Skip to main content

Tactile Mathematics

  • Chapter
Mathematics and Art

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Visual Computing has led directly to Visual Mathematics — this by virtue of the ability to directly compile ‘natural’ mathematical language into machine-executable and graphical form. Direct 3-D computer printers allow fully concrete, 3-D representations for mathematical systems, directly from the numerical representation. The author references his work to date in the field of mathematical sculpture. The author has begun work on integrating text information in Braille into three-dimensional models of mathematical surfaces. Future work, including manipulating computer-specified tactile surface texture in Computer-Aided Design, presents challenges to the technical interfaces in common practise in the Mechanical Prototyping industry. This paper will outline some proposed solutions. This paper proposes the thesis that a richer, synergistic tactile experience can be afforded by combining the abstract information on a mathematical surface with the surface itself in-the-round in physical form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolfram S. (1996) (The Mathematica System for Doing Mathematics by Computer http://www.wolfram.com) The Mathematica Book, 3rd edn. Cambridge University Press, Cambridge

  2. DeFanti T.A., Brown M.D. (1991) Visualization in Scientific Computing, Advances in Computers Vol. 33, Academic Press, New York, 247–305

    Google Scholar 

  3. Mandelbrot B. B. (1983) The Fractal Geometry of Nature, Freeman and Company

    Google Scholar 

  4. Hoffman D. (1987) New Embedded Minimal Surfaces The Mathematical Intelligencer 9 (3)

    Google Scholar 

  5. Dickson S. Mathematica Visualizations, http://emsh.calarts.edu/~mathart/portfolio/SPD_Math_portfolio.html

  6. Razdan A., Mayer J.W., Steinberg B. (1997) Scientific Visualization using Rapid Prototyping Technologies, Proceedings of the Sixth European Conference on Rapid Prototyping, Nottingham, U.K., 171–175

    Google Scholar 

  7. D Systems Inc., Solid Imaging and Solid Object Printing, http://www.3dsystems.com

  8. DTM Corporation, Advanced Rapid Prototyping and Manufacturing Solutions, http://www.dtm-corp.com/

  9. Stratasys, http://www.stratasys.com

  10. Helisys, Layered Material Technology, http://www.helisys.com

  11. MIT 3-D Printing Laboratory http://me.mit.edu/groups/tdp/

  12. Soligen, Parts Now, http://www.partsnow.com

  13. Z Corporation, Office Compatible 3D Printers, http://www.zcorp.com

  14. Hodgson E., (1998) Creating Art with Layer Manufacture (CALM), report to TASC, University of Central Lancashire, UK http://www.uclan.ac.uk/clt/calm/overview.htm

  15. Peterson I. (1991) Plastic Math, Science News, 140 (5) 65–80

    Google Scholar 

  16. Skawinski W. J., Venanzi C. A., Ofsievich A. D., REAL VIRTUALITY: The Use of Laser Stereolithography for the Construction of Accurate Molecular Models, Department of Chemical Engineering, Chemistry, and Environmental Science, New Jersey Institute of Technology, http://www-ec.njit.edu/~skawinsk/nano/nano. html

  17. Partch H., (1974) Genesis of a Music, 2nd edn., Da Capo Press, New York

    Google Scholar 

  18. Hoffman J., The Gauss Map, Mathematical Sciences Research Institute (MSRI), Berkeley http://www.msri.org/publications/sgp/jim/geom/surface/maps/gauss/mainc.html

  19. Sullivan J. M., Francis G., Levy S., (1998) The Optiverse, University of Illinois http://new.math.uiuc.edu/optiverse

    Google Scholar 

  20. Hanson A. J., Munzner T., Francis G., (1994) Interactive Methods for Visualizable Geometry, IEEE Computer, 27 (4) 73–83 http://www.geom.umn.edu/ docs/research/ieee94/node8.htm1

  21. Dickson S., Braille-Annotated Tactile Models In-The-Round of Three-Dimensional Mathematical Figures, http://emsh.calarts.edu/-mathart/Annotated_HyperPara.html

  22. Ibid.

    Google Scholar 

  23. Gardner J.A., (1998) The DotsPlus Tactile Font Set, Journal of Visual Impairment and Blindness, 836–840

    Google Scholar 

  24. Gardner J. A., (1999) Science Access Project, Oregon State University, Personal communication http://dots.physics.orst.edu http://www.physics.orst.edu/people/faculty/gardner.html

  25. ViewPlus Technologies, TIGER Advantage Tactile Graphics and Braille Embosser http://www.viewplustech.com/products.html

  26. American Thermoform Corporation, Swell-Touch paper http://www.atcbrlegp.com/swell.htm

  27. Army High Performance Computing Research Center, Wavefront Fonts, http://www.arc.umn.edu/gvl-software/wavefront-fonts.html

  28. Yu Y., Dana K., Rushmeier H., Marschner S., Premoze S., Sato Y., (2000) Image-based Surface Details,SIGGRAPH 2000 course notes, New Orleans http://www.cs.berkeley.edu/~yyz/publication/

  29. Upstill S., (1989) The RenderMan Companion: A Programmer’s Guide to Realistic Computer Graphics, Addison-Wesley, NewYork

    Google Scholar 

  30. Razdan A., (2000) Partnership for Research in Stereo Modeling (PRISM),Arizona State University, Personal communication http://surdas.eas.asu.edu/prism/prism/

  31. Ibid.

    Google Scholar 

  32. Glassner A., Maintaining Winged-Edge Models,in James Arvo (Ed.) Graphics Gems II, Academic Press, New York, IV.6, 191–201

    Google Scholar 

  33. Pedersen H. K., (1996) A Framework for Interactive Texturing on Curved Surfaces, SIGGRAPH 96 Conference Proceedings, Addison-Wesley, New York, 295–302

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dickson, S. (2002). Tactile Mathematics. In: Bruter, C.P. (eds) Mathematics and Art. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-04909-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-04909-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07782-1

  • Online ISBN: 978-3-662-04909-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics