Skip to main content

Urogenital Apparatus

  • Chapter
Human Microscopic Anatomy
  • 574 Accesses

Abstract

Fig. 1. The urinary (excretory) and the reproductive (genital) systems are closely linked during their development. They are therefore described together as the urogenital apparatus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Inke G (1988) Protolobar Structure of the Human Kidney. Alan R Liss, New York.

    Google Scholar 

  • Kriz W, Kaissling B (1985) Structural organization of the mammalian kidney. In: Seldin DW, Giebisch G (Eds) The Kidney, Physiology and Pathophysiology. Raven Press, New York.

    Google Scholar 

  • Maunsbach AB, Olsen TS (1980) Functional Ultrastructure of the Kidney. Academic Press, London.

    Google Scholar 

  • Guder WG, Ross BD (1984) Enzyme distribution along nephron. Kidney Int 26: 101–111.

    Article  PubMed  CAS  Google Scholar 

  • Gibson IW, More IAR, Lindop GBM (1989) Scanning electron-microscopic studies of the peripolar cells of the rat renal glomerulus. Cell Tissue Res 257: 201–206.

    Article  PubMed  CAS  Google Scholar 

  • Michael AF (1984) The glomerular mesangium. In: D’Amico G, Minetti L, Ponticelli C (Eds) IgA Mesangial Nephropathy. Karger, Basel.

    Google Scholar 

  • Andreesen R, Atkins RC (1986) Expression of macrophage differentiation antigens on human mesangial cells. Kidney Int 30: 613.

    Article  Google Scholar 

  • Andrews PM (1989) Shape changes in kidney glomerular podocytes: mechanisms and possible functional significance. In: Motta PM (Ed) Cells and Tissues: A Three-Dimensional Approach by Modern Techniques in Microscopy. Alan R Liss, New York.

    Google Scholar 

  • Basgen JM, Rich SS, Mauer SS, Steffes MW (1988) Measuring the volume density of the glomerular mesangium. Nephron 50: 182–186.

    Article  PubMed  CAS  Google Scholar 

  • Kikuta A, Murakami T (1989) Three-dimensional vascular architecture of the Malpighi’s glomerular capillary beds as studied by vascular corrosion casting—SEM method. In: Motta PM (Ed) Cells and Tissues: A Three-Dimensional Approach by Modern Technique in Microscopy. Alan R Liss, New York.

    Google Scholar 

  • Kriz W, Elger M, Lemley K, Sakai T (1990) Structure of the glomerular mesangium: A biomechanical interpretation. Kidney Int (Suppl) 38: S2–9.

    Google Scholar 

  • Sakai T, Kriz W (1987) The structural relationship between mesangial cells and basement membrane of the renal glomerulus. Anat Embryol 176: 373–386.

    Article  PubMed  CAS  Google Scholar 

  • Carlson EC, Andette JL (1989) Intrinsic fibrillar components of human glomerular basement membranes: A TEM analysis following proteolytic dissection. J Submicrosc Cytol Pathol 21: 83–92.

    PubMed  CAS  Google Scholar 

  • Desjardins M, Bendayan M (1989) Heterogenous distribution of type IV collagen, entactin, heparan sulfate proteoglycan, and laminin among renal basement membranes as demonstrated by quantitative immunocytochemistry. J Histochem Cytochem 37: 885–897.

    Article  PubMed  CAS  Google Scholar 

  • Drenckhahn D, Franke PR (1988) Ultrastructural organization of contractile and cytoskeletal proteins in glomerular podocytes of chicken, rat, and man. Lab Invest 59: 673–682.

    PubMed  CAS  Google Scholar 

  • Reale E, Luciano L, Kühn K (1989) The fine structure of the laminae rarae of the glomerular basement membrane in the rat. In: Motta PM (Ed) Cells and Tissues: A Three-Dimensional Approach by Modern Techniques in Microscopy. Alan R Liss, New York.

    Google Scholar 

  • Abrahamson DR, Leardkamolkarn V (1991) Development of kidney tubular basement membranes. Kidney Int 39:382–393.

    Article  PubMed  CAS  Google Scholar 

  • Inoue S (1989) Ultrastructure of basement membranes. Int Rev Cytol 117: 57–98.

    Article  PubMed  CAS  Google Scholar 

  • Kanwar YS, Farquhar MG (1979) Anionic sites in the glomerular basement membrane. J Cell Biol 81: 137–153.

    Article  PubMed  CAS  Google Scholar 

  • Leblond CP, Inoue S (1989) Structure, composition, and assembly of basement membrane. Am J Anat 185: 367–390.

    Article  PubMed  CAS  Google Scholar 

  • Lubes G, Hudson BG (Eds) (1985) Glomerular Basement Membrane. J Libbey, London.

    Google Scholar 

  • Martiner-Hernandez A, Amenta PS (1983) The basement membrane in pathology. Lab Invest 48: 656–677.

    Google Scholar 

  • Reale E, Luciano L, Kühn KW (1983) Ultrastructure architecture of proteoglycans in the glomerular basement membrane: A cytochemical approach. J Histochem Cytochem 31: 662–668.

    Article  PubMed  CAS  Google Scholar 

  • Timpl R (1986) Recent advances in the biochemistry of glomerular basement membrane. Kidney Int 30: 293–298.

    Article  PubMed  CAS  Google Scholar 

  • Barajas L, Powers K (1989) Innervation of the renal proximal convoluted tubule of the rat. Am J Anat 186: 378–388.

    Article  PubMed  CAS  Google Scholar 

  • Jones DB (1982) Scanning electron microscopy of isolated renal tubules. Scanning Electron Microscopy 1982/II: 805–813.

    Google Scholar 

  • Andrews PM (1979) The urinary system. In: Hodges GM, Hallowes RC (Eds) Biomedical Research Applications of Scanning Electron Microscopy, Vol 1. Academic Press, London, New York.

    Google Scholar 

  • Imai M, Yoshitomi K (1990) Heterogeneity of the descending thin limb of Henle’s loop. Kidney Int 38: 687–694.

    Article  PubMed  CAS  Google Scholar 

  • Kessel RG, Kardon RH (1979) Tissues and Organs. A Text-Atlas of Scanning Electron Microscopy. WH Freeman, San Francisco.

    Google Scholar 

  • Takahashi-Iwanaga H, Iwata Y, Adachi K, Fujita T (1989) The histotopography and ultrastructure of the thin limb of the Henle’s loop: A scanning electron microscopic study of rat kidney. Arch Histol Cytol 52: 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Bergeron M, Gaffiero P, Thiéry G (1987) Segmental variations in the organization of the endoplasmic reticulum of the rat nephron. Cell Tissue Res 247: 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Evan AP (1981) SEM observations of intact and isolated proximal and collecting tubular cells from rat, rabbit and frog. Biomed Res (Suppl) 2: 317–323.

    Google Scholar 

  • Takahashi-Iwanaga H (1989) The three-dimensional structure of renal tubule cells. In: Motta PM (Ed) Cells and Tissues: A Three-Dimensional Approach by Modern Techniques in Microscopy. Alan R Liss, New York.

    Google Scholar 

  • Bonsib SM (1986) The macula densa tubular basement membrane: A unique plaque of basement membrane specialization. J Ultrastruct Mol Struct Res 97: 103–108.

    Article  PubMed  CAS  Google Scholar 

  • Briggs J, Lorenz JN, Weihprecht H, Schnermann J (1991) Macula densa control of renin secretion. Renal Physiol Biochem 14: 164–174.

    PubMed  CAS  Google Scholar 

  • Gattone VH, Luft FC, Even AP (1984) The renal afferent and efferent arterioles of the rabbit. Am J Physiol 247:F 219–228.

    Google Scholar 

  • Isler H, Krstié R (1981) Scanning electron microscopy of the juxtaglomerular apparatus in the freeze-fractured rat kidney. Arch Histol Jap 44: 15–21.

    Article  PubMed  CAS  Google Scholar 

  • Kelly G, Downie I, Gardiner DS, More IAR, Lindop GMB (1990) The peripolar cell type in the mammalian glomerulus. Morphological evidence from a study of sheep. J Anat 168: 217–227.

    PubMed  CAS  Google Scholar 

  • Rosivall L (1990) Morphology and function of the distal part of the afferent arteriole. Kidney Int (Suppl) 38: S10 - S15.

    Google Scholar 

  • Taugner R, Hackenthal E (1989) The Juxtaglomerular Apparatus. Structure and Function. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Bulger RE (1987) Composition of renal medullary tissue. Kidney Int 31: 556–561.

    Article  PubMed  CAS  Google Scholar 

  • Jones WR, O’Morchoe CCC (1983) Ultrastructural evidence for a resorptive role by intrarenal veins. Anat Rec 207: 253–262.

    Article  PubMed  CAS  Google Scholar 

  • Lacasse J, Ballak M, Mercure C, Gutkowska J, Chapeau C, Foote S, Menard J, Corvol P, Cantin M, Genest J (1985) Immunocytochemical localization of renin in juxtaglomerular cells. J Histochem Cytochem 33: 323–332.

    Article  PubMed  CAS  Google Scholar 

  • Taugner R, Kim SJ, Murakami K, Waldherr R (1987) The fate of prorenin during granulopoiesis in epitheloid cells. Histochemistry 86: 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerhackl BL, Robertson CR, Jamison RL (1987) The medullary microcirculation. Kidney Int 31: 641–647.

    Article  PubMed  CAS  Google Scholar 

  • Lemley KV, Kriz W (1987) Cycles and separations: The histotopography of the urinary concentrating process. Kidney Int 31: 538–548.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi-Iwanaga H (1991) The three-dimensional cytoarchitecture of the interstitial tissue in the rat kidney. Cell Tissue Res 264: 269–281.

    Article  PubMed  CAS  Google Scholar 

  • Evan AP, Connors BA, McAteer JA (1989) Three-dimensional organization of the collecting tubule of the rabbit kidney. In: Motta PM (Ed) Cells and Tissues: A Three-Dimensional Approach by Modern Techniques in Microscopy. Alan R Liss Inc, New York.

    Google Scholar 

  • Madsen KM, Clapp WL, Verlander JW (1988) Structure and function of the inner medullary collecting duct. Kidney Int 34: 441–454.

    Article  PubMed  CAS  Google Scholar 

  • Barajas L, Powers K, Wang P (1985) Innervation of the late distal nephron: An autoradiographic and ultrastructural study. J Ultrastruct Res 92: 146–157.

    Article  PubMed  CAS  Google Scholar 

  • Hock D, Forssmann WG (1984) Zur peptidergen Innervation der Niere. Verh Anat Ges 78: 463–464.

    Google Scholar 

  • Horacek MJ, Earle AM, Gilmore JP (1986) The renal microvasculature of the monkey: An anatomical investigation. J Anat 148: 205–231.

    PubMed  CAS  Google Scholar 

  • O’Morchoe CCC, Albertine KH (1980) The renal lymphatic system in dogs with unimpeded lymph and urine flow. Anat Rec 198: 427–438.

    Article  PubMed  Google Scholar 

  • Stein JH (1990) Regulation of the renal circulation. Kidney Int 38:571–576.

    Google Scholar 

  • Yamamoto K, Wilson DR, Baumal R (1984) Blood supply and drainage of the outer medulla of the rat kidney: Scanning electron microscopy of microvascular casts. Anat Rec 210: 273–277.

    Article  PubMed  CAS  Google Scholar 

  • Castelucci M (1981) The mammalian renal papilla and pelvis. In: Allen D, Motta PM, Di Dio LJA (Eds) Three Dimensional Microanatomy of Cells and Surfaces. Elsevier/North Holland, New York.

    Google Scholar 

  • Rizzo M, Faussone Pellegrini MS, Arbi Ricardi R, Ponchetti R (1981) Ultrastructure of the urinary tract muscle coat in man. Eur Urol 524: 171–177.

    Google Scholar 

  • Anderhuber F (1986) Die Sinus-Parenchym-Grenze der menschlichen Niere als Entstehungsort intracanaliculärer und extravasaler Flüssigkeitsausbreitungen. Gegenbaurs Morphol Jahrb 132: 589–616 (with English abstract).

    PubMed  CAS  Google Scholar 

  • Castelucci M (1981) The mammalial renal papilla and pelvis. A light and electron microscopic study. In: Allen DJ, Motta PM, Di Dio JA (Eds) Three Dimensional Microanatomy of Cells and Tissues Surface. Elsevier/North Holland, New York.

    Google Scholar 

  • Leutert G, Flex G, Strobel T (1960) Die tunica muscularis des Nierenbeckens. Anat Anz 108: 238–248.

    PubMed  CAS  Google Scholar 

  • Schmidt-Nielsen B (1987) The renal pelvis. Kidney Int 31: 621–628.

    Article  PubMed  CAS  Google Scholar 

  • Bergman H (Ed) (1981) The Ureter, 2nd edn. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Dixon JS, Gosling JA (1982) The musculature of the human renal calyces, pelvis and upper ureter. J Anat 135: 129–137.

    PubMed  CAS  Google Scholar 

  • Tahara H (1990) The three-dimensional structure of the musculature and the nerve elements in the rabbit ureter. J Anat 170: 183–191.

    PubMed  CAS  Google Scholar 

  • Dixon JS, Gosling JA (1983) Histology and fine structure of the muscularis mucosae of the human urinary bladder. J Anat 136: 265–271.

    PubMed  CAS  Google Scholar 

  • Gabella G, Uvelius B (1990) Urinary bladder of rat: Fine structure of normal and hypertrophic musculature. Cell Tissue Res 262: 67–79.

    Article  PubMed  CAS  Google Scholar 

  • Hicks RM (1975) The mammalian urinary bladder: An accommodating organ. Biol Rev 50: 215–246.

    Article  PubMed  CAS  Google Scholar 

  • Hodges GM, Rowlatt C (1989) Analysis of structural and fucntional properties of the urinary bladder: The impact of the SEM and ancillary approaches. In: Motta PM (Ed) Cells and Tissues: A Three-Dimensional Approach by Modern Techniques in Microscopy. Alan R Liss, New York.

    Google Scholar 

  • Benninghoff A (1942) Lehrbuch der Anatomie des Menschen. Urban and Schwarzenberg, Munich.

    Google Scholar 

  • Jost SP, Gosling JA, Dixon JS (1989) The morphology of normal human bladder urothelium. J Anat 167: 103–115.

    PubMed  CAS  Google Scholar 

  • Philips SJ, Griffin T (1985) Scanning electron microscope evidence that human urothelium is a pseudostratified epithelium. Anat Rec 211: 153A - 154A.

    Google Scholar 

  • Sarikas SN, Chlapowski FJ (1986) Effect of ATP inhibitors on the translocation of luminal membrane between cytoplasm and cell surface of transitional epithelial cells during expansion—contraction cycle of the rat urinary bladder. Cell Tissue Res 246: 109–117.

    Article  PubMed  CAS  Google Scholar 

  • Taylor KA, Robertson JD (1984) Analysis of the three-dimensional structure of the urinary bladder epithelial cell membranes. J Ultrastruct Res 87: 23–30.

    Article  PubMed  CAS  Google Scholar 

  • Hayek Hy (1969) Die weibliche Harnröhre, Urethra muliebris (feminina). In: Alken CE, Dix VW, Goodwin WE, Wildbolz E (Eds) Handbuch der Urologie, Vol 1. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Burger H, Kretser DM (Eds) (1989) The Testis, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Davidoff MS, Breucker H, Holstein AF, Seidl K (1990) Cellular architecture of the lamina propria of human seminiferous tubules. Cell Tissue Res 262: 253–261.

    Article  PubMed  CAS  Google Scholar 

  • Dym M, Fawcett DW (1970) The blood—testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod 3: 308–326.

    PubMed  CAS  Google Scholar 

  • Griswold MD (1988) Protein secretion of Sertoli cells. Int Rev Cytol 110: 133–156.

    Article  PubMed  CAS  Google Scholar 

  • Kormano M, Suoranta H (1971) Microvascular organization of the adult human testis. Anat Rec 170: 31–40.

    Article  PubMed  CAS  Google Scholar 

  • Kurohmaru M, Nishida T, Hayashi Y, Yamashiro S (1989) Three-dimensional structure of some Sertoli cell organelles’in the cotton rat and shiba goat. J Submicrosc Cytol Pathol 21: 653–658.

    PubMed  CAS  Google Scholar 

  • Bardini W, Cheng YC, Musto NA, Gunsalus GL (1988) The Sertoli cell. In: Knobil E, Neill J (Eds) The Physiology of Reproduction. Raven Press, New York.

    Google Scholar 

  • Ritzen EM, Hansson V, French FS (1989) The Sertoli Cell. In: Burger H, Kretser DM (Eds) The Testis, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Schulze C (1984) Sertoli cells and Leydig cells in man. Adv Anat Embryol Cell Biol 88: 1–104.

    Article  PubMed  CAS  Google Scholar 

  • Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1989) Molecular Biology of the Cell, 2nd edn. Garland, New York, London.

    Google Scholar 

  • Rooij GD (1988) Regulation of the proliferation of spermatogonial stem cells. J Cell Sci (Suppl) 10: 181–194.

    Google Scholar 

  • Guraya SS (1987) Biology of Spermatogenesis and Spermatozoa in Mammals. Springer, Berlin, Heidelberg, New York.

    Book  Google Scholar 

  • Holstein AF, Roosen-Runge EC (1981) Atlas of Human Spermatogenesis. Grosse, Berlin.

    Google Scholar 

  • Kerr JB (1989) The cytology of human testis. In: Burger H, Kretser DM (Eds) The Testis, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Kretser DM, Kerr JB (1988) The cytology of the testis. In: Knobil E, Neill J (Eds) The Physiology of Reproduction. Raven Press

    Google Scholar 

  • New York.

    Google Scholar 

  • Paniagua R, Nistal M (1984) Morphological and histometric study of human spermatogonia from birth to the onset of puberty. J Anat 139: 535–552.

    PubMed  Google Scholar 

  • Bergmann M, Nashan D, Nieschlag E (1989) Pattern of compartmentation in human seminiferous tubules showing dislocation of spermatogonia. Cell Tissue Res 256: 183–190.

    PubMed  CAS  Google Scholar 

  • Matsumo AM (1989) Hormonal control of human spermatogenesis. In: Burger H, Kretser DM (Eds) The Testis, 2nd edn. Raven Press, New York.

    Google Scholar 

  • Schulze W, Rehder U (1984) Organization and morphogenesis of the human seminiferous epithelium. Cell Tissue Res 237: 395–407.

    Article  PubMed  CAS  Google Scholar 

  • André J (1983) The Sperm Cell. Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Eddy EM (1988) The Spermatozoon. In: Knobil E, Neill J (Eds) The Physiology of Reproduction. Raven Press, New York.

    Google Scholar 

  • Ohtani H, Tanaka O, Kasai KI, Yoshioka T (1988) Development of mitochondria] helical sheath in the middle piece of the mouse spermatid: Regular disposition and synchronized changes. Anat Rec 222: 26–33.

    Article  Google Scholar 

  • Sinowatz F, Voglmayr JK, Gabius HJ, Friess AE (1989) Cytochemical analysis of mammalian sperm membranes. Prog Histochem Cytochem 19: 1–74.

    Article  PubMed  CAS  Google Scholar 

  • Catt JK, Dufau LM (Eds) (1984) Hormone Action and Testicular Function. Academic Press, New York.

    Google Scholar 

  • Christensen AK (1975) Leydig cells. In: Hamilton, DW, Greep RO (Eds) Handbook of Physiology, Sect 7, Endocrinology, Vol V, Male Reproductive System. American Physiological Society, Washington.

    Google Scholar 

  • Ewing LL, Zirkin B (1983) Leydig cell structure and steroidogenic function. In: Greep RO (Ed) Progress in Hormone Research, Vol 39. Academic Press, New York.

    Google Scholar 

  • Meiner MH (1986) Testicular Leydig cells: Differentiated cells responding to multiple hormonal control and producing varied products. Bioessays 5: 228–231.

    Article  Google Scholar 

  • Mori H (1984) Ultrastructure and steriological analysis of Leydig cells. In: Motta PM (Ed) Ultrastructure of Endocrine Cells and Tissues. Martinus Nijhoff, Boston.

    Google Scholar 

  • Nistal M, Paniagua R, Regardera J, Santamaria L, Amat P (1986) A quantitative morphological study of human Leydig cells from birth to adulthood. Cell Tissue Res 246: 229–236.

    Article  PubMed  CAS  Google Scholar 

  • Bustos-Obregon E, Holstein AF (1976) The rete testis in man: UItrastructural aspects. Cell Tiss Res 175: 1–15.

    CAS  Google Scholar 

  • Heer H, Wrobel KH, Kohler T, Abon Elmegd A, Hees I (1989) The mediastinum of the bovine testis. Cell Tissue Res 255: 29–39.

    Google Scholar 

  • Jonté G, Holstein AF (1987) On the morphology of the transitional zones from the rete testis into the ductuli efferentes and from ductuli efferentes into the ductus epidydimidis. Investigations on the human testis and epididymis. Andrologia 19: 398–412.

    Article  PubMed  Google Scholar 

  • Roosen-Runge E, Holstein AF (1978) The human rete testis. Cell Tissue Res 189: 409–433.

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten HG, Holstein AF, Rosengren E (1971) Arrangement, ultrastructure and adrenergic innervation of smooth musculature of the ductuli efferentes, ductus epididymidis and ductus deferens of man. Z Zellforsch 120: 37–79.

    Article  PubMed  CAS  Google Scholar 

  • Francavilla S, De Martino C, Scorza Barcellona P, Natali PG (1983) Ultrastructural and immunohistochemical studies of rat epididymis. Cell Tissue Res 233: 523–537.

    Article  PubMed  CAS  Google Scholar 

  • Greenberg J, Forssmann WG (1983) Studies of the guinea pig epididymis. I. Ultrastructure and quantitative morphology of the principal cells. Anat Embryol 168: 173–194.

    Google Scholar 

  • Abe K, Takano H, Ito T (1983) Ultrastructure of the mouse epididymal duct with special references to regional differences of the principal cells. Arch Histol Jap 46: 51–68.

    Article  PubMed  CAS  Google Scholar 

  • Goto K (1981) Surface morphology of the epithelium of human seminiferous tubules, rete testis, ductuli efferentes and ductus epididymidis. Biomed Res (Suppl) 2: 361–374.

    Google Scholar 

  • Goyal HO, Williams CS (1988) The ductuli efferentes of the goat: A morphological study. Anat Rec 220: 58–67.

    Google Scholar 

  • Hermo L, Clermont Y, Morales C (1985) Fluid-phase and adsorptive endocytosis in ciliated epithelial cells of the rat ductuli efferentes. Anat Rec 211: 285–294.

    Article  PubMed  CAS  Google Scholar 

  • Pudney J, Fawcett DW (1984) Seasonal changes in fine structure of the ductuli efferentes of the ground squirrel, Citellus lateralis ( Say ). Anat Rec 208: 383–399.

    Google Scholar 

  • Robaire B, Hermo L (1988) Efferent ducts, epididymis and vas deferens: Structure, functions, and their regulations. In: Knobil E, Neill J (Eds) Physiology of Reproduction. Raven Press, New York.

    Google Scholar 

  • Berns DM, Rodzen RA, Brueschke EE (1974) Vasa deferentia of the human and dog: A study with the SEM. Scanning Electron Microscopy 1974/111:647–654.

    Google Scholar 

  • Hermo L, De Melo V (1987) Endocytotic apparatus and transcytosis in epithelial cells of the vas deferens in the rat. Anat Rec 217: 153–163.

    Article  PubMed  CAS  Google Scholar 

  • Leong SK, Singh G (1990) Innervation of the monkey vas deferens. J Anat 171: 93–104.

    PubMed  CAS  Google Scholar 

  • Ohtani O, Gannon BJ (1982) The microvasculature of the rat vas deferens: A scanning electron and light microscopic study. J Anat 135: 521–529.

    Google Scholar 

  • Orlandini GE, Pacini P, Gulisano G (1981) Scanning electorn microscopy of human vas deferens and seminal vesicles. In: Allen DJ, Motta PM, Di Dio JA (Eds) Three Dimensional Microanatomy of Cells and Tissue Surfaces. Elsevier/North Holland, New York.

    Google Scholar 

  • Riva A, Cossu M, Testa-Riva F (1979) A scanning and transmission electron microscope study of the human ampulla ductus deferentis. J Anat 129: 859–860.

    Google Scholar 

  • Batra SK, Lardner TJ (1976) Sperm transport in the vas deferens. In: Hafez ES (Ed) Human Semen and Fertility Regulation in Men. CV Mosby, St Louis.

    Google Scholar 

  • Goerttler K (1934) Die Konstruktion der Wand des menschlichen Samenleiters und ihre funktionelle Bedeutung. Gegenbaurs Morphol Jahrb 74: 550–580.

    Google Scholar 

  • Leong SK, Singh G (1990) Ultrastructure of the monkey vas deferens. J Anat 171: 85–92.

    PubMed  CAS  Google Scholar 

  • Murakami M, Sugita A, Hamasaki M (1982) Scanning electron microscopic observation of the vas deferens in man and monkey with special reference to spermatophagy in its ampullary region. Scanning Electron Microscopy 1982/Ií1: 1333–1339.

    Google Scholar 

  • Pabst R (1970) Studies on the human ductus deferens. In: Holstein AF, Horstmann E (Eds) Morphological Aspects of Andrology. Grosse, Berlin.

    Google Scholar 

  • Vendrely E (1985) Structure and histophysiology of the human vas deferens. In: Bollack C, Clavert A (Eds) Seminal Vesicles and Fertility. Karger, Basel.

    Google Scholar 

  • Aumüller G, Scheit KH (1987) Immunohistochemistry of secretory proteins in the bull seminal vesicle. J Anat 150: 43–48.

    PubMed  Google Scholar 

  • Aumüller G, Seitz J (1986) Immunoelectron microscopic evidence for different compartments in the secretory vacuoles of the rat seminal vesicles. Histochem J 18: 15–23.

    Article  PubMed  Google Scholar 

  • Chow PH (1988) Scanning electron-microscopical study of the seminal vesicles, coagulatory gland, ampullary gland and ventral prostate in the golden hamster. Acta Anat 133: 269–273.

    Article  PubMed  CAS  Google Scholar 

  • Mata L, Petersen OW, Deuers VB (1986) Endocytosis in guinea pig seminal vesicle epithelial cells cultivated in chemically defined medium. Biol Cell 58: 211–220.

    Article  PubMed  CAS  Google Scholar 

  • Aumüller G, Seitz J (1990) Protein secretion and secretory processes in male accessory sex glands. Int Rev Cytol 121: 127–231.

    Article  PubMed  Google Scholar 

  • Aumüller G, Seitz J, Lilja H, Abrahamson PA (1990) Species and organ specificity of secretory proteins derived from human prostate and seminal vesicles. Prostate 17: 31–41.

    Article  PubMed  Google Scholar 

  • Bollack C, Clavert A (Eds) (1985) Seminal Vesicles and Fertility. Karger, Basel.

    Google Scholar 

  • Clavert A, Gabrielrobez O, Montagnon D (1985) Physiological role of seminal vesicle. In: Bollack C, Clavert A (Eds) Seminal Vesicles and Fertility. Karger, Basel.

    Google Scholar 

  • Dadoune JP (1985) Functional morphology of the seminal vesicle epithelium. In Bollack C, Clavert A (Eds) Seminal Vesicles and Fertility. Karger, Basel.

    Google Scholar 

  • Aumüller G (1979) Prostate gland and seminal vesicles. In: Oksche A, Vollrath L (Eds) Handbuch der mikroskopischen Anatomie des Menschen, Vol 7, Part 6. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Orlandini EG, Zecchi Orlandini S, Holstein AF, Evangelisti E, Ponchietti R (1987) Scanning electron microscopic observations on the epithelium of the human prostatic urethra. Andrologia 19: 315–321.

    Article  PubMed  CAS  Google Scholar 

  • Wernert N, Kern L, Heitz P, Bonkhoff H, Goebbels R, Seitz G, Inniger R, Remberger K, Dhom G (1990) Morphological and immunohistochemical investigations of the utriculus prostaticus from fetal period up to adulthood. Prostate 17: 19–31.

    Article  PubMed  CAS  Google Scholar 

  • Aumüller G (1989) Morphologic and regulatory aspects of prostatic function. Anat Embryol 179: 519–531.

    Article  PubMed  Google Scholar 

  • Guggenheim R, Bartsch G, Tannenbaum M, Rohr HP (1979) Comparative scanning electron microscopy of the prostatic gland in different species (mouse, rat, dog, man). Scanning Electron Microscopy 1979 /111: 721–728.

    Google Scholar 

  • Di Sant’Agnese AP, Davis NS, Chen M, De Mesy Jensen KL (1987) Age-related changes in the neuroendocrine (endocrineparacrine) cell population and the serotonin content of the guinea pig prostate. Lab Invest 57: 729–736.

    PubMed  Google Scholar 

  • Jacobs SC, Beehler BA, Boese G, Story MT, Clowry LJ, Lawson RK (1984) The prostate of the gorilla. Prostate 5:597–604. Tsukise A, Yamada K (1987) Secretory glycoconjugates in the epithelium of the goat prostate. Histochem J 19:345–350.

    Google Scholar 

  • Goldstein AMB, Meehan JP, Morrow JW (1985) The fibrous skeleton of the corpora cavernosa and its probable function in the mechanism of erection. Br J Urol 57: 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Benson GS (1988) Male sexual function. Erection, emission and ejaculation. In: Knobil E, Neill JD, Ewing LL, Markert CL, Greenwald GS, Pfaff DW (Eds) Physiology of Reproduction, Vols 1 and 2. Raven Press, New York.

    Google Scholar 

  • Conti G, Virag R (1989) Human penile erection and organic impotence: Normal histology and histopathology. Urol Int 44: 303–308.

    Google Scholar 

  • Conti G, Virag R, von Niederhäusern W (1988) The morphological basis for the polster theory of penile vascular regulation. Acta Anat 133: 209–212.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein MBA, Meehan JP (1983) A review of the microarchitec- ture of the corpora cavernosa in men. Anat Rec 205: 65A

    Google Scholar 

  • Kano KI, Hanyu S, Iwanaga T, Sato S (1987) A scanning electron microscope observation of penile vascular casts in the dog: An inquiry into the possible mechanism of erection based on the findings. Biomed Res 8: 269–280.

    Google Scholar 

  • McConnel J, Benson GS, Schmidt WA (1982) The vasculature of the human penis: A reexamination of the morphological basis for the polster theory of erection. Anat Rec 203: 475–484.

    Google Scholar 

  • De Kock MLS, Burger EG (1985) A histological study of the urethra of the male baboon — Is it similar to man’s? J Urol 134: 617–619.

    PubMed  Google Scholar 

  • Hayek HV (1969) Die Harnröhre des Mannes, Urethra masculins. In: Alken CE, Dix VW, Goodman WE, Wildbolz E (Eds) Handbuch der Urologie, Vol 1. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Iwanaga T, Hanyu S, Fujita T (1987) Serotonin-immunoreactive cells of peculiar shape in the urethral epithelium of the human penis. Cell Tissue Res 249: 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Nakano T, Muto H (1989) Scanning electron microscopic observation on the distal part of the male urethra of the mouse. Z Mikrosk Anat Forsch 103: 28–35.

    PubMed  CAS  Google Scholar 

  • Zecchi-Orlandini S, Gulisano M, Orlandini GE, Holstein AF (1988) Scanning electron microscopic observations on the epithelium of the human spongy urethra. Andrologia 20: 132–138.

    Article  PubMed  CAS  Google Scholar 

  • Halata Z, Munger BL (1986) The neuroanatomical basis for the protopathic sensibility of the human glans penis. Brain Res 371: 205–230.

    Article  PubMed  CAS  Google Scholar 

  • De Kock MLS, Burger EG (1985) A histological study of the urethra of the male baboon — Is it similar to man’s? J Urol 134: 617–619.

    PubMed  Google Scholar 

  • Goldstein AMB, Meehan JP, Morrow JW (1985) The fibrous skeleton of the corpus cavernosum and its probable function in the mechanism of erection. Br J Urol 57: 574–578.

    Article  PubMed  CAS  Google Scholar 

  • Familiari G, Makabe S, Motta PM (1990) The ovary and ovulation. A three-dimensional ultrastructural study. In: Van Blerkom J, Motta PM (Eds) Ultrastructure of Human Gametogenesis and Early Embryogenesis. Kluwer, Norwell.

    Google Scholar 

  • Motta PM, Hafez ESE (Eds) (1984) Biology of the Ovary. Martinus Nijhoff, Dordrecht.

    Google Scholar 

  • Spera G (Ed) (1987) Morphological Basis of Human Reproductive Function. Plenum Press, New York.

    Google Scholar 

  • Stouffer RL (Ed) (1988) The Primate Ovary. Plenum Press, New York.

    Google Scholar 

  • Erickson GF (1985) The ovarian androgen producing cells — A review of structure-function relationships. Endocr Rev 6: 371–400.

    Article  PubMed  CAS  Google Scholar 

  • Takada S, Shimada T, Nakamura M, Mori H, Kigawa T (1987) Vascular pattern of the mammalian ovary with special reference to the three-dimensional architecture of the spiral artery. Arch Histol Jap 50: 407–418.

    Article  PubMed  CAS  Google Scholar 

  • Browder LW (Ed) Oogenesis. Development Biology: A Comprehensive Synthesis, Vol 1. Plenum Press, New York.

    Google Scholar 

  • Gondos B, Westergaard L, Byskow AG (1986) Initiation of oogenesis in the human fetal ovary: Ultrastructural and squash preparation study. Am J Obstet Gynecol 155: 189–195.

    Google Scholar 

  • Schatten H, Schatten G (Eds) (1989) The Cell Biology of Fertilization. Academic Press, San Diego.

    Google Scholar 

  • Smith DL (1989) The induction of oocyte maturation: Transmembrane signaling events and regulation of the cell cycle. Development 107: 685–699.

    PubMed  CAS  Google Scholar 

  • Thibault C, Szöllösi D, Gerard M (1987) Mammalian oocyte maturation. Reprod Nutr Dev 27: 865–896.

    Article  PubMed  CAS  Google Scholar 

  • Wartenberg H (1990) Ultrastructure of fetal ovary including oogenesis. In: Van Blerkom J, Motta PM (Eds) Ultrastructure of Human Gametogenesis and Early Embryogenesis. Kluwer, Norwell.

    Google Scholar 

  • Kuryszko J, Adamski RT (1987) Macrophages in atretic process of maturing ovarian follicles in mouse. Z Mikrosk Anat Forsch 101: 212–220.

    PubMed  CAS  Google Scholar 

  • Murakami T, Ikebuchi Y, Ohtsuka A, Kikuta A, Taguchi T, Ohtani O (1988) The blood vascular wreath of rat ovarian follicle with special reference to its changes in ovulation and luteinization: A scanning electron microscopic study of corrosion casts. Arch Histol Cytol 51: 299–313.

    Google Scholar 

  • Stankova J, Cech S (1987) Ultrastructural changes during atresia of human ovarian follicles. II. Primary and secondary follicles. Z Mikrosk Anat Forsch 101: 416–432.

    Google Scholar 

  • Familiari G, Nottola SA, Familiari A, Motta PM (1989) The three-dimensional structure of the zona pellucida in growing and atretic ovarian follicles in the mouse. Cell Tissue Res 257: 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Jones GS (1990) Corpus luteum. Composition and function. Fert Steril 54: 21–27.

    CAS  Google Scholar 

  • Lipner H (1988) Mechanism of mammalian ovulation. In: Knobil E, Neill J (Eds) Physiology of Reproduction. Raven Press, New York.

    Google Scholar 

  • Niswender GD, Nett TM (1988) The corpus luteum and its control. In: Knobil E, Neill JD, Ewing LL, Markert CL, Greenwald GS, Pfaff DW (Eds) Physiology of Reproduction, Vols 1 and 2. Raven Press, New York.

    Google Scholar 

  • Phillips DM, Zacharopoulos VR, Perotti ME (1990) Structure of the cumulus oophorus at the time of fertilization. Cell Tissue Res 261: 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Dietl J (Ed) (1989) The Mammalian Egg Coat. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Hyttel P, Xu KP, Smith S, Callesen H, Greve T (1987) Ultrastructure of the final nuclear maturation of bovine oocytes in vitro. Anat Embryol 176: 35–40.

    Article  PubMed  CAS  Google Scholar 

  • Koehler JK, Clark JM, Smith D (1985) Freeze-fracture observation of mammalian oocytes. Am J Anat 174: 317–329.

    Article  PubMed  CAS  Google Scholar 

  • Wasserman PM (1988) The mammalian ovum. In: Knobil J, Neill JD, Ewing LL, Markert CL, Greenwald GS, Pfaff DW (Eds) Physiology of Reproduction, Vols 1 and 2. Raven Press, New York.

    Google Scholar 

  • Yanigamachi R (1988) Mammalian fertilization. In: Knobil J, Neill JD, Ewing LL, Markert CL, Greenwald GS, Pfaff DW (Eds) Physiology of Reproduction, Vols 1 and 2. Raven Press, New York.

    Google Scholar 

  • Longo FJ (1988) Reorganization of the egg surface at fertilization. Int Rev Cytol 113: 233–269.

    Article  PubMed  CAS  Google Scholar 

  • Pereda J, Coppo M (1987) Ultrastructure of a two cell human embryo. Anat Embryol 177: 91–96.

    Article  PubMed  CAS  Google Scholar 

  • Philips DM, Shalgi R, Dekel N (1985) Mammalian fertilization as seen with the scanning electron microscope. Am J Anat 174: 357–372.

    Article  Google Scholar 

  • Szöllosi D, Sztillosi MS, Czolowska R, Tarkowski AK (1990) Sperm penetration into immature oocytes and nuclear changes during maturation: An EM study. Biol Cell 69: 53–64.

    Google Scholar 

  • Talbot P (1985) Sperm penetration through oocyte investment in mammals. Am J Anat 174: 331–346.

    Article  PubMed  CAS  Google Scholar 

  • Wassarman PM (1988) Fertilization in mammals. Sci Am 259/6:52–58.

    Google Scholar 

  • Wassarman PM (1990) Profile of a mammalian sperm receptor. Development 108: 1–17.

    PubMed  CAS  Google Scholar 

  • Brenner RM, Maslar IA (1988) The primate oviduct and endometrium. In: Knobil E, Neill JD, Ewing LL, Markert CL, Greenwald GS, Pfaff DW (Eds) Physiology of Reproduction, Vols 1 and 2. Raven Press, New York.

    Google Scholar 

  • Hunter RHG (1988) The Fallopian Tubes. Their Role in Fertility and Infertility. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Vizza E, Muglia U, Macchiarelli G, Baschierii L, Pasetto N, Motta PM (1991) Three dimensional architecture of the human myosalpinx isthmus. Cell Tissue Res 266: 219–221.

    Article  PubMed  CAS  Google Scholar 

  • Otsuki Y, Maeda Y, Magari S, Sugimoto O (1989) Lymphatics and lymphoid tissue of the fallopian tube: Immunoelectron microscopic study. Anat Rec 225: 288–296.

    Google Scholar 

  • Hach P, Jirsova Z, Vernerova Z (1986) The relative number of ciliated cells in the epithelium of human oviduct. Verh Anat Ges 80: 705–706.

    Google Scholar 

  • Konishi I, Fujii S, Parmley TH, Mori T (1987) Development of ciliated cells in the human fetal oviduct: An ultrastructural study. Anat Rec 219: 60–68.

    Google Scholar 

  • Kühnel W, Busch LC (1981) Functional morphology of the oviduct tal mucosa and the endometrium as viewed by SEM. Biomed Res 2: 341–353.

    Google Scholar 

  • Martinek L (1986) Manifestation of menstrual cycle in the tubal epithelium. Verh Anat Ges 80: 703–704.

    Google Scholar 

  • Schulte BA, Rao KPP, Kreutner A, Thomopoulos CN, Spicer SS (1985) Histochemical examination of glycoconjugates of epithelial cells in the human fallopian tube. Lab Invest 52: 207–219.

    PubMed  CAS  Google Scholar 

  • Teixeira MLS, Haddad A (1988) Histochemical and radio-autographic study of glycoprotein secretion in the epithelium lining the Carsten ME, Miller JD ( 1990 ) Uterine Function. Molecular and Cellular Aspects. Plenum Press, New York.

    Google Scholar 

  • Wetzstein R (1965) Der Uterusmuskel: Morphologie. Arch Gynäkol 202: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Wynn RM, Jollie W (Eds) (1989) Biology of the Uterus, 2nd edn. Plenum Press, New York.

    Google Scholar 

  • Brenner RM, Maslar IA (1988) The primate oviduct and endometrium. In: Knobil E, Neill JD, Ewing LL, Markert CL, Greennwald GS, Pfaff DW (Eds) Physiology of Reproduction, Vols 1 and 2. Raven Press, New York.

    Google Scholar 

  • Cronillie FJ, Lauweryns JM, Brosens IA (1985) Normal human endometrium. An ultrastructural survey. Gynecol Obstet Invest 20: 113–129.

    Google Scholar 

  • Farrer-Brown G, Beilby JOW (1970) The blood supply of the uterus. 1. Arterial vasculature. J Obstet Gynaecol Br Common 77: 673–681.

    Google Scholar 

  • Kaisermann-Abramof IR, Padykula HA (1989) Angiogenesis in the preotovulatory primate endometrium: The coiled arteriolar system. Anat Rec 224: 479–489.

    Google Scholar 

  • Morris H, Edwards J, Titman A, Emms M (1985) Endometrial lymphoid tissue: An immunohistological study. J Clin Pathol 38: 644–652.

    Google Scholar 

  • Secchi I, Lacaque D, Tournemine C, Philibert D (1987) Early glycogenesis in the uterine glandular cells of the rabbit induced by progestins: A quantitative investigation. Cell Tissue Res 248: 359–364.

    Google Scholar 

  • Bulmer D, Peel S, Stewart I (1987) The metrial gland. Cell Differ 20: 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Ferenczy A (1976) Studies on the cytodynamics of human endometrial regeneration. Am J Obstet Gynecol 124: 64–74.

    PubMed  CAS  Google Scholar 

  • Head JR, Billingham RE (1986) Concerning the immunology of the uterus. Am J Repr Immunl Microbiol 10: 76–81.

    CAS  Google Scholar 

  • Bonney RC, Franks S (1990) The endocrinology of implantation and early pregnancy. Baillière Clin Endocrinol Met 4: 207–233.

    Article  CAS  Google Scholar 

  • Enders AC, Welsh AO, Schlafke S (1985) Implantation in the rhesus monkey: Endometrial responses. Am J Anat 173: 147–169.

    Google Scholar 

  • Enders AC, Lantz KC, Schlafke S (1990). Differentiation of the inner cell mass of the baboon blastocyst. Anat Rec 226: 237–248.

    Article  PubMed  CAS  Google Scholar 

  • Weitlauf HM (1988) Biology of implantation. In: Knobil E, Neill JD, Ewing LL, Markert CL, Greenwald GS, Pfaff DW (Eds) Physiology of Reproduction, Vols 1 and 2. Raven Press, New York.

    Google Scholar 

  • Castellucci M, Scheper M, Scheffen I, Celona A, Kaufmann P (1990). The development of the human placental villous tree. Anat Embryol 181: 117–128.

    Article  PubMed  CAS  Google Scholar 

  • I-Tien Yeh, Kurman RJ (1989) Functional and morphologic expression of trophoblast. Lab Invest 61: 1–4.

    PubMed  CAS  Google Scholar 

  • Demir R, Kaufmann P, Castelucci M, Erbengi T, Kotowski A (1989) Fetal vasculogenesis and angiogenesis in human placental villi. Acta Anat 136: 190–203.

    Article  PubMed  CAS  Google Scholar 

  • Jackson MR, Mayhew TM, Boyd AP (1987) A cross section study on the growth and maturation of human placental villi from 10 weeks of gestation to term. J Anat 155: 235–236.

    Google Scholar 

  • Conley AJ, Mason JI (1990) Placental steroid hormones. Baillière Clin Endocrinol Met 4: 249–273.

    Google Scholar 

  • Kaufmann, P, King BF (Eds) (1982) Structural and Functional Organization of the Placenta. Karger, Basel.

    Google Scholar 

  • Kaufmann P, Miller RK (Eds) (1988) Placental Vascularization and Blood Flow. Plenum Press, New York.

    Google Scholar 

  • Ogren L, Talamantes F (1988) Prolactins of pregnancy and their cellular source. Int Rev Cytol 112:1–65.

    Google Scholar 

  • Ramsey EM (1982) The Placenta. Praeger, Eastbourne.

    Google Scholar 

  • Billingsley SA, Wooding FBP (1990) An immunogold, cryoultrastructural study of sites and storage of chorionic gonadotropin and placental lactogen in human syncytiotrophoblast. Cell Tissue Res 261: 375–382.

    Article  PubMed  CAS  Google Scholar 

  • Burton GJ (1987) The fine structure of the human placental villus as revealed by scanning electron microscopy. Scanning Microscopy 1: 1811–1828.

    PubMed  CAS  Google Scholar 

  • Burton GJ (1990) On the varied appearance of the human placental villous surface visualized by scanning electron microscopy. Scanning Microscopy 4: 501–507.

    PubMed  CAS  Google Scholar 

  • Claudy AL, Barthélémy H (1988) Characterization of the placental Hofbauer cell. Its shared properties with Langerhans cell and thymic dendritic cell. In: Thivolet J, Schmitt D (Eds) The Langerhans Cell. Colloque INSERM 172: 55–64.

    Google Scholar 

  • Calder AA (1983) Structure and function of the human cervix uteri. J Anat 137: 798.

    Google Scholar 

  • Hafez ESE, Kenemans P (1982) Atlas of Human Reproduction by Scanning Electron Microscopy. MTP Press, Lancaster.

    Google Scholar 

  • Blandau RJ (1983) The female reproductive system. In: Weiss L (Ed) Histology. Cell and Tissue Biology, 5th edn. Macmillan, London.

    Google Scholar 

  • Mullins KJ, Saacke RG (1989) Study of the functional anatomy of bovine cervical mucosa with special reference to mucus secretion and sperm transport. Anat Rec 225: 106–117.

    Article  PubMed  CAS  Google Scholar 

  • Parakkal PF, Gregoire AT (1972) Differentiation of vaginal epithelium in the normal and hormone treated rhesus monkey. Biol Reprod 6: 117–130.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krstić, R.V. (1991). Urogenital Apparatus. In: Human Microscopic Anatomy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-02676-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-02676-2_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08106-4

  • Online ISBN: 978-3-662-02676-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics