflow using ldv spectra. Int J Multiphase Flow 32(4):436–446

    MATH  Google Scholar 

  118. Narasimhan TV, Davis EJ (1972) Surface waves and surfactant effects in horizontal stratified gas-liquid flow. Ind Eng Chem Fundam 11(4):490–497

    Google Scholar 

  119. Schober P, Ebner J, Schäfer O, Wittig S (2003) Experimental study on the effect of a strong negative pressure gradient on a shear-driven liquid fuel film. Conference paper, 9th ICLASS conference, Sorrento, Italy, 13–17 July

    Google Scholar 

  120. Hammit W, Blome FG, Hamed S, Kim H (1976) Thin shear driven water film wavelet characteristics. ASME Cavitation and Polyphase Flow Forum 1977

    Google Scholar 

  121. O’Brien SBG, Schwartz LW (2002) Thin film flows: theory and modeling. Chapter 509. Taylor & Francis, London, S 6304–6317

    Google Scholar 

  122. Oron A, Davis SH, Bankoff SG (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69(3):931–980

    Google Scholar 

  123. Simon A, Marcelet M, Hérard JM, Dorey M, Lance JM (2016) A model for liquid film in steam turbines. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 8: microturbines, turbochargers and small turbomachines; steam turbines, paper GT2016-56148, Seoul, South Korea, 13–17 June

    Google Scholar 

  124. Bertschy J, Chin R, Albernathy F (1983) High-strain-rate-free-surface boundary layer flows. J Fluid Mech 126:443–461

    Google Scholar 

  125. Alekseenko S, Nakoryakov YY, Pokusaev P (1985) Wave formation of a vertical falling liquid film. AICHE J 31(9):1446–1460

    MATH  Google Scholar 

  126. Adomeit P, Renz U (2000) Hydrodynamics of three-dimensional waves in laminar falling films. Int J Multiphase Flow 26(7):1183–1208

    MATH  Google Scholar 

  127. Kim W, Hammitt FG, Krzecskowski S (1978) Investigation of the behaviour oft hin liquid film with co-occurent steam flow. In: Proc. Two-Phase Flow Heat Transfer Symposium. Workshop. 18–20 October 1976, Ft. Lauderdale, FL 4, S 1213–1230

    Google Scholar 

  128. Williams J, Young JB (2007) Movement of deposits water on turbomachinery rotor blade surfaces. ASME J Turbomach 129(2):394–403

    Google Scholar 

  129. Huh C, Scriven LE (1971) Hydrodynamic model of a steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35(1):85–101

    Google Scholar 

  130. Dussan EB, Ramé V, Garoff S (1991) On identifying the appropriate boundary conditions at moving contact line: an experimental investigation. J Fluid Mech 230:97–116

    Google Scholar 

  131. Hartley DE, Murgatroyd W (1964) Criteria for the break-up of thin liquid layers flowing isothermally over solid surfaces. Int J Heat Mass Transf 7(9):1003–1015

    MATH  Google Scholar 

  132. Hobler T (1968) Minimum surface wetting in a centrifugal force field. Chemia Stosow 2(B):265

    Google Scholar 

  133. Bankoff GS (1971) Minimum thickness of a draining liquid film. Int J Heat Mass Transf 14(12):2143–2146

    Google Scholar 

  134. Mikielewicz J, Moszynkski JR (1976) Minimum thickness of a liquid film flowing vertically down a solid surface. Int J Heat Mass Transf 19(2):771–776

    MATH  Google Scholar 

  135. Saber HH, El-Genk MS (2004) On the breakup of a thin liquid film subject to interfacial shear. J Fluid Mech 500:113–133

    MathSciNet  MATH  Google Scholar 

  136. Hastings EC, Weinstein LM (1984) Preliminary indications of water film distribution and thickness on an airfoil in a water spray. NASA Technical Memorandum 85796

    Google Scholar 

  137. Thompson BE, Jang J, Dion JL (1965) Wing performance in moderate rain. J Aircr 32(5):1034–1039

    Google Scholar 

  138. Zhang K (2015) An experimental study of wind-driven surface water transport process pertinent to aircraft icing. PhD thesis, Iowa State University, Ames, Iowa

    Google Scholar 

  139. AGARD AR-334 (1998) Ice accretion simulation. AGARD advisory report 334, Neuilly-Sur-Seine, Frankreich

    Google Scholar 

  140. Marshall J, Ettema R (2004) Contact-line instabilities of driven liquid films: Instability of flows. WIT Trans State Art Sci Eng 6:1–41

    Google Scholar 

  141. Al-Khalil KM, Keith TG, De Witt KJ (1990) Development of an anti-icing runback model. In: Proceedings of 28th aerospace sciences meeting, paper AIAA 90-0759, Reno, Nevada, USA, 8–11 January

    Google Scholar 

  142. Zhang K, Blake J, Rothmayer A, Hu H (2013) An experimental investigation on winddriven rivulet/film flows over a naca0012 airfoil by using digital image projection technique. Conference paper: 52nd aerospace sciences meeting

    Google Scholar 

  143. Craik ADD (1966) Wind-generated waves in thin liquid films. J Fluid Mech 26(2):369–392

    MATH  Google Scholar 

  144. Benjamin TB (1957) Wave formation in laminar flow down an inclined plane. J Fluid Mech 2(6):554–575

    MathSciNet  MATH  Google Scholar 

  145. Kim W (1978) Study of liquid films, fingers and droplet motion for steam turbine blading erosion problem. PhD thesis, University of Michigan

    Google Scholar 

  146. Wurz DE (1978) Subsonic and supersonic gas-liquid film flow. In: Proceedings of 11th fluid and plasma conference, AIAA, Seattle, WA, USA, 10–12 July

    Google Scholar 

  147. Cohen LS, Hanratty TJ (1968) Effects of waves at a gas-liquid interface on turbulent air flow. J Fluid Mech 31(03):467–479

    Google Scholar 

  148. Ebner J (2004) Einfluss von Druckgradienten in der Gasströmung auf die Dynamik schubspannungsgetriebener Wandfilme. PhD thesis, Universität Karlsruhe

    Google Scholar 

  149. Sattelmayer T (1985) Zum Einfluss der ausgebildeten turbulenten Luft-Flüssigkeitsfilm-Strömung auf den Filmzerfall und die Tropfenbildung am Austritt von Spalten geringer Höhe. PhD thesis, Universität Karlsruhe

    Google Scholar 

  150. Himmelsbach J (1992) Zweiphasenströmung mit schubspannungsgetriebenen welligen Flüssigkeitsfilmen in turbulenter Heißluftströmung. PhD thesis, Universität Karlsruhe

    Google Scholar 

  151. Roßkamp H (1998) Simulation von drallbehafteten Zweiphasenströmungen mit schubspannungsgetriebenen Wandfilmen. PhD thesis, Universität Karlsruhe

    Google Scholar 

  152. Ebner J, Gerendas M, Schafer O, Wittig S (2003) Droplet entertainment from shear-driven liquid wall film in inclined ducts: experimental study and correlation comparison. ASME J Eng Gas Turbine Power 124(4):874–880

    Google Scholar 

  153. Ihnatowicz E, Gumkowski S, Mikielewicz J (1979) A model for roll waves in gas-liquid flow. Chem Eng Sci 26(1):1915–1931

    Google Scholar 

  154. Mielke M (2014) Experimentelle Untersuchung am Tropfenherausriss der Saugseite einer Verdichterschaufel. Bachelorarbeit an der Helmut-Schmidt-Universität, Laboratorium für Strömungsmaschinen

    Google Scholar 

  155. Woodmansee DE, Hanratty TJ (1969) Mechanism for removal of droplets from a liquid surface by parallel air flow. Chem Eng Sci 24(2):299–307

    Google Scholar 

  156. van Rossum JJ (1959) Experimental investigation of a horizontal film flow. Chem Eng Sci 11(1):35–52

    Google Scholar 

  157. Marmottant P, Villermaux E (2004) On spray formation. Int J Fluid Mech 498:73–111

    MATH  Google Scholar 

  158. Gepperth S, Koch R, Bauer H-J (2013) Analysis and comparison of primary droplet characteristics in the near field of prefilming airblast atomizer. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 1A: combustion, fuels and emissions, paper GT2013-94033, San Antonio, Texas, USA, 3–7 June

    Google Scholar 

  159. Eckel G, Rachner P, Le Clercq M, Aigner M (2013) Semi-empirical primary atomization models for transient lagrangian spray simulation. In: Proceedings of ICMF, 8th international conference on multiphase flow

    Google Scholar 

  160. Gepperth S, Guildenbecher D, Koch R, Bauer H-J (2010) Pre-filming primary atomization: experiments and modeling. In: Proceedings of ILASS-Europe 2010, 23rd annual conference on liquid atomization and spray systems, Brno, Czech Republic, 6–8 September

    Google Scholar 

  161. White FM (1998) Viscous fluid flow. McGraw-Hill, New York; 2. Aufl., 1991. Villermaux E (1998) On the role of viscosity in shear instabilities. Phys Fluid 10(2):368–373

    Google Scholar 

  162. Rayleigh L (1878) On the stabilty of jets. Proc Lond Math Soc 10(1):4–13

    MathSciNet  MATH  Google Scholar 

  163. Dumouchel C (2008) On the experimental investigation on primary atomization of liquid streams. Exp Fluids 45(3):371–422

    Google Scholar 

  164. Ulrichs E, Joos F (2006) Experimental investigations of the influence of water droplets in compressor cascades. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90411, Barcelona, Spain, 8–11 May

    Google Scholar 

  165. Ober B, Joos F (2012) Experimental investigation on the performance of a compressor airfoil in droplet laden flow. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 8: turbomachinery, parts A, B, and C, paper GT2012-69464, Copenhagen, Denmark, 11–15 June

    Google Scholar 

  166. Ober B, Joos F (2014) Experimental investigation on aerodynamic behavior of a compressor cascade in droplet laden flow. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 6A: turbomachinery, paper GT2013-94731, San Antonio, Texas, USA, 3–7 June, 061014

    Google Scholar 

  167. Neupert N, Harbeck J, Joos F (2017a) An experimentally derived model to predict the water film in a compressor cascade with droplet laden flow. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2D: turbomachinery, paper GT2017-64121, Charlotte, North Carolina, USA, 26–30 June

    Google Scholar 

  168. Neupert N, Harbeck J, Joos F (2017b) Investigation on the effect of surface wettability on a two-phase flow in a compressor cascade. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2D: turbomachinery, paper GT2017-64155, Charlotte, North Carolina, USA, 26–30 June

    Google Scholar 

  169. Walsh WS, Thole KA, Joe C (2006) Effects of sand ingestion on the blockage of film-cooling holes. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 3: heat transfer, parts A and B, paper GT2006-90067, Barcelona, Spain, 8–11 May

    Google Scholar 

  170. Bons JP et al (2007) High pressure turbine deposition in land based gas turbines from various synfuels. ASME J Eng Gas Turbine Power 129(1):135–143

    Google Scholar 

  171. Rathod A, Sapate SG, Khatirkar RK (2012) Shape factor analysis of abrasive particles used in slurry abrasion testing. Int J Mech Indust Engineert 2:2231–6477

    Google Scholar 

  172. Santamarina J, Cho G (2004) Soil behaviour: the role of particle shape. In: Advances in geotechnical engineering: The Skempton conference, March, London

    Google Scholar 

  173. Ghenaiet A, Tan SC, Elder RL (2005) Prediction of an axial turbomachine performance degration due to sand ingestion. Proc Inst Mech Eng Part A 229(4):219–273

    Google Scholar 

  174. Suzuki M, Inaba K, Yamamoto M (2008) Numerical simulation of sand erosion phenomena in rotor/stator interaction of compressor. J Therm Sci 17:125–133

    Google Scholar 

  175. Suzuki M, Inaba K, Yamamoto M (2008) Numerical simulation of sand erosion in a square-section 90-degree bend. J Fluid Sci Technol 3(7):868–880

    Google Scholar 

  176. Suzuki M, Inaba K, Yamamoto M (2010) Numerical simulation of sand erosion phenomena in a single stage axial compressor. ASME/IGTI Turbo Expo June 14–18 2010, Glasgow UK, Paper GT2010-23593

    Google Scholar 

  177. Yang H, Boulanger J (2013) The whole annulus computations of particulate flow and erosion in axial fan. ASME J Turbomach 135(1):20130101

    Google Scholar 

  178. Bons JP (2010) A review of surface roughness effects in gas turbines. ASME J Turbomach 132(2):021004

    Google Scholar 

  179. Dunn MG, Baran AJ, Miatech J (1996) Operation of gas turbine engines in volcanic ash clouds. ASME J Eng Gas Turbine Power 118(4):724–731

    Google Scholar 

  180. Saxena S, Jothiprasad G, Bourassa C, Pritchard B (2016) Numerical simulation of particulates in multi-stage axial compressors. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57917, Seoul, South Korea, 13–17 June

    Google Scholar 

  181. Suman A, Morini M, Aldi N, Casari N, Pinelli M, Spina PR (2017) A compressor fouling review based on an hirostical survey of asme turbo expo papers. ASME J Turbomach 139(4):041005

    Google Scholar 

  182. Casari N, Pinelli M, Suman A (2018b) An innovative approach towards fouling modeling: microsale deposition pattern and ist effect on the flow field. In: Proceedings of ASME Turbo Expo 2018: turbomachinery technical conference and exposition, Bd 2D: turbomachinery, paper GT2018-76882, Oslo, Norway, 11–15 June

    Google Scholar 

  183. Casari N, Pinelli M, Suman A (2018a) On deposition and build-up detachement in compressor fouling. In: Proceedings of ASME Turbo Expo 2018: turbomachinery technical conference and exposition, Bd 2D: turbomachinery, paper GT2018-76776, Oslo, Norway, 11–15 June

    Google Scholar 

  184. Aldi N, Casari N, Dainese D, Morini M, Pinelli M, Spina P, Suman A (2017) The effects of third substances at the particle/surface interface in compressor fouling. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 9: oil and gas applications; supercritical CO2 power cycles; wind energy, paper GT2017-64425, Charlotte, North Carolina, USA, 26–30 June

    Google Scholar 

  185. Soltani M, Ahmadi G (1994) On particle adhesion and removal mechanisms in turbulent flows. J Adhes Sci Technol 8(7):763–785

    Google Scholar 

  186. Poppe T, Blum J, Henning T (2000) Analogous experiments on the stickiness of micron-sized preplanetary dust. Astrophys J 533(1):454

    Google Scholar 

  187. Berbner S, Löffler F (1994) Influence of high temperatures on particle adhesion. Powder Technol 78(3):273–280

    Google Scholar 

  188. Orr F, Scriven L, Rivas AP (1975) Pendular rings between solids: meniscus properties and capillary force. J Fluid Mech 67(04):650–659

    MATH  Google Scholar 

  189. Kim TW, Bhushan B (2008) The adhesion model considering capillarity for gecko attachment system. J R Soc Interface 5(20):319–327

    Google Scholar 

  190. Israelachvili JN (2011) Intermolecular and surface forces. Academic Press, Burlington

    Google Scholar 

  191. Visser J (1972) On hamaker constants: A comparison between hamaker constants and lifshitz van der waals constants. Adv Colloid Interf Sci 3(4):331–363

    Google Scholar 

  192. Bowling RA (1988) A theoretical review of particle adhesion. In: Particles on surfaces 1. Springer, Berlin, S 129–142

    Google Scholar 

  193. O’Neill M (1968) A sphere in contact with a plane wall in a slow linear shear flow. Chem Eng Sci 23(11):1293–1298

    Google Scholar 

  194. Fuchs NA (1989) The mechanics of aerosols. Dover Publications, New York

    Google Scholar 

  195. Wen CY, Yu YH (2014) Reducing solid particle erosion of an axial fan with sweep and lean using multidisciplinary design optimization. Proc Inst Mech Eng Part A 228(14):2584–2603

    Google Scholar 

  196. Khan JR, Wang T (2011) Three-dimensional modeling for wet compression in a single stage compressor including liquid particle erosion analysis. ASME J Eng Gas Turbine Power 133(1):12001

    Google Scholar 

  197. Verstraete T, Alsalihi Z, Van den Braembussche RA (2010) Multidisciplinary optimization of a radial compressor for microgas turbine applications. ASME J Turbomach 132(3):31004

    Google Scholar 

  198. Hamed A, Tabakoff W, Rivir RB (2005) Turbine blade deterioration by erosion. ASME J Turbomach 127(3):445–452

    Google Scholar 

  199. Wang SS, Mao JR, Liu GW (2010) Reduction of solid particle erosion on the control-stage nozzle of a steam turbine through improved end-wall contouring. Proc Inst Mech Eng C J Mech Eng Sci 224:2199

    Google Scholar 

  200. Corsini A, Marchegiani A, Rispoli F (2012) Predicting blade leading edge erosion in an axial induded draft fan. J Eng Gas Turbines Power 134(4):42601

    Google Scholar 

  201. Haider A, Levenspiel O (1989) Drag coefficient and terminal velocity of spherical and nonspherical particles. Powder Technol 58(1):63–70

    Google Scholar 

  202. Gosman AD, Ioannides E (1983) Aspects of computer simulation of liquid-fueled combustors. J Energy 7(6):482–490

    Google Scholar 

  203. Tabakoff W, Grant G, Ball R (1974) An experimental investigation of certain aerodynamic effects on erosion. In: Proceedings of 8th aeorodynamic testing conference, AIAA paper no. 74-639. Bethesda, MD, USA, 8–10 July

    Google Scholar 

  204. Day I (2005) Rain ingestion in axial flow compressors at part speed. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: Turbo Expo 2005, parts A and B, paper GT2005-68582, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  205. Ansys C (2010) Ansys CFS-solver theory guide. Ansys, Caninsburg PA

    Google Scholar 

  206. Liu Z, Zhang F, Liu Z (2018) A numerical model for simulating liquid particles deposition on surface. In: Proceedings of ASME Turbo Expo 2018: turbomachinery technical conference and exposition, Bd 2D: turbomachinery, paper GT2018-76002, Oslo, Norway, 11–15 June

    Google Scholar 

  207. Suman A, Casari N, Fabbri E, Pinelli M, di Mare L, Montomoli F (2018) Gas turbine fouling tests: review, critical analysis and particle impact behaviour map. In: ASME Turbo Expo 2018: turbomachinery technical conference and exposition, Bd 2D: turbomachinery, paper GT2018-76934, Oslo, Norway, 11–15 June

    Google Scholar 

  208. Day I, Williams J, Freeman C (2005) Rain ingestion in axial flow compressors at part speed. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: Turbo Expo 2005, parts A and B, paper GT2005-68582, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  209. AGARD AR-332 (1995) Recommendes practices for the assessment of the effects of atmospheric water ingestion on the performance and operability of gas turbine engines. AGARD Advisory Report No. 332

    Google Scholar 

  210. JAA (1997) Ingestion of rain and hail, hamonised changes to JAR-E and FAR Part 33. Technical report, Joint Aviation Authorities

    Google Scholar 

  211. Kissel GJ (1980) Rain and hail extremes at altitude. J Aircr 17(7):464–467

    Google Scholar 

  212. Riley S (1997) Whole engine water/ice ingestion strategy – final report. Technical report, Rolls-Royce plc

    Google Scholar 

  213. Mason J, Strapp J, Chow P (2006) The ice particle threat to engines in flight. In: Proceedings of the 44th AIAA aerospace sciences meeting and exhibit, Reno, NV, 9–12 January

    Google Scholar 

  214. Mason J, Grzych ML, Chow P (2009) Current perspectives on jet engine power loss in ice crystal conditions: Engine icing. AIAA Atmospheric and Space Environments, San Antonio, TX, June

    Google Scholar 

  215. Sun L, Zheng Q, Li Y, Luo M, Wang I, Bhargava RK (2012) Numerical through flow simulation of a gas turbine engine with wet compression. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 3: cycle innovations; education; electric power; fans and blowers; industrial and cogeneration, paper GT2012-68846, Copenhagen, Denmark, 11–15 June

    Google Scholar 

  216. Sun L, Zheng Q, Li Y, Luo M, Wang I, Bhargava RK (2012) On the behavior of water droplets when moving onto blade surface in a wet compression transonic compressor. J Eng Gas Turbines Power 133(8):082001-1-10

    Google Scholar 

  217. Saxena S, Woo GTK, Singh R, Breeze-Stringfellow A, Nakano T, Szcucs P (2016) Effect of ice and blade interaction models on compressor stability. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57797, Seoul, South Korea, 13–17 June

    Google Scholar 

  218. Jorgensen P, Veres J, Whright W, May R (2011) Engine icing modeling and simulation (part i): ice crystal accretion on compression system components and modeling its effect on engine performance. SAE Technical Paper 2011-38-0025

    Google Scholar 

  219. Mazzaway R (2007) Modeling of ice accretion and shedding in turbofan engines with mixed phase/glaciated (ice crystal) conditions. Conference paper: 2007 SAE aircraft and engine icing international conference aircraft and engine icing international conference. SAE, Seville, 2007-01-3288

    Google Scholar 

  220. Veillard X, Habashi WG, Aube MS, Baruzzi GS (2009) Fensap-ice: ice accretion in multi-stage jet engines. In: Proceedings of the 19th AIAA computational fluid dynamics conference, AIAA Paper 2009-4158; San Antonio, Texas, AIAA 2009-4158

    Google Scholar 

  221. May R, Guo T-H, Veres J, Jorgensen P (2011) Engine icing modeling and simulation (part 2): performance simulation of engine rollback phenomena. In: SAE international conference on aircraft and engine icing and ground deicing, 2011-38-0026

    Google Scholar 

  222. Day I, Williams J, Freeman C (2008) Rain ingestion in axial flow compressors at part speed. ASME J Turbomac 130(1):011024

    Google Scholar 

  223. Califf C, Knezevici D (2014) Use of a turbofan engine to measure ice crystal cloud concentration inflight. In: Proceedings of the 50th AIAA/ASME/SAE/ASEE joint propulsion conference, paper, AIAA-2014-3843, Cleveland, OH, USA, 28–30 July

    Google Scholar 

  224. Saxena S, Singh R, Breeze-Stringfellow A, Nakano T (2015) Transient behavior in axial compressors in event of ice shed. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 2A: turbomachinery, paper GT2015-42413, Montreal, Quebec, Canada, 15–19 June

    Google Scholar 

  225. Kundu R, Prasad J, Saxena S, Singh R, Breeze-Stringfellow A, Nakano T (2014) Analysis of stall onset in a multistage axial flow compressor in response to engine icing. In: Proceedings of the 50th AIAA/ASME/SAE/ASEE joint propulsion conference, paper, AIAA-2014-3841, Cleveland, OH, USA, 28–30 July

    Google Scholar 

  226. Saxena S, Jotiphrasad G, Pritchard B (2016a) Numerical simulation of particulates in multi-stage axial compressors. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57917, Seoul, South Korea, 13–17 June

    Google Scholar 

  227. Mason J, Chow P, Fuleki D (2010) Understanding ice crystal accretion and shedding phenomenon in jet engines using a rig test. ASME J Eng Gas Turbine Power 133(4):41201

    Google Scholar 

  228. Daggett DL (2007) Water injection-could it reduce airplane maintenance costs and airport emissions? (NASA/TM-2007-213652) Boeing Commercial Airplane Group, Seattle, Washington, March 2007

    Google Scholar 

  229. Daggett DL (2005) Water injection feasibility for Boeing 747 Aircraft (NASA/CR-2005-213656) Boeing Commercial Airplane Group, Seattle, Washinton, December 2005

    Google Scholar 

  230. Daggett DL (2004) Water misting and injection of commercial aircraft engines to reduce airport NOx, NASA/CR-2004-212957

    Google Scholar 

  231. Kleinschmidt RV (1947) Value of wet compression in gas-turbine cycles. Mech Eng (Am Soc Mech Eng) 69(2):115–116

    Google Scholar 

  232. Bhargava RK, Meher-Homjii CB, Bianchi M, Melino F, Peretto A, Igistov S (2007) Gas turbine fogging technology – a state-of-the-art review: part I – Inlet evaporative fogging, analytical and experimental aspects. ASME J Eng Gas Turbine Power 129(2):443–453

    Google Scholar 

  233. Bhargava RK, Meher-Homjii CB, Chaker MA, Bianchi M, Melino F, Peretto A, Ingistov S (2007) Gas turbine fogging technology: a state-of-the-art review: part II: overspray fogging-analytical and experimental aspects. ASME J Eng Gas Turbine Power 129(2):454–460

    Google Scholar 

  234. Bhargava RK, Meher-Homjii CB, Chaker MA, Bianchi M, Melino F, Peretto A, Ingistov S (2007) Gas turbine fogging technology: a state-of-the-art review: part III: practical considerations and operational experience. ASME J Eng Gas Turbine Power 129(2):461–472

    Google Scholar 

  235. Kakaras E, Doukelis A, Prelipceanu A, Karellas S (2004) Inlet air cooling methods for gas turbine based power plants. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-53765, Vienna, Austria, 14–17 June

    Google Scholar 

  236. Lechner C, Seume J (2010) Stationäre Gasturbinen, 2. neu bearbeitete Aufl. Springer-Verlag, Heidelberg

    Google Scholar 

  237. Levy Y, Sherbaum V, Ovcharenko V, Sotseno Y (2005) Low pressure fogger system for power augmentation of industrial gas turbine. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 5: Turbo Expo 2005, paper GT2005-68320, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  238. Bhargava R, Meher-Homjii CB (2002) Parametric analysis of existing gas turbines with inlet evaporative and overspray fogging. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 4: Turbo Expo 2002, parts A and B, paper GT2002-30560, Amsterdam, The Netherlands, 3–6 June

    Google Scholar 

  239. Zurigat YH, Dawoud B, Al-Bortmany JN, Al-Shihabi ST (2004) Technical and economical feasibility of gas turbine inlet cooling using evaporative fogging system in two different locations in Oman. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 4: Turbo Expo 2004, paper GT2004-53122, Vienna, Austria, 14–17 June

    Google Scholar 

  240. Meher-Homjii CB, Mee III, TR (1999) Gas turbine power augmentation by fogging of Inlet air. In: Proceedings oft he 28th turbomachinery symposium, Houston, Texas, USA, S 93–113

    Google Scholar 

  241. Craig Cortes PE, Daniel, W (2003) Gas turbine air cooling techniques: an overview of current technologie. SIEMENS – WESTINGHOUSE; PowerGEN 2003, Las Vegas, Nevada

    Google Scholar 

  242. Tawney R, Pearson C, Brown M (2001) Options to maximize power output for merchant plants in combined cycle applications. In: Proceedings of ASME Turbo Expo 2001: power for land, sea, and air, Bd 3: heat transfer; electric power; industrial and cogeneration, paper 2001-GT-0409, New Orleans, Louisiana, USA, 4–7 June

    Google Scholar 

  243. Sexton WR, Sexton MR (2003) The effects of wet compression on gas turbine engine operating performance. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 2: Turbo Expo 2003, paper GT2003-38045, Atlanta, Georgia, USA, 16–19 June

    Google Scholar 

  244. Li M, Zheng Q (2004) Wet compression system stability analysis: part I – wet compression moore greitzer transient model. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 4: Turbo Expo 2004, paper GT2004-54018; and part II: simulations and bifucation analyses, paper GT2004-54020, Vienna, Austria, 14–17 June

    Google Scholar 

  245. Savic SM, Rostek KE, Klaesson DK (2005) Techno-economic evaluation of commercially available high-fogging systems. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 4: Turbo Expo 2005, paper GT2005-68368, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  246. Deneve M, De Tandt B, Comelis N, Bultereys C, Gijbels S (2005) Results of the first application of the Swirl-FlashTM wet compression system on a 150 MW heavy-duty gas turbine. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 4: Turbo Expo 2005, paper GT2005-68726, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  247. Mathioudakis K (2002) Analysis of the effects of water injection on the performance of a gas turbine. ASME J Eng Gas Turbine Power 124(3):489–495

    Google Scholar 

  248. Chiang H-WD, Wang P-Y, Li H-L (2008) Power augmentation study of an existing combined cycle power plant by overspray inlet fogging. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 2: controls, diagnostics and instrumentation; cycle innovations; electric power, paper GT2008-50058, Berlin, Germany, 9–13 June

    Google Scholar 

  249. Utumara M, Takehara I, Horii N, Kuwahara T (1997) A new gas turbine cycle for economical power boosting. In: Proceedings of ASME 1997 turbo asia conference, paper Bde. 97-AA-142, Singapore, September 30–October 2

    Google Scholar 

  250. Eisfeld T, Joos F (2012) On thermodynamic modeling of two-phase flow phenomena in transonic compressor cascades. In: Proceedings of ASME Turbo Expo 2009: power for land, sea, and air, Bd 7: turbomachinery, parts A and B, paper GT2009-59365, Orlando, Florida, USA, 8–12 June

    Google Scholar 

  251. Kefalas E, Barabas B, Schnitzler JP, Benra K-F, Dohmen HJ (2012a) Water droplet evaporation at high pressure and temperature levels: part i: experimental investigations of the spray pattern in dependence on paramter variation. In Proceedings of HEFAT2012, 9th international conference on heat transfer, fluid mechanics and thermodynamics, Malta

    Google Scholar 

  252. Kefalas A, Schnitzler JP, Barabas B, Benra F-K, Dohmen H-J (2012b) Experimentelle Unterschungen zum Verdampfungsprozess von Wassertropfen bei hohen Druck- und Temperaturniveaus. Fachtagung „Lasermethoden in der Strömungsmesstechnik“, Rostock

    Google Scholar 

  253. Eisfeld T (2011) Experimentelle Untersuchung der Aerodynamik einer mit Wassertropfen beladenen Luftströmung in einem ebenen Verdichtergitter. Dissertation Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg

    Google Scholar 

  254. Traupel W (2001) Thermische Turbomaschinen. Klassiker der Technik, 4. Aufl. Springer, Berlin

    Google Scholar 

  255. Wagner W, Pruss A (1993) International equations for the saturation properties of ordinary water substance. Revised according to the international temperature scale of 1990. J Phys Chem Ref Data 22(3):783–787

    Google Scholar 

  256. Wagner W, Pruss A (2002) The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J Phys Chem Ref Data 31(2):387–535. https://doi.org/10.1063/1.1461829

    Article  Google Scholar 

  257. Miller RS, Harstad K, Bellan J (1998) Evaluation of equilibrium and non-equilibrium evaporation models for many droplet gas-liquid flow simulations. Int J Multiphase Flow 24(6):1025–1055

    MATH  Google Scholar 

  258. White AJ, Meacock AJ (2011) Wet compression analysis including velocity slip effects. ASME J Eng Gas Turbine Power 133(8):081701

    Google Scholar 

  259. Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100K at pressures up to 800MPa. J Phys Chem Ref Data 25(6):1509–1596

    Google Scholar 

  260. Wu Z (2003) Backward formalism to derive the size of secondary ejected droplets produced by crown splashing of drops impinging on a solid wall. Commun Math Sci 1(1):57–67

    MathSciNet  MATH  Google Scholar 

  261. Brun K, Kurz R, Simmons H (2006) Aerodynamic Instability and life-timing effects of inlet and interstage water injection into gas turbines. ASME J Eng Gas Turbine Power 128(3):617–625

    Google Scholar 

  262. Brun K, Gonzales LE, Platt JP (2008) Impact of continuous inlet fogging and overspray operation GE5002 gas turbine. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 7: education; industrial and cogeneration; marine; oil and gas applications, paper GT2008-50207, Berlin, Germany, 9–13 June

    Google Scholar 

  263. Schnitzler JP (2017) Untersuchungen zum Betriebsverhalten von vielstufigen Axialverdichtern mit Wassereinspritzung. Dissertation Universität Duisburg-Essen

    Google Scholar 

  264. Matz Ch, Kappis W, Cataldi G, Mundinger G, Bischoff S, Helland E, Ripken M (2008) Prediction of evaporative effects within the blading of an industrial axial compressor. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 6: turbomachinery, parts A, B, and C, paper GT2008-50166, Berlin, Germany, 9–13 June

    Google Scholar 

  265. Meacock AJ, White AJ (2004) The effect of water injection on multi-spool gas turbine. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air. Bd 7: Turbo Expo 2004, paper GT2004-53320, Vienna, Austria, 14–17 June

    Google Scholar 

  266. Khan JR, Wang T (2009) Overspray fog cooling in compressor using stage-stacking scheme with non-equilibrium heat transfer model for droplet evaporation. In: Proceedings of ASME Turbo Expo 2009: power for land, sea, and air, Bd 4: cycle innovations; industrial and cogeneration; manufacturing materials and metallurgy; marine, paper GT2009-59590, Orlando, Florida, USA, 8–12 June

    Google Scholar 

  267. Bräunling WJ (2004) Flugzeugtriebwerke, 2. Aufl. Springer, Berlin

    Google Scholar 

  268. Munari E, D’Elia G, Morini M, Pinelli M, Spina PR (2018) Stall and surge in wet compression: test rig development and experimental results. In: Proceedings of ASME Turbo Expo 2018: turbomachinery technical conference and exposition, Bd 9: oil and gas applications; supercritical CO2 power cycles; wind energy, paper GT2018-76188, Oslo, Norway, 11–15 June

    Google Scholar 

  269. Schnitzler JP, von Deschwanden I, Benra FK, Dohmen HJ, Werner K (2014) Experimental determination of a four stage axial compressor map operating in wet compression. In: Proceedings of ASME Turbo Expo 2014: turbine technical conference and exposition, Bd 2A: turbomachinery, paper GT2014-26807, Düsseldorf, Germany, 16–20 June

    Google Scholar 

  270. Chaker MA, Meher-Homjii CB, Mee III, T (2003) Inlet fogging of gas turbine engines – experimental and analytical investigation, on impaction pin fog nozzle behaviour. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, paper GT2003-38801, Atlanta, Georgia, USA, 16–19 June

    Google Scholar 

  271. Balling L (2011) Fast cycling and rapid start-up: New generation of plants achieves impressive results. Mod Power Syst 31(1):35–40

    Google Scholar 

  272. Günther C, Joos F (2015) Fluid properties at gas turbine inlet due to fogging considering evaporation and condensation phenomena as well as icing risk. ASME J Eng Gas Turbine Power 173(3):032605

    Google Scholar 

  273. Günther C, Joos F (2017) Influence of non-equilibrium fluid properties during fogging on intake duct and compressor characteristics. In: Proceedings of ASME Turbo Expo 2017, Charlotte, NC, USA, GT2017-63267

    Google Scholar 

  274. Günther C, Joos F (2014) Fluid properties at gas turbine inlet due to fogging considering evaporation and condensation phenomena, IGTI/ASME Turbo Expo 2014, Düsseldorf, Germany, GT2014-25387

    Google Scholar 

  275. Günther C, Joos F (2015) Fluid properties at gas turbine inlet due to fogging considering evaporation and condensation phenomena as well as icing risk. J Eng Gas Turbines Power 137(3):032605

    Google Scholar 

  276. Zheng Q (2002) Thermodynamic analyses of wet compression process in the compressor of gas turbine. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 4: Turbo Expo 2002, parts A and B, paper GT2002-30590, Amsterdam, The Netherlands, 3–6 June

    Google Scholar 

  277. Lecheler S, Hoffmann J (2003) The power of water in gas turbines – ALSTOM’s experience with air inlet cooling. Power-Gen Latin America

    Google Scholar 

  278. Myoren C, Takahashi Y, Yagi M, Shibata T, Kishibe T (2013) Evaluation of axial compressor characteristics under overspray condition. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 5A: industrial and cogeneration; manufacturing materials and metallurgy; marine; microturbines, turbochargers, and small turbomachines; paper GT2013-95402, San Antonio, Texas, USA, 3–7 June

    Google Scholar 

  279. Roumeliotis I, Mathioudakis K (2007) Water injection effects on compressor stage operation. ASME J Turbomach 129(3):778–784

    Google Scholar 

  280. Payne RC, White AJ (2007) Three-dimensional calculations of evaporative flow in compressor blade rows. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 3: Turbo Expo 2007, GT2007-27331, Montreal, Canada, 14–17 May

    Google Scholar 

  281. Bettochi R, Morini M, Pinelli M, Spina PR, Venturini M, Torsello G (2011) Setup of an experimental facility for the investigation of wet compression on a multistage compressor. ASME J Eng Gas Turbine Power 133(10):102001-1

    Google Scholar 

  282. Bettochi R, Pinelli M, Spina PR (2003) A multistage compressor test facility: uncertainty analysis an preliminary test results. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 4: Turbo Expo 2003, paper GT2003-38397, Atlanta, Georgia, USA, 16–19 June. Auch veröffentlicht in: Journal of Engineering for Gas Turbines and Power, Bd 127/170

    Google Scholar 

  283. Williams J (2008) Further effects of water ingestion on axial flow compressor and aeroengines at part speed. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 6: turbomachinery, parts A, B, and C, paper GT2008-50620, Berlin, Germany, 9–13 June

    Google Scholar 

  284. Berdanier RB, Smith NR, Fabian JC, Key NL (2014) Humidity effects on experimental compressor performance corrected conditions for real gas. In: Proceedings of ASME Turbo Expo 2014: turbine technical conference and exposition, Bd 2A: turbomachinery, paper GT2014-25790, Düsseldorf, Germany

    Google Scholar 

  285. Sun L, Zheng Q, Li Y, Bhargava R (2011) Understanding effects of wet compression on separated flow behaviour in an axial compressor stage using cfd analysis. ASME J Turbomach 133(3):031026

    Google Scholar 

  286. Luo M, Zheng Q, Sun L, Deng Q, Li S, Liu C, Bhargava RK (2011) The numerical simulation of inlet fogging effects on the stable range of a transonic compressor stage. In: Proceedings of ASME 2011 Turbo Expo: turbine technical conference and exposition, Bd 4: cycle innovations; fans and blowers; industrial and cogeneration; manufacturing materials and metallurgy; marine; oil and gas applications, paper GT2011-46124, Vancouver, British Columbia, Canada, 6–10 June

    Google Scholar 

  287. Sun L, Li Y, Zheng Q, Bhargava R (2008). The effects of wet compression on the separated flow in a compressor stage. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 7: education; industrial and cogeneration; marine; oil and gas applications, paper GT2008-50920, Berlin, Germany, 9–13 June

    Google Scholar 

  288. Szabo I, Turner MG (2007) A numerical study of water injection on transonic compressor rotor performance. In: Proceedings of 45th AIAAA erospace sciences meeting and exhibit, paper AIAA2007-17, Reno, Nevada, USA, 08–11 January

    Google Scholar 

  289. Luo M, Zheng Q, Sun L, Deng Q, Chen J, Wang J (2012) On the stability of transonic compressor with wet compression and blade tip water injection. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 3: cycle innovations; education; electric power; fans and blowers; industrial and cogeneration, paper GT2012-69133, Copenhagen, Denmark, 11–15 June

    Google Scholar 

  290. Wang J, Zheng Q, Sun L, Luo M (2012) The effective positions to inject water into the cascade of compressor. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 3: cycle innovations; education; electric power; fans and blowers; industrial and cogeneration, paper GT2012-69158, Copenhagen, Denmark, 11–15 June

    Google Scholar 

  291. Harbeck J, Geist S, Joos F (2019) Secondary flow management in a compressor cascade using 3D LDA/PDA – part B: dispersed phase effects on flow topology. In: Proceedings ofASME Turbo Expo, paper GT2019-90124, Phoenix, Arizona, USA, 17–21 June

    Google Scholar 

  292. Bhargava RK, Bianchi M, Melino F, Peretto A, Spina PR(2008) Influence of compressor performance maps shape on wet compression. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 7: education; industrial and cogeneration; marine; oil and gas applications, paper GT2008-50761, Berlin, Germany, 9–13 June

    Google Scholar 

  293. Morini M, Pinelli M, Spina PR, Venturini M (2010) Influence of blade deterioration on compressor and turbine performance. ASME J Eng Gas Turbine Power 132(11):032401

    Google Scholar 

  294. Roumeliotis I, Mathioudakis K (2006) Water injection effects on compressor stage performance. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 4: cycle innovations; electric power; industrial and cogeneration; manufacturing materials and metallurgy, paper GT2006-90427, Barcelona, Spain, 8–11 May

    Google Scholar 

  295. Minghong L, Qun Z (2004) Wet compression system stability analysis part I. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 4: Turbo Expo 2004, paper GT2004-54018, Vienna, Austria, 14–17 June

    Google Scholar 

  296. Qun Z, Minghong L (2004) Wet compression system stability analysis part II. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 4: Turbo Expo 2004, paper GT2004-54020, Vienna, Austria, 14–17 June

    Google Scholar 

  297. Grüner TG, Bakken LE (2012) Instability characteristic of a single-stage centrifugal compressor exposed to dry and wet gas. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 8: turbomachinery, parts A, B, and C, paper GT2012-69473, Copenhagen, Denmark, 11–15 June

    Google Scholar 

  298. Ferrara V, Bakken LE (2015) Wet gas compressor surge stability. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 9: oil and gas applications; supercritical CO2 power cycles; wind energy, paper GT2015-42650, Montreal, Quebec, Canada, 15–19 June

    Google Scholar 

  299. Lecheler S, Florjancic S, Cataldi G (2004) Fogging and high fogging: ALSTOM’s experience and costumer benefits. Power-Gen Europe

    Google Scholar 

  300. Beiler JD, Trauner P (2012) High efficient peak power on demand, POWERGen Middle East, 6–8 February, Quatar, Doha

    Google Scholar 

  301. Chaker M, Meher-Homji CB, Mee III, T (2002a) Inlet fogging of gas turbines engines – part A: fog droplet thermodynamics, heat transferand practical considerations. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 4: Turbo Expo 2002, parts A and B, paper GT2002-30562, Amsterdam, The Netherlands, 3–6 June

    Google Scholar 

  302. Chaker M, Meher-Homji C B, Mee III T (2002b) Inlet fogging of gas turbines engines – part B: fog droplet sizing analysis; nozzle types; measurementand testing. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 4: Turbo Expo 2002, parts A and B, paper GT2002-30563, Amsterdam, The Netherlands, 3–6 June

    Google Scholar 

  303. Meher-Homji CB, Chaker MA (2013) Power augmentation approaches for mechanical drive turbines. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 5A: industrial and cogeneration; manufacturing materials and metallurgy; marine; microturbines, turbochargers, and small turbomachines, paper GT2013-94526, San Antonio, Texas, USA, 3–7 June

    Google Scholar 

  304. Shah PN, Tan CS (2005) Effect of blade passage surface heat extraction on axial compressor performance. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: Turbo Expo 2005, parts A and B, paper GT2005-68815, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  305. van Liere J, Laagland GHM, Meijer CG (2002) Leistungssteigerung und NOx-Reduktion der Gasturbinen durch SwirlFlash®-Overspray-Eindüsung. VGB PowerTech, 2/2002

    Google Scholar 

  306. Deneve M, De Tandt B, Comelis N, Bultereys C, Gijbels S (2005) Results of the first Application of the Swirl-Flash™ Wet Compression System on a 150MW Heavy-Duty Gas Turbine. In: Proceedings of ASME Turbo Expo 2005: Power for Land, Sea, and Air, Volume 4: Turbo Expo 2005, Paper GT2005-68726, Reno, Nevada, USA, June 6–9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joos, F. (2020). Einfluss von Wassertropfen oder Partikeln in der Verdichterluft. In: Aerodynamik axialer Turbokompressoren. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-28937-9_11

Download citation

Publish with us

Policies and ethics