Skip to main content

Movement Detection and Figure-Ground Discrimination

  • Conference paper
From Neuron to Action

Abstract

Movement detectors of the so-called correlation type were proposed long ago to explain motion perception in insects (Hassenstein and Reichardt 1956; Reichardt 1957, 1961; Reichardt and Varju 1959; Varjú 1959). In the meantime, good evidence has been accumulated that this movement detection scheme can also be applied to motion detection in humans (e.g. van Doom et al. 1982a,b; van Santen et al. 1984, 1985; Wilson 1985; Baker and Braddick 1985). More recently our interest in movement computation has focused on dynamic aspects and on the dependence of the detector output on the structure of the stimulus pattern. In addition, the properties of two-dimensional arrays of pairs of movement detectors (Reichardt and Guo 1986; Egelhaaf and Reichardt 1987; Reichardt 1987) have been investigated in detail. Individual movement detectors, however, do not provide meaningful information on a moving pattern. In addition, some spatial, physiological integration is needed, for instance in connection with a solution of the figure and ground discrimination problem (Reichardt and Poggio 1979; Reichardt 1979, 1980; Poggio et al. 1981; Reichardt et al. 1983; Egelhaaf 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker LB, Braddick OJ (1985) Temporal properties of the short-range process in apparent motion. Perception 14: 181–192

    Article  PubMed  Google Scholar 

  • Collett TS, King Al (1974) Vision during flight. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon, Oxford, pp 437–466

    Google Scholar 

  • Courant R, Hilbert D (1962) Methods of mathematical physics, vol II. Interscience, New York

    Google Scholar 

  • Egelhaaf M (1985) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52: 123–140

    Article  Google Scholar 

  • Egelhaaf (1987) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol [A] 161: 777–783

    Article  Google Scholar 

  • Egelhaaf M, Reichardt W (1987) Dynamic response properties of movement detectors: theoretical analysis and electrophysiological investigation in the visual system of the fly. Biol Cybern 56: 69–87

    Article  Google Scholar 

  • Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. TINS 11: 351–358

    PubMed  CAS  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen-und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlomphanus. Z Naturforsch llb: 513–524

    Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol Cybern 45: 143–156

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive intemeurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46: 67–79

    Article  Google Scholar 

  • Hausen K (1984) Large-field motion computations: the neural basis of visual stabilization in the flying fly. Proc Int Soc Eye Res 3: 28

    Google Scholar 

  • Heide G (1983) Neural mechanisms of flight control in diptera. In: Nachtigall W (ed) Biona report. Alcade-mie der Wissenschaften und der Literatur zu Mainz. Fischer, Stuttgart, pp 35–52

    Google Scholar 

  • Heisenberg M, Wolf R (eds) (1984) Vision in Drosophila. Genetics of microbehavior. In: Studies of brain functions, vol 12. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Laughlin SB (1984) The rotes of parallel channels in early visual processing by the arthopod compound eye. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum, New York, pp 457–481

    Chapter  Google Scholar 

  • Poggio T, Reichardt W, Hausen K (1981) A neuronal circuitry for relative movement discrimination by the visual system of the fly. Naturwissenschaften 68: 443–446

    Article  Google Scholar 

  • Reichardt W (1957) Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems (bei der optischen Wahrnehmung eines Insektes). Z Naturforsch 12b: 448–457

    Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. Wiley, New York, pp 303–317

    Google Scholar 

  • Reichardt W (1979) Figure-ground discrimination by the visual system of the fly. In: Haken H (ed) Pattern formation by dynamic systems and pattern recognition. Springer, Berlin Heidelberg New York, pp 100–121

    Chapter  Google Scholar 

  • Reichardt W (1980) Analogy between hologram formation and computation of relative movement by the visual system of the fly. Naturwissenschaften 67: 411

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol 161: 533–547

    Article  CAS  Google Scholar 

  • Reichardt W, Egelhaaf M (1988) Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly. Biol Cybern 58: 287–294

    Article  Google Scholar 

  • Reichardt W, Guo A (1986) Elementary pattern discrimination (behavioural experiments with the fly Musca domestica). Biol Cybern 53: 285–306

    Article  Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Q Rev Biophys 9: 311–375

    Article  PubMed  CAS  Google Scholar 

  • Reichardt W, Poggio T (1979) Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental results. Biol Cybern 35: 81–100

    Google Scholar 

  • Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für das Bewegungsehen. Z Naturforsch 14b: 674–689

    Google Scholar 

  • Reichardt W, Poggio T, Hausen K (1983) Figure-ground discrimination by relative movement in the visual system of the fly. Part II. Towards the neural circuitry. Biol Cybern [Suppl] 46: 1–30

    Google Scholar 

  • Reichardt W, Schlögl RW, Egelhaaf M (1988) Movement detectors provide sufficient informaiton for local computation of 2-D velocity field. Naturwissenschaften 75: 313–316

    Article  PubMed  CAS  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Strausfeld NJ, Bassemir U, Singh RM, Bacon JP (1984) Organizational principles of outputs from dipteran brains. J Insect Physiol 30: 73–93

    Article  Google Scholar 

  • van Doom AJ, Koenderink JJ (1982a) Temporal properties of the visual detectability of moving spatial white noise. Exp Brain Res 45: 179–188

    Google Scholar 

  • van Doom Al, Koenderink JJ (1982b) Spatial properties of the visual detectability of moving white noise. Exp Brain Res 45: 189–195

    Google Scholar 

  • van Santen JPH, Sperling G (1984) Temporal covariance model of human motion perception. J Opt Soc Am [A] 1: 451–473

    Article  Google Scholar 

  • van Santen JPH, Sperling G (1985) Elaborated Reichardt Detectors. J Opt Soc Am [A] 2: 300–321

    Article  Google Scholar 

  • Varjti D (1959) Optomotorische Reaktionen auf die Bewegung periodischer Helligkeitsmuster (Anwendung der Systemtheorie auf Experimente am Rüsselkäfer Chlorophanus viridis). Z Naturforsch 14b: 724–735

    Google Scholar 

  • Wagner H (1986a) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) II. Pursuit of targets. Philos Trans R Soc Lond [Biol] 312: 553–579

    Article  Google Scholar 

  • Wagner H (1986b) Flight performance and visual control of flight of the free-flying housefly (Musca domestica L.) III. Interacions between angular movement induced by wide-and smallfield stimuli. Philos Trans R Soc Lond [Biol] 312: 581–595

    Article  Google Scholar 

  • Wehrhahn C, Hausen K (1980) How is tracking and fixation accomplished in the nervous system of the fly? Biol Cybern 38: 179–186

    Article  Google Scholar 

  • Wehrhahn C, Poggio T, Büithoff H (1982) Tracking and chasing in houseflies (Musca). An analysis of 3-D flight trajectories. Biol Cybern 45: 123–130

    Article  Google Scholar 

  • Wilson HR (1985) A model for direction selectivity in threshold motion perception. Biol Cybern 51: 213–222

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reichardt, W. (1990). Movement Detection and Figure-Ground Discrimination. In: Deecke, L., Eccles, J.C., Mountcastle, V.B. (eds) From Neuron to Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02601-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02601-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-02603-8

  • Online ISBN: 978-3-662-02601-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics