Skip to main content

Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers

  • Chapter
Laser Spectroscopy

Part of the book series: Advanced Texts in Physics ((ADTP))

Abstract

In the previous chapter we presented the different realizations of tunable lasers; we now discuss their applications in absorption and fluorescence spectroscopy. First we discuss those methods where the spectral resolution is limited by the Doppler width of the molecular absorption lines. This limit can in fact be reached if the laser linewidth is small compared with the Doppler width. In several examples, such as optical pumping or laser-induced fluorescence spectroscopy, multimode lasers may be employed, although in most cases single-mode lasers are superior. In general, however, these lasers may not necessarily be frequency stabilized as long as the frequency jitter is small compared with the absorption linewidth. We compare several detection techniques of molecular absorption with regard to their sensitivity and their feasibility in the different spectral regions. Some examples illustrate the methods to give the reader a feeling of what has been achieved. After the discussion of Doppler-limited spectroscopy, Chaps. 7–10 give an extensive treatment of various techniques which allow sub-Doppler spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.J. Bell: Introductory Fourier Transform Spectroscopy (Academic, New York 1972);

    Google Scholar 

  2. P. Griffiths, J.A. de Haset: Fourier Transform Infrared Spectroscopy (Wiley, New York 1986);

    Google Scholar 

  3. J. Kauppinen, J. Partanen: Fourier Transforms in Spectroscopy (Wiley, New York 2001)

    MATH  Google Scholar 

  4. D.G. Cameron, D.J. Moffat: A generalized approach to derivative spectroscopy. Appl. Spectrosc. 41, 539 (1987);

    ADS  Google Scholar 

  5. G. Talsky: Derivative Spectrophotometers (VCH, Weinheim 1994)

    Google Scholar 

  6. G.C. Bjorklund: Frequency-modulation spectroscopy: A new method for measuring weak absorptions and dispersions. Opt. Lett. 5, 15 (1980)

    ADS  Google Scholar 

  7. M. Gehrtz, G.C. Bjorklund, E. Whittaker: Quantum-limited laser frequency-modulation spectroscopy. J. Opt. Soc. Am. B 2, 1510 (1985)

    ADS  Google Scholar 

  8. G.R. Janik, C.B. Carlisle, T.F. Gallagher: Two-tone frequency-modulation spectroscopy. J. Opt. Soc. Am. B 3, 1070 (1986)

    ADS  Google Scholar 

  9. F.S. Pavone, M. Inguscio: Frequency- and wavelength-modulation spectroscopy: Comparison of experimental methods, using an AlGaAs diode laser. Appl. Phys. B 56, 118 (1993)

    ADS  Google Scholar 

  10. R. Grosskloss, P. Kersten, W. Demtröder: Sensitive amplitude and phase-modulated absorption spectroscopy with a continuously tunable diode laser. Appl. Phys. B 58, 137 (1994)

    ADS  Google Scholar 

  11. P.C.D. Hobbs: Ultrasensitive laser measurements without tears. Appl. Opt. 36, 903 (1997)

    ADS  Google Scholar 

  12. P. Wehrle: A review of recent advances in semiconductor laser gas monitors. Spectrochim. Acta, Part A 54, 197 (1998)

    ADS  Google Scholar 

  13. J.A. Silver: Frequency modulation spectroscopy for trace species detection. Appl. Opt. 31, 707 (1992)

    ADS  Google Scholar 

  14. W. Brunner, H. Paul: On the theory of intracavity absorption. Opt. Commun. 12, 252 (1974)

    ADS  Google Scholar 

  15. K. Tohama: A simple model for intracavity absorption. Opt. Commun. 15, 17 (1975)

    ADS  Google Scholar 

  16. A. Campargue, F. Stoeckel, M. Chenevier: High sensitivity intracavity laser spectroscopy: applications to the study of overtone transitions in the visible range. Spectrochimica Acta Rev. 13, 69 (1990)

    Google Scholar 

  17. A.A. Kaschanov, A. Charvat, F. Stoeckel: Intracavity laser spectroscopy with vibronic solid state lasers. J. Opt. Soc. Am. B 11, 2412 (1994)

    ADS  Google Scholar 

  18. V.M. Baev, T. Latz, P.E. Toschek: Laser intracavity absorption spectroscopy. Appl. Phys. B 69, 172 (1999);

    ADS  MATH  Google Scholar 

  19. V.M. Baev: Intracavity spectroscopy with diode lasers. Appl. Phys. B 55, 463 (1992)

    ADS  Google Scholar 

  20. V.R. Mironenko, VI. Yudson: Quantum noise in intracavity laser spectroscopy. Opt. Commun. 34, 397 (1980);

    ADS  Google Scholar 

  21. V.R. Mironenko, VI. Yudson: Sov. Phys. JETP 52, 594 (1980)

    ADS  Google Scholar 

  22. P.E. Toschek, V.M. Baev: ‘“One is not enough”: Intracavity laser spectroscopy with a multimode laser’. In: Laser Spectroscopy and New Ideas, ed. by W.M. Yen, M.D. Levenson, Springer Ser. Opt. Sci., Vol.54 (Springer, Berlin, Heidelberg 1987)

    Google Scholar 

  23. E.M. Belenov, M.V Danileiko, V.R. Kozuborskii, A.P. Nedavnii, M.T. Shpak: Ultrahigh resolution spectroscopy based on wave competition in a ring laser. Sov. Phys. JETP 44, 40 (1976)

    ADS  Google Scholar 

  24. E.A. Sviridenko, M.P. Frolov: Possible investigations of absorption line profiles by intracavity laser spectroscopy. Sov. J. Quant. Electron. 7, 576 (1977)

    ADS  Google Scholar 

  25. T.W. Hänsch, A.L. Schawlow, P. Toschek: Ultrasensitive response of a CW dye laser to selective extinction. IEEE J. Quantum Electron. 8, 802 (1972)

    ADS  Google Scholar 

  26. R.N. Zare: Laser separation of isotopes. Sci. Am. 236, 86 (February 1977)

    Google Scholar 

  27. R.G. Bray, W. Henke, S.K. Liu, R.V. Reddy, M.J. Berry: Measurement of highly forbidden optical transitions by intracavity dye laser spectroscopy. Chem. Phys. Lett. 47, 213 (1977)

    ADS  Google Scholar 

  28. H. Atmanspacher, B. Baldus, C.C. Harb, T.G. Spence, B. Wilke, J. Xie, J.S. Harris, R.N. Zane: Cavity-locked ring-down spectroscopy. J. Appl. Phys. 83, 3991 (1998)

    ADS  Google Scholar 

  29. W. Schrepp, H. Figger, H. Walther: Intracavity spectroscopy with a color-center laser. Lasers and Applications 77 (July 1984)

    Google Scholar 

  30. V.M. Baev, K.J. Boller, A. Weiler, P.E. Toschek: Detection of spectrally narrow light emission by laser intracavity spectroscopy. Opt. Commun. 62, 380 (1987)

    ADS  Google Scholar 

  31. V.M. Baev, A. Weiler, P.E. Toschek: Ultrasensitive intracavity spectroscopy with multimode lasers. J. Phys. (Paris) 48, C7, 701 (1987)

    Google Scholar 

  32. T.D. Harris: ‘Laser intracavity-enhanced spectroscopy’. In: Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983)

    Google Scholar 

  33. E.H. Piepmeier (Ed.): Analytical Applications of Lasers (Wiley, New York 1986)

    Google Scholar 

  34. H. Atmanspacher, H. Scheingraber, C.R. Vidal: Dynamics of laser intracavity absorption. Phys. Rev. A 32, 254 (1985);

    ADS  Google Scholar 

  35. H. Atmanspacher, H. Scheingraber, C.R. Vidal: Mode-correlation times and dynamical instabilities in a multimode CW dye laser. Phys. Rev. A 33, 1052 (1986)

    ADS  Google Scholar 

  36. H. Atmanspacher, H. Scheingraber, V.M. Baev: Stimulated Brillouin scattering and dynamical instabilities in a multimode laser. Phys. Rev. A 35, 142 (1987)

    ADS  Google Scholar 

  37. P. Zalicki, R.N. Zare: Cavity ringdown spectroscopy for quantitative absorption measurements. J. Chem. Phys. 102, 2708 (1995)

    ADS  Google Scholar 

  38. D. Romanini, K.K. Lehmann: Ring-down cavity absorption spectroscopy of the very weak HCN overtone bands with six, seven and eight stretching quanta. J. Chem. Phys. 99, 6287 (1993)

    ADS  Google Scholar 

  39. M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, J.S. Harris, R.N. Zare: Optical heterodyne detection in cavity ring-down spectroscopy. Chem. Phys. Lett. 290, 335 (1998)

    ADS  Google Scholar 

  40. B.A. Baldus, R.N. Zare, et al.: Cavity-locked ringdown spectroscopy. J. Appl. Phys. 83, 3991 (1998)

    ADS  Google Scholar 

  41. J.J. Scherer, J.B. Paul, C.P. Collier, A. O’Keefe, R.J. Saykally: Cavity-ringdown laser absorption spectroscopy and time-of-flight mass spectroscopy of jet-cooled gold silicides. J. Chem. Phys. 103, 9187 (1995)

    ADS  Google Scholar 

  42. K.H. Becker, D. Haaks, T. Tartarczyk: Measurements of C2-radicals in flames with a tunable dye lasers. Z. Naturforsch. 29a, 829 (1974)

    ADS  Google Scholar 

  43. A. O’Keefe: Integrated cavity output analysis of ultraweak absorption. Chem. Phys. Lett. 293, 331 (1998)

    ADS  Google Scholar 

  44. J.J. Scherer, J.B. Paul, C.P. Collier, A. O’Keefe, R.J. Saykally: Cavity ringdown laser absorption spectroscopy history, development and application to pulsed molecular beams. Chem. Rev. 97, 25 (1997)

    Google Scholar 

  45. G. Berden, R. Peéters, G. Meijer: Cavity ringdown spectroscopy: experimental schemes and applications. Int. Rev. Phys. Chemistry 19, 565 (2000)

    Google Scholar 

  46. WM. Fairbanks, T.W. Hänsch, A.L. Schawlow: Absolute measurement of very low sodium-vapor densities using laser resonance fluorescence. J. Opt. Soc. Am. 65, 199 (1975)

    ADS  Google Scholar 

  47. H.G. Krämer, V. Beutel, K. Weyers, W. Demtröder: Sub-Doppler laser spectroscopy of silver dimers Ag2 in a supersonic beam. Chem. Phys. Lett. 193, 331 (1992)

    ADS  Google Scholar 

  48. P.J. Dagdigian, H.W. Cruse, R.N. Zare: Laser fluorescence study of AlO, formed in the reaction Al + O2: Product state distribution, dissociation energy and radiative lifetime. J. Chem. Phys. 62, 1824 (1975)

    ADS  Google Scholar 

  49. W.E. Moerner, L. Kador: Finding a single molecule in a haystack. Anal. Chem. 61, 1217A (1989);

    Google Scholar 

  50. W.E. Moerner: Examining nanoenvironments in solids on the scale of a single, isolated impurity molecule. Science 265, 46 (1994)

    ADS  Google Scholar 

  51. K. Kneipp, S.R. Emory, S. Nie: Single-molecule Raman-spectroscopy: Fact or fiction?. Chimica 53, 35 (1999)

    Google Scholar 

  52. T. Plakbotnik, E.A. Donley, U.R Wild: Single molecule spectroscopy. Ann. Rev. Phys. Chem. 48, 181 (1997)

    ADS  Google Scholar 

  53. References to the historical development can be found in H.J. Bauer: Son et lumiere or the optoacoustic effect in multilevel systems. J. Chem. Phys. 57, 3130 (1972)

    ADS  Google Scholar 

  54. Yoh-Han Pao (Ed.): Optoacoustic Spectroscopy and Detection (Academic, New York 1977)

    Google Scholar 

  55. A. Rosencwaig: Photoacoustic and Photoacoustic Spectroscopy (Wiley, New York 1980)

    Google Scholar 

  56. V.P. Zharov, V.S. Letokhov: Laser Optoacoustic Spectroscopy, Springer Ser. Opt. Sci., Vol. 37 (Springer, Berlin, Heidelberg 1986)

    Google Scholar 

  57. M.W. Sigrist (Ed.): Air Monitoring by Spectroscopic Techniques. (Wiley, New York 1994);

    Google Scholar 

  58. J. Xiu, R. Stroud: Acousto-Optic Devices: Principles, Design and Applications. (Wiley, New York 1992)

    Google Scholar 

  59. P. Hess, J. Pelzl (Eds.): Photoacoustic and Photothermal Phenomena, Springer Ser. Opt. Sci., Vol.58 (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  60. P. Hess (Ed.): Photoacoustic, Photothermal and Photochemical Processes in Gases, Topics Curr. Phys., Vol.46 (Springer, Berlin, Heidelberg 1989)

    Google Scholar 

  61. J.C. Murphy, J.W. Maclachlan Spicer, L.C. Aamodt, B.S.H. Royce (Eds.): Photoacoustic and Photothermal Phenomena II, Springer Ser. Opt. Sci., Vol.62 (Springer, Berlin, Heidelberg 1990)

    Google Scholar 

  62. L.B. Kreutzer: Laser optoacoustic spectroscopy: A new technique of gas analysis. Anal. Chem. 46, 239A (1974)

    Google Scholar 

  63. W. Schnell, G. Fischer: Spectraphone measurements of isotopes of water vapor and nitricoxyde and of phosgene at selected wavelengths in the CO- and CO2-laser region. Opt. Lett. 2, 67 (1978)

    ADS  Google Scholar 

  64. C. Hornberger, W. Demtröder: Photoacoustic overtone spectroscopy of acetylene in the visible and near infrared. Chem. Phys. Lett. 190, 171 (1994)

    Google Scholar 

  65. C.K.N. Patel: Use of vibrational energy transfer for excited-state opto-acoustic spectroscopy of molecules. Phys. Rev. Lett. 40, 535 (1978)

    ADS  Google Scholar 

  66. G. Stella, J. Gelfand, W.H. Smith: Photoacoustic detection spectroscopy with dye laser excitation. The 6190 Å CH4 and the 6450 NH3-bands. Chem. Phys. Lett. 39, 146 (1976)

    ADS  Google Scholar 

  67. A.M. Angus, E.E. Marinero, M.J. Colles: Opto-acoustic spectroscopy with a visible CW dye laser. Opt. Commun. 14, 223 (1975)

    ADS  Google Scholar 

  68. E.E. Marinero, M. Stuke: Quartz optoacoustic apparatus for highly corrosive gases. Rev. Sci. Instrum. 50, 31 (1979)

    Google Scholar 

  69. A.C. Tarn: ‘Photoacoustic spectroscopy and other applications’. In: Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983) pp. 1–108

    Google Scholar 

  70. V.Z. Gusev, A.A. Karabutov: Laser Optoacoustics. (Springer, Berlin, Heidelberg, New York 1997)

    Google Scholar 

  71. A.C. Tarn, C.K.N. Patel: High-resolution optoacoustic spectroscopy of rare-earth oxide powders. Appl. Phys. Lett. 35, 843 (1979)

    ADS  Google Scholar 

  72. T.E. Gough, G. Scoles: Optothermal infrared spectroscopy. In: Laser Spectroscopy V, ed. by A.R.W. McKeller, T Oka, B.P. Stoicheff, Springer Ser. Opt. Sci., Vol.30 (Springer, Berlin, Heidelberg 1981) p.337

    Google Scholar 

  73. T.E. Gough, R.E. Miller, G. Scoles: Sub-Doppler resolution infrared molecular beam spectroscopy. Faraday Disc. 71, 6 (1981)

    Google Scholar 

  74. M. Zen: ‘Cyrogenic bolometers’. In: Atomic and Molecular Beams Methods, Vol. I (Oxford Univ. Press, London 1988) Vol. 1

    Google Scholar 

  75. R.E. Miller: Infrared laser spectroscopy. In: Atomic and Molecular Beam Methods, ed. by G. Scoles, (Oxford Univ. Press, London 1992) pp. 192 ff.;

    Google Scholar 

  76. D. Bassi: Detection principles. In: Atomic and Molecular Beam Methods, ed. by G. Scoles (Oxford Univ. Press, London 1992) pp. 153 ff.

    Google Scholar 

  77. T.B. Platz, W. Demtröder: Sub-Doppler optothermal overtone spectroscopy of ethylene. Chem. Phys. Lett. 294, 397 (1998)

    ADS  Google Scholar 

  78. K.K. Lehmann, G. Scoles: Intramolecular dynamics from Eigenstate-resolved infrared spectra. Ann. Rev. Phys. Chem. 45, 241 (1994)

    ADS  Google Scholar 

  79. H. Coufal: Photothermal spectroscopy and its analytical application. Fresenius Z. Anal. Chem. 337, 835 (1990)

    Google Scholar 

  80. F. Träger: Surface analysis by laser-induced thermal waves. Laser u. Optoelektronik 18, 216 Sept. (1986);

    Google Scholar 

  81. H. Coufal, F. Träger, T.J. Chuang, A.C. Tarn: High sensitivity photothermal surface spectroscopy with polarization modulation. Surf, Sci. 145, L504 (1984)

    Google Scholar 

  82. P.E. Siska: Molecular-beam studies of Penning ionization. Rev. Mod. Phys. 65, 337 (1993)

    ADS  Google Scholar 

  83. Y.Y. Kuzyakov, N.B. Zorov: Atomic ionization spectrometry. CRC Critical Rev. Anal. Chem. 20, 221 (1988)

    Google Scholar 

  84. G.S. Hurst, M.G. Payne, S.P. Kramer, J.P. Young: Resonance ionization spectroscopy and single atom detection. Rev. Mod. Phys. 51, 767 (1979)

    ADS  Google Scholar 

  85. G.S. Hurst, M.P. Payne, S.P. Kramer, C.H. Cheng: Counting the atoms. Physics Today 33, 24 (September 1980)

    Google Scholar 

  86. M. Keil, H.G. Krämer, A. Kudell, M.A. Baig, J. Zhu, W. Demtröder, W. Meyer: Rovibrational structures of the pseudo-rotating lithium trimer Li3. J. Chem. Phys. 113, 7414 (2000)

    ADS  Google Scholar 

  87. L. Wöste: Zweiphotonen-Ionisation. Laser u. Optoelektronik 15, 9 (February 1983)

    Google Scholar 

  88. G. Delacretaz, J.D. Garniere, R. Monot, L. Wöste: Photoionization and fragmentation of alkali metal clusters in supersonic molecular beams. Appl. Phys. B 29, 55 (1982)

    ADS  Google Scholar 

  89. H.J. Foth, J.M. Gress, C. Hertzler, W. Demtröder: Sub-Doppler laser spectroscopy of Na3. Z. Physik D 18, 257 (1991)

    ADS  Google Scholar 

  90. V.S. Letokhov: Laser Photoionization Spectroscopy (Academic, Orlando 1987)

    Google Scholar 

  91. G. Hurst, M.G. Payne: in Principles and Applications of Resonance Ionization Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983)

    Google Scholar 

  92. D.H. Parker: ‘Laser ionization spectroscopy and mass spectrometry’. In: Ultrasensitive Laser Spectroscopy, ed. by D.S. Kliger (Academic, New York 1983)

    Google Scholar 

  93. V. Beutel, G.L. Bhale, M. Kuhn, W. Demtröder: The ionization potential of Ag2. Chem. Phys. Lett. 185, 313 (1991)

    ADS  Google Scholar 

  94. H.J. Neusser, U. Boesl, R. Weinkauf, E.W. Schlag: High-resolution laser mass spectrometer. Int. J. Mass Spectrom. 60, 147 (1984)

    Google Scholar 

  95. J.E. Parks, N. Omeneto (Eds.): Resonance Ionization Spectroscopy. Inst. Phys. Conf. Ser. 114 (1990)

    Google Scholar 

  96. D.M. Lübman (Ed.): Lasers and Mass Spectrometry (Oxford Univ. Press, London 1990)

    Google Scholar 

  97. P. Peuser, G. Herrmann, H. Rimke, P. Sattelberger, N. Trautmann, W. Ruster, F. Ames, J. Bonn, H.J. Kluge, V. Krönert, E.W. Otten: Trace detection of plutonium by three-step photoionization with a laser system pumped by a copper vapor laser. Appl. Phys. B 38, 249 (1985)

    ADS  Google Scholar 

  98. D. Popescu, M.L. Pascu, C.B. Collins, B.W. Johnson, I. Popescu: Use of space charge amplification techniques in the absorption spectroscopy of Cs and Cs2. Phys. Rev. A 8, 1666 (1973)

    ADS  Google Scholar 

  99. K. Niemax: Spectroscopy using thermionic diode detectors. Appl. Phys. B 38, 1 (1985)

    Google Scholar 

  100. R. Beigang, W. Makat, A. Timmermann: A thermionic ring diode for high resolution spectroscopy. Opt. Commun. 49, 253 (1984)

    ADS  Google Scholar 

  101. R. Beigang, A. Timmermann: The thermionic annular diode: a sensitive detector for highly excited atoms and molecules. Laser u. Optoelektronik 4, 252 (1984)

    Google Scholar 

  102. D.S. King, P.K. Schenck: Optogalvanic spectroscopy. Laser Focus 14, 50 (March 1978)

    Google Scholar 

  103. J.E.M. Goldsmith, J.E. Lawler: Optogalvanic spectroscopy. Contemp. Phys. 22, 235 (1981)

    ADS  Google Scholar 

  104. B. Barbieri, N. Beverini, A. Sasso: Optogalvanic spectroscopy. Rev. Mod. Phys. 62, 603 (1990)

    ADS  Google Scholar 

  105. K. Narayanan, G. Ullas, S.B. Rai: A two step optical double resonance study of a Fe-Ne hollow cathode discharge using optogalvanic detection. Opt. Commun. 184, 102 (1991)

    Google Scholar 

  106. C.R. Webster, C.T. Rettner: Laser optogalvanic spectroscopy of molecules. Laser Focus 19, 41 (February 1983)

    Google Scholar 

  107. D. Feldmann: Optogalvanic spectroscopy of some molecules in discharges: NH2, NO2, A2 and N2. Opt. Commun. 29, 67 (1979)

    ADS  Google Scholar 

  108. K. Kawakita, K. Fukada, K. Adachi, S. Maeda, C. Hirose: Doppler-free optogalvanic spectrum of He2(b 3g - f 3∆u) transitions. J. Chem. Phys. 82, 653 (1985)

    ADS  Google Scholar 

  109. K. Myazaki, H. Scheingraber, C.R. Vidal: ‘Optogalvanic double-resonance spectroscopy of atomic and molecular discharge’. In: Laser Spectroscopy VI, ed. by H.P. Weber, W. Lüthy, Springer Ser. Opt. Sci., Vol. 40 (Springer, Berlin, Heidelberg 1983) p. 93

    Google Scholar 

  110. J.C Travis: ‘Analytical optogalvanic spectroscopy in flames’. In: Analytical Laser Spectroscopy, ed. by S. Martellucci, A.N. Chester (Plenum, New York 1985) p. 213

    Google Scholar 

  111. D. King, P. Schenck, K. Smyth, J. Travis: Direct calibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps. Appl. Opt. 16, 2617 (1977)

    ADS  Google Scholar 

  112. V. Kaufman, B. Edlen: Reference wavelength from atomic spectra in the range 15 Å to 25 000 Å. J. Phys. Chem. Ref. Data 3, 825 (1974)

    ADS  Google Scholar 

  113. A. Giacchetti, R.W. Stanley, R. Zalubas: Proposed secondary standard wavelengths in the spectrum of thorium. J. Opt. Soc. Am. 60, 474 (1969)

    ADS  Google Scholar 

  114. J.E. Lawler, A.I. Ferguson, J.E.M. Goldsmith, D.J. Jackson, A.L. Schawlow: ‘Doppler-free optogalvanic spectroscopy’. In: Laser Spectroscopy IV, ed. by H. Walther, K.W. Rothe, Springer Ser. Opt. Sci., Vol.21 (Springer, Berlin, Heidelberg 1979) p. 188

    Google Scholar 

  115. W. Bridges: Characteristics of an optogalvanic effect in cesium and other gas discharge plasmas. J. Opt. Soc. Am. 68, 352 (1978)

    MathSciNet  ADS  Google Scholar 

  116. R.S. Stewart, J.E. Lawler (Eds.): Optogalvanic Spectroscopy (Hilger, London 1991)

    Google Scholar 

  117. R.J. Saykally, R.C. Woods: High resolution spectroscopy of molecular ions. Ann. Rev. Phys. Chem. 32, 403 (1981)

    ADS  Google Scholar 

  118. C.S. Gudeman, R.J. Saykally: Velocity modulation infrared laser spectroscopy of molecular ions. Am. Rev. Phys. Chem. 35, 387 (1984)

    ADS  Google Scholar 

  119. C.E. Blom, K. Müller, R.R. Filgueira: Gas discharge modulation using fast electronic switches. Chem. Phys. Lett. 140, 489 (1987)

    ADS  Google Scholar 

  120. M. Gruebele, M. Polak, R. Saykally: Velocity modulation laser spectroscopy of negative ions: The infrared spectrum of SH-. J. Chem. Phys. 86, 1698 (1987)

    ADS  Google Scholar 

  121. J.W. Farley: Theory of the resonance lineshape in velocity-modulation spectroscopy J. Chem. Phys. 95, 5590 (1991)

    ADS  Google Scholar 

  122. G. Lan, H.D. Tholl, J.W. Farley: Double-modulation spectroscopy of molecular ions: Eliminating the background in velocity-modulation spectroscopy. Rev. Sci. Instrum. 62, 944 (1991)

    ADS  Google Scholar 

  123. M.B. Radunsky, R.J. Saykally: Electronic absorption spectroscopy of molecular ions in plasmas by dye laser velocity modulation spectroscopy. J. Chem. Phys. 87, 898 (1987)

    ADS  Google Scholar 

  124. K.J. Button (Ed.): Infrared and Submillimeter Waves (Academic, New York 1979)

    Google Scholar 

  125. K.M. Evenson, R.J. Saykally, D.A. Jennings, R.E. Curl, J.M. Brown: ‘Far infrared laser magnetic resonance’. In: Chemical and Biochemical Applications of Lasers, ed. by C.B. Moore (Academic, New York 1980) Chapt.V

    Google Scholar 

  126. P.B. Davies, K.M. Evenson: ‘Laser magnetic resonance (LMR) spectroscopy of gaseous free radicals’. In: Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, S.E. Harris, Lect. Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975)

    Google Scholar 

  127. W. Urban, W. Herrmann: Zeeman modulation spectroscopy with spin-flip Raman laser. Appl. Phys. 17, 325 (1978)

    ADS  Google Scholar 

  128. K.M. Evenson, C.J. Howard: ‘Laser Magnetic Resonance Spectroscopy’. In: Laser Spectroscopy. R.G. Brewer, ed. by A. Mooradian (Plenum, New York 1974)

    Google Scholar 

  129. A. Hinz, J. Pfeiffer, W. Bohle, W. Urban: Mid-infrared laser magnetic resonance using the Faraday and Voigt effects for sensitive detection. Mol. Phys. 45, 1131 (1982)

    ADS  Google Scholar 

  130. Y Ueda, K. Shimoda: ‘Infrared laser Stark spectroscopy’. In: Laser Spectroscopy II, ed. by S. Haroche, J.C. Pebay-Peyroula, T.W. Hänsch, Lecture Notes Phys., Vol.43 (Springer, Berlin, Heidelberg 1975) p. 186

    Google Scholar 

  131. K. Uehara, T. Shimiza, K. Shimoda: High resolution Stark spectroscopy of molecules by infrared and far infrared masers. IEEE J. Quantum Electron. 4, 728 (1968)

    ADS  Google Scholar 

  132. K. Uchara, K. Takagi, T. Kasuya: Stark Modulation Spectrometer, Using a Wideband Zeeman-Tuned He-Xe Laser. Appl. Phys. 24 (1981)

    Google Scholar 

  133. L.R. Zink, D.A. Jennings, K.M. Evenson, A. Sasso, M. Inguscio: New techniques in laser Stark spectroscopy. J. Opt. Soc. Am. B 4, 1173 (1987)

    ADS  Google Scholar 

  134. K.M. Evenson, R.J. Saykally, D.A. Jennings, R.F. Curl, J.M. Brown: ‘Far infrared laser magnetic resonance’. In: Chemical and Biochemical Applications of Lasers, Vol. V, ed. by C.B. Moore (Academic, New York 1980)

    Google Scholar 

  135. M. Inguscio: Coherent atomic and molecular spectroscopy in the far infrared. Phys. Scripta 37, 699 (1989)

    ADS  Google Scholar 

  136. W.H. Weber, K. Tanaka, T. Kanaka (Eds.): Stark and Zeeman techniques in laser spectroscopy. J. Opt. Soc. Am. B 4, 1141 (1987)

    Google Scholar 

  137. J.L. Kinsey: Laser-induced fluorescence. Ann. Rev. Phys. Chem. 28, 349 (1977)

    ADS  Google Scholar 

  138. A. Delon, R. Jost: Laser-induced dispersed fluorescence spectroscopy of 107 vibrome levels of NO2 ranging from 12 000 to 17 600 cm-1. J. Chem. Phys. 114, 331 (2001)

    ADS  Google Scholar 

  139. M.A. Clyne, I.S. McDermid: Laser-induced fluorescence: electronically excited states of small molecules. Adv. Chem. Phys. 50, 1 (1982)

    Google Scholar 

  140. J.R. Lakowicz: Topics in Fluorescence Spectroscopy (Plenum, New York 1991);

    Google Scholar 

  141. J.N. Miller: Fluorescence Spectroscopy (Ellis Harwood, Singapore 1991);

    Google Scholar 

  142. O.S. Wolflich (Ed.): Fluorescence Spectroscopy (Springer, Berlin, Heidelberg 1992)

    Google Scholar 

  143. C. Schiitte: The Theory of Molecular Spectroscopy (North-Holland, Amsterdam 1976)

    Google Scholar 

  144. G. Herzberg: Molecular Spectra and Molecular Structure, Vol.1 (Van Nostrand, New York 1950)

    Google Scholar 

  145. G. Höning, M. Cjajkowski, M. Stock, W. Demtröder: High resolution laser spectroscopy of Cs2. J. Chem. Phys. 71, 2138 (1979)

    ADS  Google Scholar 

  146. C. Amiot, W. Demtröder, C.R. Vidal: High resolution Fourier-spectroscopy and laser spectroscopy of Cs2. J. Chem. Phys. 88, 5265 (1988)

    ADS  Google Scholar 

  147. C. Amiot: Laser-induced fluorescence of Rb2. J. Chem. Phys. 93, 8591 (1990)

    ADS  Google Scholar 

  148. R. Bacis, S. Chunassy, R.W. Fields, J.B. Koffend, J. Verges: High resolution and sub-Doppler Fourier transform spectroscopy. J. Chem. Phys. 72, 34 (1980)

    ADS  Google Scholar 

  149. R. Rydberg: Graphische Darstellung einiger bandenspektroskopischer Ergebnisse. Z. Physik 73, 376 (1932)

    ADS  Google Scholar 

  150. O. Klein: Zur Berechnung von Potentialkurven zweiatomiger Moleküle mit Hilfe von Spekraltermen. Z. Physik 76, 226 (1938)

    ADS  Google Scholar 

  151. A.L.G. Rees: The calculation of potential-energy curves from band spectroscopic data. Proc. Phys. Soc. London, Sect. A 59, 998 (1947)

    ADS  MATH  Google Scholar 

  152. R.N. Zare, A.L. Schmeltekopf, W.J. Harrop, D.L. Albritton: J. Mol. Spectrosc. 46, 37 (1973)

    ADS  Google Scholar 

  153. G. Ennen, C. Ottinger: Laser fluorescence measurements of the 7LiD(X 1+)-potential up to high vibrational quantum numbers. Chem. Phys. Lett. 36, 16 (1975)

    ADS  Google Scholar 

  154. M. Raab, H. Weickenmeier, W. Demtröder: The dissociation energy of the cesium dimer. Chem. Phys. Lett. 88, 377 (1982)

    ADS  Google Scholar 

  155. C.E. Fellows: The NaLi 1 1+ (X) electronic ground state dissociation limit. J. Chem. Phys. 94, 5855 (1991)

    ADS  Google Scholar 

  156. A.G. Gaydon: Dissociation Energies and Spectra of Diatomic Molecules (Chapman and Hall, London 1968)

    Google Scholar 

  157. H. Atmanspacher, H. Scheingraber, C.R. Vidal: Laser-induced fluorescence of the MgCa molecule. J. Chem. Phys. 82, 3491 (1985)

    ADS  Google Scholar 

  158. R.J. LeRoy: Molecular Spectroscopy, Specialist Periodical Reports, Vol.1 (Chem. Soc, Burlington Hall, London 1973) p. 113

    Google Scholar 

  159. W. Demtröder, W. Stetzenbach, M. Stock, J. Witt: Lifetimes and Franck-Condon factors for the B 1uX MATH-system of Na2. J. Mol. Spectrosc. 61, 382 (1976)

    ADS  Google Scholar 

  160. E.J. Breford, F. Engelke: Laser-induced fluorescence in supersonic nozzle beams: applications to the NaK D 1∏ → X 1∑ and D </sup>∏ → X 3∑ systems. Chem. Phys. Lett. 53, 282 (1978);

    ADS  Google Scholar 

  161. E.J. Breford, F. Engelke: J. Chem. Phys. 71, 1949 (1979)

    Google Scholar 

  162. J. Tellinghuisen, G. Pichler, W.L. Snow, M.E. Hillard, R.J. Exton: Analaysis of the diffuse bands near 6100 Å in the fluorescence spectrum of Cs2. Chem. Phys. 50, 313 (1980)

    Google Scholar 

  163. H. Scheingraber, C.R. Vidal: Discrete and continuous Franck-Condon factors of the Mg2 A 1u-X 1Is system and their J dependence. J. Chem. Phys. 66, 3694 (1977)

    ADS  Google Scholar 

  164. C.A. Brau, J.J. Ewing: ‘Spectroscopy, kinetics and performance of rare-gas halide lasers’. In: Electronic Transition Lasers, ed. by J.I. Steinfeld (MIT Press, Cambridge, Mass. 1976)

    Google Scholar 

  165. D. Eisel, D. Zevgolis, W. Demtröder: Sub-Doppler laser spectroscopy of the NaK-molecule. J. Chem. Phys. 71, 2005 (1979)

    ADS  Google Scholar 

  166. E.V. Condon: Nuclear motions associated with electronic transitions in diatomic molecules. Phys. Rev. 32, 858 (1928)

    ADS  Google Scholar 

  167. J. Tellinghuisen: The McLennan bands of I2: A highly structured continuum. Chem. Phys. Lett. 29, 359 (1974)

    ADS  Google Scholar 

  168. H.J. Vedder, M. Schwarz, H.J. Foth, W. Demtröder: Analysis of the perturbed NO2 2B22A1 system in the 591.4–592.9 nm region based on sub-Doppler laser spectroscopy. J. Mol. Spectrosc. 97, 92 (1983)

    ADS  Google Scholar 

  169. A. Delon, R. Jost: Laser-induced dispersed fluorescence spectra of jet-cooled NO2. J. Chem. Phys. 95, 5686 (1991)

    ADS  Google Scholar 

  170. Th. Zimmermann, H.J. Köppel, L.S. Cederbaum, G. Persch, W. Demtröder: Confirmation of random-matrix fluctuations in molecular spectra. Phys. Rev. Lett. 61, 3 (1988)

    ADS  Google Scholar 

  171. K.K. Lehmann, St.L. Coy: The optical spectrum of NO2: Is it or isn’t it chaotic? Ber. Bunsenges. Phys. Chem. 92, 306 (1988)

    Google Scholar 

  172. J.M. Gomez-Llorentl, H. Taylor: Spectra in the chaotic region: A classical analysis for the sodium trimer. J. Chem. Phys. 91, 953 (1989)

    ADS  Google Scholar 

  173. K.L. Kompa: Chemical Lasers, Topics Curr. Chem., Vol.37 (Springer, Berlin, Heidelberg 1975)

    Google Scholar 

  174. R. Schnabel, M. Kock: Time-Resolved nonlinear LIF-techniques for a combined lifetime and branching fraction measurements. Phys. Rev. A 63, 125 (2001)

    Google Scholar 

  175. P.J. Dagdigian, H.W. Cruse, A. Schultz, R.N. Zare: Product state analysis of BaO from the reactions Ba + CO2 and Ba + O2. J. Chem. Phys. 61, 4450 (1974)

    ADS  Google Scholar 

  176. J.G. Pruett, R.N. Zare: State-to-state reaction rates: Ba + HF(v = 0) → BaF(v = 0 - 12) + H″. J. Chem. Phys. 64, 1774 (1976)

    ADS  Google Scholar 

  177. H.W. Cruse, P.J. Dagdigian, R.N. Zare: Crossed beam reactions of barium with hydrogen halides. Faraday Discuss. Chem. Soc. 55, 277 (1973)

    Google Scholar 

  178. Y. Nozaki, et al.: Identification of Si and SiH. J. Appl. Phys. 88, 5437 (2000)

    ADS  Google Scholar 

  179. V. Hefter, K. Bergmann: ‘Spectroscopic detection methods’. In: Atomic and Molecular Beam Methods, Vol. I, ed. by G. Scoles (Oxford Univ. Press, New York 1988) p. 193

    Google Scholar 

  180. J.E.M. Goldsmith: ‘Recent advances in flame diagnostics using fluorescence and ionisation techniques’. In: Laser Spectroscopy VIII, ed. by S. Svanberg, W. Persson, Springer Ser. Opt. Sci., Vol.55 (Springer, Berlin, Heidelberg 1987) p.337

    Google Scholar 

  181. J. Wolfrum (Ed.): Laser diagnostics in combustion. Appl. Phys. B 50, 439 (1990)

    Google Scholar 

  182. T.P. Hughes: Plasma and Laser Light (Hilger, Bristol 1975)

    Google Scholar 

  183. M. Bellini, P. DeNatale, G. DiLonardo, L. Fusina, M. Inguscio, M. Prevedelli: Tunable far infrared spectroscopy of 16O3 ozone. J. Mol. Spectrosc. 152, 256 (1992)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Demtröder, W. (2003). Doppler-Limited Absorption and Fluorescence Spectroscopy with Lasers. In: Laser Spectroscopy. Advanced Texts in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05155-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05155-9_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05157-3

  • Online ISBN: 978-3-662-05155-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics