Skip to main content

SAT Actions and Ergodic Properties of the Horosphere Foliation

  • Chapter
Rigidity in Dynamics and Geometry

Abstract

The notion of a SAT action introduced by Jaworski was inspired by the proximal properties of the Poisson boundaries of random walks obtained by Furstenberg and by the definition of an approximatively transitive action due to Connes and Woods. We introduce a slightly stronger condition SAT* and establish several general ergodic properties of SAT* actions. This notion turns out to be quite helpful for studying ergodic properties of the horosphere foliation (particular case: the horocycle flow) on a quotient of a CAT(-1) space by a discrete group of isometries G. We look at the “intermediate covers” determined by normal subgroups H ⊲ G. Under the condition that the boundary action of G is SAT* we establish conservativity of the horosphere foliation on these intermediate covers and prove that its ergodic components are in one-to-one correspondence with the ergodic components of the boundary action of H. In particular, in this situation ergodicity of the horosphere foliation is equivalent to ergodicity of the associated boundary action. These results are applicable to several well known classes of measures at infinity (harmonic, Gibbs, conformai).

The author gratefully acknowledges a partial support from the Austrian-French program “Amadeus”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Ballmann, M. Gromov, V. Schroeder, Manifolds of nonpositive curvature, Birkhäuser, Boston, Mass., 1985.

    Google Scholar 

  2. M. Bourdon, Structure conforme au bord et flot géodésique d’un CAT(-1)-espace, L’Ens. Math. 41 (1995), 63–102.

    MathSciNet  MATH  Google Scholar 

  3. M. Burger, S. Mozes, CAT(-1)-spaces, divergence groups and their commensurators, J. Amer. Math. Soc. 9 (1996), 57–93.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Connes, E. J. Woods, Approximatively transitive flows and ITPFI factors, Ergod. Th. Dynam. Syst. 5 (1985), 203–236.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Dal’bo, Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Bras. Mat. 30 (1999), 199–221.

    Article  MathSciNet  Google Scholar 

  6. J. Feldman, C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), 289–324.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, Proc. Symp. Pure Math. 26 (1973), 193–229.

    MathSciNet  Google Scholar 

  8. H. Furstenberg, The unique ergodicity of the horocycle flow, Springer Lecture Notes in Math. 318 (1973), 95–115.

    Article  MathSciNet  Google Scholar 

  9. R. I. Grigorchuk, V. A. Kaimanovich, T. Smirnova-Nagnibeda, in preparation.

    Google Scholar 

  10. M. Gromov, Hyperbolic groups, MSRI Publ. 8 (1987), 75–263.

    MathSciNet  Google Scholar 

  11. U. Hamenstädt, Ergodic properties of Gibbs measures on nilpotent covers, preprint, 2001.

    Google Scholar 

  12. W. Jaworski, Strongly approximately transitive group actions, the Choquet-Deny theorem, and polynomial growth, Pacific J. Math. 165 (1994), 115–129.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Jaworski, Random walks on almost connected locally compact groups: boundary and convergence, J. Analyse Math. 74 (1998), 235–273.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. A. Kaimanovich, Ergodicity of harmonic invariant measures for the geodesic flow on hyperbolic spaces, J. Reine Angew. Math. 455 (1994), 57–103.

    MathSciNet  MATH  Google Scholar 

  15. V. A. Kaimanovich, The Poisson boundary of covering Markov operators, Israel J. Math. 89 (1995), 77–134.

    Article  MathSciNet  MATH  Google Scholar 

  16. V. A. Kaimanovich, The Poisson boundary of polycyclic groups, Probability measures on groups and related structures, XI, 182–195, World Sci. Publishing, River Edge, NJ, 1995.

    Google Scholar 

  17. V. A. Kaimanovich, Ergodic properties of the horocycle flow and classification of Fuchsian groups, J. Dynam. Control Systems 6 (2000), 21–56.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. A. Kaimanovich, K. Schmidt, Ergodicity of cocycles. I. General theory, preprint, 2000.

    Google Scholar 

  19. V. A. Kaimanovich, K. Schmidt, Ergodicity of cocycles. II. Geometric applications, preprint, 2001.

    Google Scholar 

  20. V. A. Kaimanovich, W. Woess, The Dirichlet problem at infinity for random walks on graphs with a strong isoperimetric inequality, Probab. Theory Related Fields 91 (1992), 445–466.

    Article  MathSciNet  MATH  Google Scholar 

  21. U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.

    Google Scholar 

  22. T. Lyons, D. Sullivan, Function theory, random paths and covering spaces, J. Differential Geom. 19 (1984), 299–323.

    MathSciNet  MATH  Google Scholar 

  23. C. C. Moore, C. Schochet, Global analysis on foliated spaces, Springer, New York, 1988.

    Book  MATH  Google Scholar 

  24. T. Roblin, Sur la théorie ergodique des groupes discrets en géométrie hyperbolique, thèse, Université Paris Sud, 1999.

    Google Scholar 

  25. V. A. Rokhlin, On the fundamental ideas of measure theory (Russian), Mat. Sbornik N. S. 25(67) (1949), 107–150.

    MathSciNet  Google Scholar 

  26. K. Schmidt, Cocycles of ergodic transformation groups, McMillan (India), New Delhi, 1977.

    Google Scholar 

  27. D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, Publ. Math. IHES 50 (1979), 171–202.

    MATH  Google Scholar 

  28. D. Sullivan, Discrete conformai groups and measurable dynamics, Bull. Amer. Math. Soc. 6 (1982), 57–73.

    Article  MathSciNet  MATH  Google Scholar 

  29. P. Tukia, Conservative actions and the horospheric limit set, Ann. Acad. Sci. Fenn. Math. 22 (1997), 387–394.

    MathSciNet  Google Scholar 

  30. J. A. Veiling, K. Matsuzaki, The action at infinity of conservative groups of hyperbolic motions need not have atoms, Ergod. Th. Dynam. Syst. 11 (1991), 577–582.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaimanovich, V.A. (2002). SAT Actions and Ergodic Properties of the Horosphere Foliation. In: Burger, M., Iozzi, A. (eds) Rigidity in Dynamics and Geometry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04743-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04743-9_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07751-7

  • Online ISBN: 978-3-662-04743-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics