Skip to main content

A Methodological Approach to Comparing Parametric Characterizations of Efficient Solutions

  • Conference paper
Large-Scale Modelling and Interactive Decision Analysis

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 273))

Abstract

The vector optimization problem considered here is to minimize a continuous vector-valued function f: S→Rm on a constraint set C ⊂ S. Let F= f(C) be a compact set (though much weaker assumptions are sufficient for the existence of optimal solutions — see Benson, 1978). While keeping in mind that the set F is usually defined implicitely and that an attainable decision outcome y F means that y= f(x) for some admissible decision x∈ C, we can restrict the discussion to the outcome or objective space only. We assume that all objectives are minimized and use the notation D= — R<sup>m</sup>\{0} while int D denotes the interior of -Rm Thus, y′ ∈ \( y' \in \mathop {y''}\limits^ + + D \) + D denotes<sup>+</sup> here that y′.≦ y″, for all i=1,.. m, while y′ ∈ + y″+ D̃, D̃= D\{0} denotes y′i ≦ y″. for all i=1,.. m and y′ < y″. for some j=1,.. m, and y′∈ y″+int D denotes y′ i. < y″. for all i=1;.. m wlere y + D is the cone D shifted by y. The problem of vector minimization of y= f(x) over C can be equivalently stated as the problem of finding D-optimal elements of F. The set of all such elements, defined by:

$$ \bar F = \left\{ {\bar y \in F:\;F \cap \left( {\bar y + \tilde D} \right) = \emptyset } \right\} $$
((1))

is called the efficient set (D-optimal set, Pareto set) in objective or outcome space

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benson, H.P. (1978) Existence of efficient solutions for vector-maximum problems. JOTA 26: 569–580.

    Article  Google Scholar 

  • Bowman, V.J. Jr. (1976) On the relationship of the Chebyshev norm and efficient frontier of multiple-criteria objectives. In: Thiriez, H., Zionts, S. (eds.) Multiple criteria decision making. Springer, Berlin Heidelberg New York (Lecture Notes in Economic and Mathematical Systems 130).

    Chapter  Google Scholar 

  • Changkong, V., Haimes, Y.T. (1978) The interactive surrogate worth trade-off (ISTW) for multiobjective decision making. In: Zionts, S. (ed.) Multiple Criteria Problem Solving. Springer, Berlin Heidelberg New York (Lecture Notes in Economic and Mathematical Systems 155).

    Google Scholar 

  • Charnes, A., Cooper, W. (1961) Management models and industrial applications of linear programming. Wiley, New York.

    Google Scholar 

  • Charnes, A., Cooper, W. (1975) Goal programming and multiple objective optimization. J. Oper. Res. Soc. 1: 39–54.

    Google Scholar 

  • Dinkelbach, W. (1971) Uber einen Losungsansatz zum Vectormaximumproblem. In: Beckman, M. (ed) Unternehmungsforschung Heute. Springer, Berlin Heidelberg New York (Lecture Notes in Operational Research and Mathematical Systems 50: 1–30).

    Chapter  Google Scholar 

  • Dinkelbach, W., Iserman, H. (1973) On decision making under multiple criteria and under incomplete information. In: Cochrane, J.L., Zeleny, M. (eds.) Multiple criteria decision making. University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Dyer, J.S. (1972) Interactive goal programming. Management Science 19: 62–70.

    Article  Google Scholar 

  • Ecker, J.G., Kouada, I.A. (1975) Finding efficient points for linear multiple objective programs. Mathematical Programming 8: 375–377.

    Article  Google Scholar 

  • Fandel, G. (1972) Optimale Enscheidung bei mehrfacher Zielsetzung. Springer, Berlin Heidelberg New York (Lecture Notes in Economic and Mathematical Systems 76).

    Book  Google Scholar 

  • Gal, T. (1982) On efficient sets in vector maximum problems — a brief survey. In: Hansen, P. (ed.) Essays and surveys on multiple criteria decision making. Proceedings, Mons 1982. Springer, Berlin Heidelberg New York (Lecture Notes in Economic and Mathematical Systems 209).

    Google Scholar 

  • Gearhart, W.B. (1983) Characterization of properly efficient solutions by generalized scalarization methods. JOTA 41: 618–630.

    Article  Google Scholar 

  • Geoffrion, A.M. (1968) Proper efficiency and the theory of vector optimization. J. Math. Anal. Appl. 22: 618–630.

    Article  Google Scholar 

  • Grauer, M., Lewandowski, A., Wierzbicki, A.P. (1984) DIDAS: Theory, implementation and experiences. In: Grauer, M., Wierzbicki, A.P. (eds.) Interactive decision analysis. Springer, Berlin Heidelberg New York Tokyo (Lecture Notes in Economic and Mathematical Systems 229).

    Chapter  Google Scholar 

  • Haimes, Y.Y., Hall, W.A., Freedman, H.B. (1975) Multiobjective optimization in water resources systems, the surrogate trade-off method. Elsevier Scientific, New York.

    Google Scholar 

  • Henig, M.I. (1982) Proper efficiency with respect to cones. JOTA 36: 387–407.

    Article  Google Scholar 

  • Ignizionizio J.P. (1983) Generalized goal programming. Comp. Oper. Res. 10: 277–291.

    Article  Google Scholar 

  • Jahn, J.(1984) Scalarization in vector optimization. Mathematical J J. C Programming 29: 203–218.

    Article  Google Scholar 

  • Jahn, J. (1985) Some characterizations of the optimal solutions of a vector optimization problem. OR Spectrum 7: 7–17.

    Article  Google Scholar 

  • Kalai, E. Smorodinsky, M. (1975) Other solutions to Nashcs bargaining problem. Econometrica 43: 513–518.

    Article  Google Scholar 

  • Kallio, M., Lewandowski, A., Orchard-Hays, W. (1980) An implementation of Kal., the reference point approach for multiobjective optimization. WP-80–35, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Korhonen P. Laakso, J. (1985) A visual interactive method for solving the multiple criteria problem. European Journal of Operational Research, to appear.

    Google Scholar 

  • Koopmans, T.C. (1951) Analysissis of production as an efficient combination of activities. In: Koopmans, T.C. (ed.) Activity analysis of production and allocation. Yale University Press, New Haven.

    Google Scholar 

  • Kuhn, H. W., Tucker, A.W. (1951) Nonlinear programming. In: Neyman, J. (ed.) K Proceedings of the 2-nd Berkeley Symposium on Mathematical Statistics and Probability.

    Google Scholar 

  • Lewandowski A., Grauer, M. (1982) The reference point optimization approach — methods of efficient implementation. WP-82–019, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Lewandowski, A., Toth, F., Srerzbicki, A. (1985) Apyp committee decision support system — implementation, tutorial example and user’s manual. Mimeograph. International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Luce, R.D., Raiffa, H. (1957) Games and decisions. Wiley, New York. multiobjective Nakayama, H. (1985) On the components in inter Wierzbicki, A.P. programming methods. In: Grauer, M., Thompson, M., (eds.) Plural rationality and interactive decision processes. Spring Berlin Heidelberg New York Tokyo (Lecture Notes n Economic Pg and Mathematical Systems 248). Econometrica 18: 155–162.

    Google Scholar 

  • Nash, J.F. (1950) The bargaining problem. Eco kkin for muliobjective Sakawa, M. (1983) Interactive fuzzy decision making Wierzbicki, A.P. nonlinear programming problems. In: Grauer, M., (eds.) Interactive decision analysis. Springer, Berlin Heidelberg New York Tokyo ( Lecture Notes in Economic and inSystems 229).

    Google Scholar 

  • Salukvadze, M.E. ( 1979) Vector-valued optimization problems n control theory. Academic Press, New York.

    Google Scholar 

  • Sawaragi, Y., Nakayamanakaama. H., Tanino, T. (1985) Theory of multiobjective bgi optimization. Academic Press, New York.

    Google Scholar 

  • Chebyshevprocedure Steuer, R.E., Choo, E.V. (1983) An interactive weighted y P for multiple objectivele obective programming. Mathematical Programming 26: 326–344.

    Article  Google Scholar 

  • Wierzbicki, A.P. (1975) Penalty methods in solving optimization problems with vector performance criteria. Working Paper of the Institute of Automatic Control, Technical University of Warsaw (presented at the VI-th IFAC World Congress, Cambridge, Mass.).

    Google Scholar 

  • Wierzbicki, A.P. (1977) Basic properties of scalarizing functionals for multiobjective optimization. Mathematische Operationsforschung and Statistik. Optimization, 8: 55–60.

    Google Scholar 

  • Wierzbicki, A.P. (1978) On the use of penaly functions in multiobjective optimization. In: Oettli, W., Steffens, F. et al. (eds.) Proceedings of the III-rd Symposium on Operations Research, Universitat Mannheim. Athenaum.

    Google Scholar 

  • Wierzbicki, A.P. (1980) Multiobjective trajectory optimization and model semiregularization. WP-80–181, International Institute for Applied Systems Analysis, Laxenburg, Austria.

    Google Scholar 

  • Wierzbicki, A.P. (1982) A mathematical basis for satisficing decision making. Mathematical Modelling 3: 391–405.

    Article  Google Scholar 

  • Wierzbicki, A.P. (1983) Negotiation nad mediation in conflicts I: The role of mathematical approaches and methods. In: Chestnut, H. et al. (eds.) Supplemental ways for improving international stability. Pergamon Press, Oxford.

    Google Scholar 

  • Wierzbicki, A.P. (1983) Negotiation nad mediation in conflicts II: Plural rationality and interactive decision processes. In: Grauer, M., Thompson, M., Wierzbicki, A.P. (eds.) Plural rationality and interactive decision processes. Springer, Berlin Heidelberg New York Tokyo (Lecture Notes in Economic and Mathematical Systems 248).

    Google Scholar 

  • Wierzbicki, A.P. (1986) On the completeness and constructiveness of parametric characterizations to vector optimization problems (extended version of this paper). OR Spektrum, to appear.

    Google Scholar 

  • Yu, P.L., Leitmann, G. (1974) Compromise solutions, domination structures and Salukvadze’s solution. JOTA 13: 362–378.

    Article  Google Scholar 

  • Zeleny, M. (1973) Compromise programming. In: Cochrane, J.L., Zeleny, M. (eds.) Multiple criteria decision making. University of South Carolina Press, Columbia, South Carolina.

    Google Scholar 

  • Zeleny, M. (1982) Multiple criteria decision making. McGraw-Hill, New York.

    Google Scholar 

  • Zionts, S., Wallenius, I. (1976) An interactive programming method for solving the multiple criteria problem. Management Science 22: 652–663.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wierzbicki, A.P. (1986). A Methodological Approach to Comparing Parametric Characterizations of Efficient Solutions. In: Fandel, G., Grauer, M., Kurzhanski, A., Wierzbicki, A.P. (eds) Large-Scale Modelling and Interactive Decision Analysis. Lecture Notes in Economics and Mathematical Systems, vol 273. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02473-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02473-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16785-3

  • Online ISBN: 978-3-662-02473-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics