Skip to main content

“Bioinspired” Metal Complexes of Macrocyclic [N4 2-] and Open Chain [N2O2 2-] Schiff Base Ligands — a Link between Porphyrins and Salicylaldimines

  • Conference paper
Chemistry at the Beginning of the Third Millennium

Abstract

Transition metals play an essential role as active sites of many enzymes. The complex catalytic performance of these biocatalysts should present a continuing challenge to chemists far into the third Millennium. Many attempts have been made in the past decades of the last century to develop new catalysts based on coordination compounds which mimic natural models. Initial success and the first technical applications involved particularly porphyrins and complexes of salicylaldimines. In this paper, we give an overview of chelate complexes of tetradentate Schiff base ligands with either a macrocyclic [N4]2- or an open chain [N2O2]2- donor set derived from aliphatic 3-oxoaldehydes and diamines. These complexes represent a link between those of porphyrin type and those of salicylaldimine type and prove to have many properties and reactions in common with them. The high variability of the complexes’ ligands with regard to the ring size, the extent of the π-electron system, and electronic as well as steric effects of peripheral substituents allow a broad variation of those properties decisive in catalytic performance; such as redox potentials, reactivity of axial coordination sites, and the spin state of the central atom. The redox couples NiII/I as well as the equilibrium constants for the addition of axial ligands to the planar nickel(II) or the penta-coordinated organo-cobalt(III) complexes reflect the high sensitivity of the central atom to electronic effects from equatorial ligands. Some of the macrocyclic nickel complexes are good electrocatalysts for the reduction of carbon dioxide. Most of the discussion focuses on iron complexes, especially their reactivity with different axial ligands, the “push-pull” effects in adducts with mixed axial ligands and some special structural features. First observations of the catalysis of hydroquinone oxidation by an oxidase-like four-electron reduction of dioxygen show that — besides redox potentials, axial reactivity and spin state — the formation of oligonuclear units, stabilized by H-bridges between peripheral oxo-groups and/or axial ligands, seem to play an essential role in catalytic performance. H-bridges are obviously also responsible for the formation of “molecule based magnets” with specific solid-state structures and cooperative magnetic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eichhorn, G. L. (Ed.): Inorganic Biochemistry, Volumes 1 and 2, Elsevier, Amsterdam 1973

    Google Scholar 

  2. Cowan, J. A.: Inorganic Biochemistry — An Introduction, VCH Publishers, New York 1993

    Google Scholar 

  3. Lippard, S. J.; Berg, J. M.: Principles of Bioinorganic Chemistry, University Science Books, Mill Valley, Ca., 1994

    Google Scholar 

  4. Kaim, W.; Schwederski, B.: Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, Chemistry, University Science Books, Mill Valley, Ca., 1994

    Google Scholar 

  5. Kaim, W.; Schwederski, B.: Bioinorganic Chemistry: Inorganic Elements in the Chemistry of Life, John Wiley & Sons, Chichester, 1994

    Google Scholar 

  6. Reedijk, J. (Ed.): Bioinorganic Catalysis, Marcel Dekker, Inc., New York, 1998.

    Google Scholar 

  7. Haag, E.; Irrgang, E. J.; Boekma, E. J.; Renger, G.: Eur. J. Biochem 1990, 189, 47

    Article  CAS  Google Scholar 

  8. Debus, R.J.: Biophys. et Biochim. Acta 1992, 1102, 269

    Article  CAS  Google Scholar 

  9. Pecoraro, V. L. (Ed.): Manganese Redox Enzymes, VCH Publishers, New York, 1992

    Google Scholar 

  10. Renger, G.: Photosynth. Res. 1993, 38, 229.

    Article  CAS  Google Scholar 

  11. Karlin, K. D.; Tyeklar, Z.: Bioinorganic Chemistry of Copper, Chapman & Hall, New York, 1993.

    Book  Google Scholar 

  12. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E.: Chem Rev. 1996, 96, 2563

    Article  CAS  Google Scholar 

  13. Messerschmidt, A.: Metal Sites in Proteins and Models, 1998, 90, 37–68

    Article  CAS  Google Scholar 

  14. Abolmaali, B.; Taylor, H. V.; Weser, U.: Structure and Bonding 1998, 91, 91.

    Article  CAS  Google Scholar 

  15. Sigel, H. (Ed.): Metal Ions in Biological Systems, Vol. 7, Marcel Dekker, Basel, 1978

    Google Scholar 

  16. Dunford, H. B. (Ed.): The Biological Chemistry of Iron, D. Reidel Publishing Company, 1982.

    Google Scholar 

  17. Fischer, H.; Orth, H.: Die Chemie des Pyrrols, Akad. Verlagsgesellschaft, Leipzig, 1934

    Google Scholar 

  18. Dolphin, D. (Ed.): The Porphyrins, Vol. I, Academic Press, New York, 1978.

    Google Scholar 

  19. Dolphin, D.: (Ed.) B 12 , Wiley, New York 1982

    Google Scholar 

  20. Schneider, Z.; Stroinski, A.: Comprehensive B 12 , de Gruyter, Berlin, 1987

    Book  Google Scholar 

  21. Eschenmoser, A.: Angew. Chem. 1988, 100, 6

    Article  Google Scholar 

  22. B. T. Golding: Chem. Brit. 1990, 26, 950.

    CAS  Google Scholar 

  23. Bonacker, L. G.; Baudner, S.; Mörschel, E.; Under, D.; Thauer, R.K.: Eur. J. Biochem. 1993, 217, 587.

    Article  CAS  Google Scholar 

  24. Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H.: Chem. Rev. 1996, 96, 2841

    Google Scholar 

  25. Crane, B. R.; Arvai, A.S.; Ghosh, D. K.; Wu, C; Getoff, E. D.; Stuehr, D. J.; Tainer, J. A.: Science 1998, 279, 2121.

    Article  CAS  Google Scholar 

  26. Langenbeck, W.: Die organischen Katalysatoren und ihre Beziehungen zu den Fermenten, 2nd edn., Springer-Verlag, Berlin 1949.

    Google Scholar 

  27. Meunier, B.: Chem Rev. 1992, 92, 1411

    Article  CAS  Google Scholar 

  28. Sheldon R. (Ed.): Metalloporphyrins in Catalytic Oxidations, Marcel Dekker, New York 1994

    Google Scholar 

  29. Montanari, F.; Casella, L. (Eds.): Metalloporphyrins Catalyzed Oxidations, Kluwer Acad. Publ., Dordrecht, 1994

    Google Scholar 

  30. Woggon, W.-D.: Topics in Current Chem. 1996, 184, 40

    Google Scholar 

  31. Song, R.; Bernadou, J.; Meunier, B.: J. Org. Chem. 1997, 62, 673.

    Article  CAS  Google Scholar 

  32. Tsumaki, T.: Bull. Chem. Soc. Jpn. 1938, 13, 252.

    Article  CAS  Google Scholar 

  33. Jacobsen, E. N.: Comprehensive Organometallic Chemistry II (Eds.: Wilkinson, G.; Stone, F. G. A; Abel, E. W.; Hegedus, L. S.), Vol. 12, Chapter 11.1, Pergamon, New York, 1995

    Google Scholar 

  34. Katsuki, T.: Coord. Chem. Rev. 1995, 140, 189

    Article  CAS  Google Scholar 

  35. Younkin, T. R.; Connor, E. F.; Henderson, J. L; Friedrich, S. K.; Grubbs, R. H.; Bansleben, D. A: Science 2000, 287, 460.

    Article  CAS  Google Scholar 

  36. Schrauzer, G. N.: Angew. Chem 1976, 88, 465

    Article  CAS  Google Scholar 

  37. Schrauzer, G. N.: Angew. Chem 1977, 89, 239.

    Article  CAS  Google Scholar 

  38. Uhlig, E.; Friedrich, M.: Z. Anorg. Allg. Chem 1966, 343, 299.

    Article  Google Scholar 

  39. Costa, G.: Coord. Chem. Rev. 1972, 8, 63.

    Article  CAS  Google Scholar 

  40. Jäger, E.-G.: Z. Chem 1964, 4, 437

    Article  Google Scholar 

  41. Jäger, E.-G.: Z. Chem 1968, 8, 30, 392, 470

    Article  Google Scholar 

  42. Jäger, E.-G.: Z. Anorg. Allg. Chem 1969, 364, 177

    Article  Google Scholar 

  43. Jäger, E.-G.; Seidel, D.: Z. Chem. 1983, 23, 261

    Article  Google Scholar 

  44. Müller, K.; Jäger, E.-G.: Z. Chem. 1985, 25, 377

    Article  Google Scholar 

  45. Görls, H.; Reck, G.; Jäger, E.-G.; Müller, K.; Seidel, D.: Cryst. Res. Technol 1990, 25, 1277.

    Article  Google Scholar 

  46. Müller, K.; Jäger, E.-G.: Z. Anorg. Allg. Chem 1989, 577, 195

    Article  Google Scholar 

  47. Schade, W.; Jäger, E.- G.; Müller, K.; Seidel, D.: J. Prakt. Chem 1989, 331, 559.

    Article  CAS  Google Scholar 

  48. Jäger, E.-G.; Stein, E.; Gräfe, F.; Schade, W.: Z. Anorg. Allg. Chem 1985, 526, 15;

    Article  Google Scholar 

  49. Jäger, E.-G.; Gräfe, F.: ibid. 1988, 561, 25

    Google Scholar 

  50. Jäger, E.-G.; Hähnel, H.; Klein, H.-F.; Schmidt, A.: J. Prakt. Chem 1991, 333, 423.

    Article  Google Scholar 

  51. Jäger, E.-G.; Keutel, H.; Rudolph, M.; Krebs, B.; Wiesemann, F.: Chem. Ber. 1995, 128, 503

    Article  Google Scholar 

  52. Jäger, E.-G.; Keutel, H.: Inorg. Chem 1997, 36, 3512

    Article  Google Scholar 

  53. Käpplinger, I.; Keutel, H.; Jäger, E.-G.: Inorg. Chim Acta 1999, 291, 190.

    Article  Google Scholar 

  54. Jäger, E-G.: Z. Anorg. Allg. Chem. 1965, 337, 80

    Article  Google Scholar 

  55. Jäger, E-G.: Z. Anorg. Allg. Chem. 1967, 349, 139

    Article  Google Scholar 

  56. Jäger, E-G.: Z. Anorg. Allg. Chem. 1968, 359, 147

    Article  Google Scholar 

  57. Wolf, L.; Jäger, E.-G.: Z. Chem. 1965, 5, 392

    Article  CAS  Google Scholar 

  58. Wolf, L.; Jäger, E.-G.: Z. Anorg. Allg. Chem. 1966, 346, 76.

    Article  CAS  Google Scholar 

  59. Jäger, E.-G.; Renner, P.; Schmidt, R.: a) Z. Chem. 1977, 17, 189

    Article  Google Scholar 

  60. Jäger, E.-G.; Renner, P.; Schmidt, R.: b) ibid. 1977, 17, 307

    Google Scholar 

  61. Renner, P.: PhD-Thesis, University of Jena, 1977

    Google Scholar 

  62. Jäger, E.-G.; Müller, R.; Renner, P.: Z. Chem 1982, 22, 65.

    Article  Google Scholar 

  63. Jäger, E.-G.; Kirchhof, B.; Schmidt, E.; Remde, B.; Kipke A.; Müller, R.: Z. Anorg. Allg. Chem. 1982, 485, 141

    Article  Google Scholar 

  64. Jäger, E.-G.; Schienvoigt, G.; Kirchhof, B.; Rudolph, M.; Müller, R.: ibid. 1982, 485, 173

    Google Scholar 

  65. Jäger, E.-G.; Rudolph, M.; Müller, R.: Z. Chem 1978, 18, 229.

    Article  Google Scholar 

  66. Jäger, E.-G.; Häussier, E.; Rudolph, M.; Schneider, A: Z. Anorg. Allg. Chem. 1985, 525, 67

    Article  Google Scholar 

  67. Görls, H.; Jäger, E.-G.: Cryst. Res. Technol 1991, 26, 349.

    Article  Google Scholar 

  68. Jäger, E.-G.; Schuhmann, K.; Görls, H.: a) Inorg. Chim Acta 1997, 255, 295

    Article  Google Scholar 

  69. Jäger, E.-G.; Schuhmann, K.; Görls, H.: Chem. Ber./Recueil 1997, 130, 1643

    Article  Google Scholar 

  70. Schuhmann, K.; Jäger, E.-G.: Eur. J. Inorg. Chem 1998, 2051

    Google Scholar 

  71. Schuhmann, K.: PhD thesis, University of Jena, 1998.

    Google Scholar 

  72. Cotton, F.A.; Czuchajowska, J.: Polyhedron 1990, 9, 2553.

    Google Scholar 

  73. Mountford, P.: Chem Soc. Rev. 1998, 27, 105.

    Article  CAS  Google Scholar 

  74. Weiss, M. C; Gordon, G.; Goedken, V.L.: Inorg. Chem. 1977, 16, 305.

    Article  CAS  Google Scholar 

  75. Hanic, F.; Handlovic, M.; Lindgren, O.: Collect. Czech. Chem Commun. 1972, 37, 2119.

    Article  CAS  Google Scholar 

  76. Wang, Y.; Peng, S.-M.; Lee, Y.-L.; Chuang, M.-C.; Tang, C.-P.; Wang, C.-J.: J. Chin. Chem. 1982, 29, 217

    CAS  Google Scholar 

  77. Weiss, M. C; Goedken, V. L.: Inorg. Chem 1979, 18, 819.

    Article  CAS  Google Scholar 

  78. Schneider, A. PhD thesis, University of Jena, 1991.

    Google Scholar 

  79. Knaudt, J. PhD thesis, University of Jena, 1998

    Google Scholar 

  80. Knaudt, J.; hnhof, W.; Sternberg, U.; Jäger, E.-G.: To be published.

    Google Scholar 

  81. Jäger, E.-G.; Knaudt, J.; Rudolph, M.; Rost, M. Chem. Ber. 1996, 129, 1041.

    Article  Google Scholar 

  82. Jäger, E.-G.; Knaudt, J.; Schuhmann, K; Guba, A.: In Peroxide ChemistryFinal Report of the DFG Priority Program, Adam, W. (Ed.), Chapter C.4., Wiley-VCH, Weinheim 2000, in press.

    Google Scholar 

  83. Jäger, E.-G.; Rudolph, M.: Schneider, A.; Gräfe, F.: Z. Chem. 1985, 25, 445.

    Article  Google Scholar 

  84. Knaudt, J.; Förster, St.; Bartsch, U.; Rieker, A.; Jäger, E-G.: Z Naturforsch. 2000, 55b, in press.

    Google Scholar 

  85. Behar, D.; Dhanasekaran, T.; Neta, P.; Hosten, C. M.; Ejeh, D.; Hambright, P.; Fujita, E.: J. Phys. Chem 1998, 102, 2870

    Article  CAS  Google Scholar 

  86. Sutin, N.; Creutz, C; Fujita, E.: Comments Inorg. Chem. 1997, 19, 67

    Article  CAS  Google Scholar 

  87. Bhugun, I.; Lexa, D.; Saveant, J.-M.: J. Am Chem. Soc. 1996, 118, 1769

    Article  CAS  Google Scholar 

  88. Nallas, G. N. A.; Brewer, K.: Inorg. Chim Acta 1996, 255, 7

    Article  Google Scholar 

  89. Hawecker, J.; Ixhn, J.-M.; Ziessel, R.: Chem Commun. 1984, 328.

    Google Scholar 

  90. Ali, M. M.; Sato, H.; Mizukawa, T.; Tsuge, K.; Haga, M.; Tanaka, K.: Chem Commun. 1998, 249.

    Google Scholar 

  91. Gennaro, A.; Isse, A. A. Saveant, J.-M.; Severin, M.-G; Vianello, E.: J. Am Chem Soc. 1996, 118, 7190.

    Article  CAS  Google Scholar 

  92. Rudolph, M.; Dautz, S.; Jäger, E.-G.: submitted.

    Google Scholar 

  93. Rudolph, M.; Feldberg, S. W.: DigiSim® 2.0 Software, Bioanalytical Systems Inc., West Lafayette, IN 47906, USA, 1995.

    Google Scholar 

  94. Rudolph, M.; Jäger, E.-G.: Z. Chem 1989, 29, 418

    Article  CAS  Google Scholar 

  95. Jäger, E.-G.; Rudolph M.: J. Electroanal. Chem. 1997, 434, 1.

    Article  Google Scholar 

  96. Rudolph, M.: PhD-Thesis, University of Jena, 1982

    Google Scholar 

  97. Jäger, E.-G.; Rudolph, M: Z. Chem. 1981, 21, 371.

    Article  Google Scholar 

  98. Streeky, J. A.; Pillsbury, D. G.; Busch, D. H.: Inorg. Chem 1980, 19, 3148.

    Article  CAS  Google Scholar 

  99. Jäger, E.-G.; Renner, P.: Z. Chem 1978, 18, 193.

    Article  Google Scholar 

  100. Seidel, D.: PhD-Thesis, University of Jena, 1985.

    Google Scholar 

  101. Wiesemann, F.; Krebs, B.; Görls, H.; Jäger, E.-G.: Z. Anorg. Allg. Chem. 1995, 621, 1883.

    Article  CAS  Google Scholar 

  102. Saalfrank, R. W.; Struck, O.; Toupet, L.; v. Schnering, H.-G.: Chem Ber. 1993, 126, 837

    Article  CAS  Google Scholar 

  103. Saalfrank, R. W.; Struck, O.; Danion, D.; Hassa, J.; Roupet, L.: Chem. Mater. 1994, 6, 1432.

    Article  CAS  Google Scholar 

  104. Krebs, B.: University of Münster, private communication.

    Google Scholar 

  105. Jäger, E.-G.; Barth, St.; Keutel, H. In Bioinorganic Chemistry: Transition Metals in Biology and their Coordination Chemistry, Trautwein, A. X. (Ed.), WILEY-VCH, Weinheim, 1997, 584.

    Google Scholar 

  106. Keutel, H.; Käpplinger, L; Jäger, E.-G.; Grodzicki, M.; Schùnemann, V.; Trautwein, A. X.: Inorg. Chem. 1999, 38, 2320

    Article  CAS  Google Scholar 

  107. Käpplinger, L; Grodzicki, M.; Schünemann, V.; Görls, H.; Trautwein, A. X.; Jäger, E.-G.: Inorg. Chem. submitted.

    Google Scholar 

  108. Gadsby, P. M. A.; Thomson, A.: J. Am Chem. Soc. 1990, 112, 5003.

    Article  CAS  Google Scholar 

  109. Jäger, E.-G.; Leibeling, G.; Friedrich, M.: unpublished results.

    Google Scholar 

  110. Käpplinger, L; Görls, H.; Jäger, E.-G.: Manuscript in preparation.

    Google Scholar 

  111. Jäger, E.-G.; Schweder, B.; Radzuweit, Z. Chem 1988, 28, 152.

    Article  Google Scholar 

  112. Jäger, E.-G.: Z. Chem 1985, 25, 446.

    Article  Google Scholar 

  113. Jäger, E.-G.; Liehr, J.; Morich, E.; Dix, A.: Proc. 12 th Conf. Coord. Chem Smolenice/Bratislava, 1989, 123.

    Google Scholar 

  114. Einsle, O.; Messerschmidt, A.; Stach, P.; Bourenkov, G. P.; Bartunik, H. D.; Huber, R.; P. M. H. Kroneck: Nature 1999, 400, 474.

    Article  CAS  Google Scholar 

  115. Wiesemann, F.; Wonnemann, R.; Krebs, B.; Keutel, H.; Jäger, E.-G.: Angew. Chem Int. Ed. Engl. 1994, 33, 1363.

    Article  Google Scholar 

  116. Weber, B.; Jäger, E.-G.: to be published.

    Google Scholar 

  117. Leibeling, G.; Görls, H.; Jäger, E.-G.: manuscript in preparation.

    Google Scholar 

  118. Liu, H. Y.; Scharbet, B.; Holm, R.H.: J. Am. Chem. Soc. 1991, 113, 9529.

    Article  CAS  Google Scholar 

  119. Kennedy, B. I; McGrath, A. C.; Murray, K. S. Skelton, B. W.; Whrite, A. H.: Inorg. Chem. 1987, 26, 483

    Article  CAS  Google Scholar 

  120. Nishida, Y.; Kino, K.; Kida, S.: J. Chem Soc. Dalton Trans. 1987, 1157.

    Google Scholar 

  121. Leibeling, G.; Görls, H.; Müller, B.; Jäger, E.-G.: Submitted.

    Google Scholar 

  122. Müller, B.; Leibeling, G.; Jäger, E.-G.: Mol Cryst. and Liq. Cryst. 1999, 334, 389.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jäger, EG. (2000). “Bioinspired” Metal Complexes of Macrocyclic [N4 2-] and Open Chain [N2O2 2-] Schiff Base Ligands — a Link between Porphyrins and Salicylaldimines. In: Fabbrizzi, L., Poggi, A. (eds) Chemistry at the Beginning of the Third Millennium. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04154-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04154-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08687-8

  • Online ISBN: 978-3-662-04154-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics