Skip to main content

Multifunctional Asymmetric Catalysis

  • Conference paper
The Role of Natural Products in Drug Discovery

Part of the book series: Ernst Schering Research Foundation Workshop ((SCHERING FOUND,volume 32))

  • 218 Accesses

Abstract

The development of catalytic asymmetric reactions is one of the major areas of research in the field of organic chemistry. So far, a number of chiral catalysts have been reported, and some of them have exhibited a much higher catalytic efficiency than enzymes, which are natural catalysts (Herrmann and Cornils 1996; Noyori 1994; Ojima 1994; Bosnich 1986; Morrison 1985). Most of the synthetic asymmetric catalysts, however, show limited activity in terms of either enantioselectivity or chemical yields. The major difference between synthetic asymmetric catalysts and enzymes is that the former activate only one side of the substrate in an intermolecular reaction, whereas the latter not only activate both sides of the substrate but can also control the orientation of the substrate. If this kind of synergistic cooperation can be realized in synthetic asymmetric catalysis, the concept will open up a new field in asymmetric synthesis, and a wide range of applications may well ensue. This minireview covers two types of asymmetric two-center catalyses promoted by complexes showing Lewis acidity and Br0nsted basicity and/or Lewis acidity and Lewis basicity (Steinhagen and Helmchen 1996; Shibasaki et al. 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arai T, Bougaini M, Sasai If, Shibasaki M (1996a) Catalytic asymmetric synthesis of oc-hydroxy phosphonates using the Al-Li-BINOL complex. J Org Chem 61:2926–2927

    Article  PubMed  CAS  Google Scholar 

  • Arai T, Sasai H, Aoe K, Okamura K, Date T, Shibasaki M (1996b) A new multifunctional heterobimetallic asymmetric catalyst for Michael additions and tandem Michael-aldol reactions. Angew Chem Int Ed Engl 35:104–106

    Article  CAS  Google Scholar 

  • Arai T, Yamada YMA, Yamamoto N, Sasai H, Shibasaki M (1996c) Self-assembly of heterobimetallic complexes and reactive nucleophiles: a general strategy for the activation of asymmetric reactions promoted by heterobimetallic catalysis. Chem Eur J 2:1368–1372

    Article  CAS  Google Scholar 

  • Bosnich B (1986) Asymmetric catalysis. Nijhoff, Dordrecht

    Google Scholar 

  • Bougauchi M, Watanabe S, Arai T, Sasai H, Shibasaki M (1997) Catalytic asymmetric epoxidation of oc,ß-unsaturated ketones promoted by lanthanoid complexes. J Am Chem Soc 119:2329–2330

    Article  CAS  Google Scholar 

  • Corey EJ, Bakshi RK, Shibata S (1987) Highly enantioselective borane reduction of ketones catalyzed by chiral oxazaborolidines. Mechanism and synthetic implications. J Am Chem Soc 109:5551–5553

    Article  CAS  Google Scholar 

  • Daikai K, Kamaura M, Inanaga J (1998) Remarkable ligand effect on the enan-tioselectivity of the chiral lanthanum complex-catalyzed asymmetric epoxidation of enones. Tetrahedron Lett 39:7321–7322

    Article  CAS  Google Scholar 

  • Denmark SE, Wong K-T, Stavenger RA (1997) Highly selective asymmetric aldol additions of ketone enolates. J Am Chem Soc 119:2333–2334

    Article  CAS  Google Scholar 

  • Emori E, Arai T, Sasai H, Shibasaki M (1998) A catalytic Michael addition of thiols to oc,ß-unsaturated carbonyl compounds: asymmetric protonations. J Am Chem Soc 120:4043–4044

    Article  CAS  Google Scholar 

  • Evans DA, Burgey CS, Paras NA, Vojkovsky T, Tregay SW (1998) C2-sym-metric copper(II) complexes as chiral Lewis acids. Enantioselective catalysis of the glyoxylate-ene reaction. J Am Chem Soc 120:5824–5825

    Article  CAS  Google Scholar 

  • Fessner W-D, Schneider A, Held H, Sinerius G, Walter C, Hixon M, Schloss JV (1996) The mechanism of class II, metal-dependent aldolases. Angew Chem Int Ed Engl 35:2219–2221

    Article  CAS  Google Scholar 

  • Funabashi K, Saida Y, Kanai M, Arai T. Sasai, H, Shibasaki M (1998) Catalytic asymmetric Michael addition of nitromethane to enones controlled by (R)-LPB. Tetrahedron Lett 39: 7557–7558

    Article  CAS  Google Scholar 

  • Gröger H, Saida Y, Arai S, Martens J, Sasai H, Shibasaki M (1996) First catalytic asymmetric hydrophosphonylation of cyclic imines: highly efficient enantioselective approach to a 4-thiazolidinylphosphonate via chiral titanium and lanthanoid catalysis. Tetrahedron Lett 37:9291–9292

    Article  Google Scholar 

  • Gröger H, Saida Y, Sasai H, Yamaguchi K, Martens J, Shibasaki M (1998) A new and highly efficient asymmetric route to cyclic oc-amino phosphonates: the first catalytic enantioselective hydrophosphonylation of cyclic imines catalyzed by chiral heterobimetallic lanthanoid complexes J Am Chem Soc 120:3089–3103

    Article  Google Scholar 

  • Hamashima Y, Sawada D, Kanai M, Shibasaki M (1999) A new bifunctional asymmetric catalysis: an efficient catalytic asymmetric cyanosilylation of aldehydes. J Am Chem Soc 121:2641–2642

    Article  CAS  Google Scholar 

  • Herrmann WA, Cornils B (1996) Applied homogeneous catalysis with or-ganometallic compounds. VCH, Weinheim

    Google Scholar 

  • Hwang C-D, Hwang D-R, Uang B-J (1998) Enantioselective addition of trimethylsilyl cyanide to aldehydes induced by a new chiral Ti (IV) complex. J Org Chem 63:6762–6763

    Article  PubMed  CAS  Google Scholar 

  • Iida T, Yamamoto N, Sasai H, Shibasaki M (1997) New asymmetric reactions using a gallium complex: a highly enantioselective ring opening of epoxides with thiols catalyzed by a gallium-lithium-bis(binaphthoxide) complex. J Am Chem Soc 119:4783–4784

    Article  CAS  Google Scholar 

  • Iida T, Yamamoto N, Woo H-G, Shibasaki M (1998) Enantioselective ring opening of epoxides with 4-methoxyphenol catalyzed by gallium heterobimetallic complexes: an efficient method for the synthesis of optically active 1,2-diol monoethers. Angew Chem Int Ed Engl 37:2223–2226

    Article  CAS  Google Scholar 

  • Kobayashi S, Tsuchiya Y, Mukaiyama T (1991) Enantioselective addition reaction of trimethylsilyl cyanide with aldehydes using a chiral tin (II) Lewis acid. Chem Lett: 38 541–544

    Article  Google Scholar 

  • Krüger J, Carreira EM (1998) Apparent catalytic generation of chiral metal enolates; enantioselective dienolate additions to aldehydes mediated by Tol-BINAP Cu(II) fluoride complexes. J Am Chem Soc 120:837–838

    Article  Google Scholar 

  • Morrison JD (1985) Asymmetric synthesis, vol 5. Academic, Orlando

    Google Scholar 

  • Nara S, Toshima H, Ichihara A (1997) Asymmetric total syntheses of (+)-coro-nafacic acid and (+)-coronatine, Phytotoxins isolated from Pseudomonas syringae pathovars. Tetrahedron 53:9509–9524

    Article  CAS  Google Scholar 

  • Noyori R (1994) Asymmetric catalysis in organic synthesis. Wiley, New York

    Google Scholar 

  • Noyori R, Kitamura M (1991) Enantioselective addition of organometallic reagents to carbonyl compounds: chirality transfer, multiplication, and amplification. Angew Chem Int Ed Engl 30:49–69

    Article  Google Scholar 

  • Ojima I (1994) Catalytic asymmetric synthesis. VCH, New York

    Google Scholar 

  • Sasai H, Suzuki T, Arai S, Arai T, Shibasaki M (1992) Basic character of rare earth metal alkoxides. Utilization in catalytic C-C bond-forming reactions and catalytic asymmetric nitroaldol reactions. J Am Chem Soc 114:4418–4420

    Article  CAS  Google Scholar 

  • Sasai H, Suzuki T, Itoh N, Shibasaki M (1993a) Catalytic nitroaldol reactions. A new practical method for the preparation of the optically active lanthanum complex. Tetrahedron Lett 34:851–854

    Article  CAS  Google Scholar 

  • Sasai H, Suzuki T, Itoh N, Arai S, Shibasaki M (1993b) Effect of rare earth metals on the catalytic asymmetric nitroaldol reaction. Tetrahedron Lett 34:2657–2660

    Article  CAS  Google Scholar 

  • Sasai H, Itoh N, Suzuki T, Shibasaki M (1993c) Catalytic asymmetric nitroaldol reaction: an efficient synthesis of (S) propranolol using the lanthanum binaphthol complex. Tetrahedron Lett 34:855–858

    Article  CAS  Google Scholar 

  • Sasai H, Suzuki T, Itoh N, Tanaka K, Date T, Okamura K, Shibasaki M (1993d) Catalytic asymmetric nitroaldol reaction using optically active rare earth BINOL complexes: investigation of the catalyst structure. J Am Chem Soc 115:10372–10373

    Article  CAS  Google Scholar 

  • Sasai H, Yamada YMA, Suzuki T, Shibasaki M (1994a) Synthesis of (S)-13 pindolol and [3’- C]-(R)-(-)-pindoloI utilizing a lanthanum-lithium-(R)-BINOL ((R)-LLB) catalyzed nitroaldol reaction. Tetrahedron 50:12313–12318

    Article  CAS  Google Scholar 

  • Sasai H, Kim W-S, Suzuki T, Shibasaki M, Mitsuda M, Hasegawa J, Ohashi J (1994b) Diastereoselective catalytic asymmetric nitroaldol reaction utilizing rare earth-Li-(R)-BINOL complex. A highly efficient synthesis of norstatin. Tetrahedron Lett 35:6123–6126

    Article  CAS  Google Scholar 

  • Sasai H, Arai T, Satow Y, Houk KN, Shibasaki M (1995a) The first heterobi-metallic multifunctional asymmetric catalyst. J Am Chem Soc 117:6194–6198

    Article  CAS  Google Scholar 

  • Sasai H, Suzuki T, Itoh N, Shibasaki M (1995b) Catalytic asymmetric synthesis of propranolol and metoprolol using La-Li-BINOL complex. Appl Or-ganomet Chem 9:421–426

    Article  CAS  Google Scholar 

  • Sasai H, Tokunaga T, Watanabe S, Suzuki T, Itoh N, Shibasaki M, (1995c) Efficient diastereoselective and enantioselective nitroaldol reactions from pro-chiral starting materials. Utilization of La-Li-6,6’-disubstituted BINOL complexes as asymmetric catalysts. J Org Chem 60:7388–7389

    Article  CAS  Google Scholar 

  • Sasai H, Arai S, Tahara Y, Shibasaki M (1995d) Catalytic asymmetric synthesis of oc-aniino phosphonates using lanthanoid-potassium-BINOL complexes. J Org Chem 60:6656–6657

    Article  CAS  Google Scholar 

  • Sasai H, Emori E, Arai T, Shibasaki M (1996) Catalytic asymmetric Michael reactions promoted by the La-Na-BINOL complex (LSB). Enantioface selection on Michael donors. Tetrahedron Lett 37:5561–5564

    Article  CAS  Google Scholar 

  • Sasai H, Bougauchi B, Arai T, Shibaski M (1997a) Enantioselective synthesis of oc-hydroxy phosphonates using the La-Li3-tris(binaphthoxide) catalyst (LLB), prepared by an improved method. Tetrahedron Lett 38:2717–2720

    Article  CAS  Google Scholar 

  • Sasai H, Watanabe S, Shibasaki M (1997b) A new practical preparation method for lanthanum-lithium-binaphthol catalysts (LLBs) for use in asymmetric nitroaldol reactions. Enantiomer 2:267–271

    CAS  Google Scholar 

  • Shibasaki M, Sasai H, Arai T (1997) Asymmetric catalysis with heterobimetal-lic compounds. Angew Chem Int Ed Engl 36:1236–1256

    Article  Google Scholar 

  • Shimizu S, Ohori K, Arai T, Sasai H, Shibasaki M (1998) A catalytic asymmetric synthesis of tubifolidine. J Org Chem 63:7547–7551

    Article  PubMed  CAS  Google Scholar 

  • Steinhagen H, Helmchen G (1996) Asymmetric two-center catalysis: learning from nature. Angew Chem Int Ed Engl 35:2339–2342

    Article  CAS  Google Scholar 

  • Takaoka E, Yoshikawa N, Yamada YMA, Sasai H, Shibasaki M (1997) Catalytic asymmetric synthesis of arbutamine. Heterocycles 46:157–163

    Article  CAS  Google Scholar 

  • Tokunaga M. Larrow, JF, Kakiuchi F, Jacobsen EN (1997) Asymmetric catalysis with water: efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis. Science 277:936–938

    Article  PubMed  Google Scholar 

  • Watanabe S, Arai T, Sasai H, Bougauchi M, Shibasaki M (1998a) The first catalytic enantioselective synthesis of ds-epoxyketones from ds-enones. J Org Chem 63:8090–8091

    Article  CAS  Google Scholar 

  • Watanabe S, Kobayashi Y, Arai T, Sasai H, Bougauchi M, Shibasaki M (1998b) Water vs. desiccant. Improvement of Yb-BINOL complex-catalyzed enantioselective epoxidation of enones. Tetrahedron Lett 39:7353–7356

    Article  CAS  Google Scholar 

  • Yamada K, Arai T, Sasai H, Shibasaki M (1998) A catalytic asymmetric synthesis of 11-deoxy-PGFla using ALB, a heterobimetallic multifunctional asymmetric complex. J Org Chem 63:3666–3672

    Article  CAS  Google Scholar 

  • Yamada YMA, Yoshikawa N, Sasai H, Shibasaki M (1997) Direct catalytic asymmetric aldol reactions of aldehydes and unmodified ketones. Angew Chem Int Ed Engl 36:1871–1873

    Article  CAS  Google Scholar 

  • Yamakoshi K, Harwood S, Kanai M, Shibasaki M (1999) Catalytic asymmetric addition of diphenylphosphine oxide to cyclic imines. Tetrahedron Lett 40:2565–2568

    Article  CAS  Google Scholar 

  • Yamasaki S, Iida T, Shibasaki M (1999) Direct catalytic asymmetric Mannich-type reaction of unmodified ketones utilizing the coopoeration of an AlLi-bis(binaphthoxide) complex and La(OTf)3 H2O. Tetrahedron Lett 40:307–310

    Article  CAS  Google Scholar 

  • Yanagisawa A, Matsumoto Y, Nakashima H, Asakawa K, Yamamoto H (1997) Enantioselective aldol reaction of tin enolates with aldehydes catalyzed by BINAP silver(I) complex. Am Chem Soc 119:9319–9320

    Article  CAS  Google Scholar 

  • Yoshikawa N, Yamada YMA, Das J, Sasai H, Shibasaki M (2000) Direct catalytic asymmetric aldol reaction. J Am Chem Soc 121:4168–4177

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shibasaki, M. (2000). Multifunctional Asymmetric Catalysis. In: Mulzer, J., Bohlmann, R. (eds) The Role of Natural Products in Drug Discovery. Ernst Schering Research Foundation Workshop, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04042-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04042-3_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04044-7

  • Online ISBN: 978-3-662-04042-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics