Skip to main content

Some irrational numbers

  • Chapter
Proofs from THE BOOK

Abstract

This was already conjectured by Aristotle, when he claimed that diameter and circumference of a circle are not commensurable. The first proof of this fundamental fact was given by Johann Heinrich Lambert in 1766. Our Book Proof is due to Ivan Niven, 1947: an extremely elegant one-page proof that needs only elementary calculus. Its idea is powerful, and quite a bit more can be derived from it, as was shown by Iwamoto and Koksma, respectively:

  • π2 is irrational (this is a stronger result!) and

  • e r is irrational for rational r ≠ 0.

“π is irrational”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. M. Apostol: A proof that Euler missed: Evaluating ξ (2) the easy way Math. Intelligencer 5 (1983), 59–60.

    Article  MathSciNet  MATH  Google Scholar 

  2. F. Beukers, J. A. C. Kolk & E. Calabi: Sums of generalized harmonic series and volumes, Neiuw Archief voor Wiskunde (3) 11 (1993), 217–224.

    MathSciNet  MATH  Google Scholar 

  3. C. Hermite: Sur la fonction exponentielle, Comptes rendus de l’Académie des Sciences (Paris) 77 (1873), 18–24; Œuvres de Charles Hermite, Vol. III Gauthier-Villars, Paris 1912, pp. 150-181.

    MATH  Google Scholar 

  4. Y. Iwamoto: A proof that π2 is irrational, J. Osaka Institute of Science and Technology 1 (1949), 147–148.

    MathSciNet  Google Scholar 

  5. J. F. Koksma: On Niven’s proof that n is irrational, Nieuw Archiv Wiskunde (2) 23 (1949), 39.

    MathSciNet  MATH  Google Scholar 

  6. J. C. Lagarias: An elementary problem equivalent to the Riemann hypothesis, Preprint arXiv: math.NT/0008177 v2, May 2001, 9 pages.

    Google Scholar 

  7. I. Niven: A simple proof that TT is irrational, Bulletin Amer. Math. Soc. 52 (1947), 509.

    Article  MathSciNet  Google Scholar 

  8. A. van der Porten: A proof that Euler missed... Apéry’s proof of the irrationality of ξ (3). An informal report, Math. Intelligencer 1 (1979), 195–203.

    Article  Google Scholar 

  9. T. J. Ransford: An elementary proof of \( \sum\nolimits_1^\infty {\frac{1} {{n^2 }} = \frac{{\pi ^2 }} {6}} \), Eureka No. 42 Summer 1982, 3-5.

    Google Scholar 

  10. T. Rivoal: La fonction Zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, Comptes Rendus de l’Académie des Sciences (Paris), Ser. I Mathématique, 331 (2000), 267–270.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Aigner, M., Ziegler, G.M. (2001). Some irrational numbers. In: Proofs from THE BOOK. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04315-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04315-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-04317-2

  • Online ISBN: 978-3-662-04315-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics