Skip to main content

Abstract

Erythrocyte ion channels have been described from several animal species and have been more or less extensively characterized. However, the most comprehensive picture has been established for mammalian erythrocytes, especially human, which will be the focus of this chapter. Among the pathways for passive, conductive transport of inorganic ions, two different cation channels have been extensively characterized at present, an intermediate conductance Ca2+-activated K+ channel, also known as the Gárdos channel, and a voltage-dependent non-selective cation channel. It should be remembered, however, that transport mediated by these channels was observed decades before ion channels were established facts of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez J, Garcia-Sancho J, Herreros B (1986) The role of calmodulin on Ca2+-dependent K+ transport regulation in the human red cell. Biochim Biophys Acta 860:25–34

    Article  Google Scholar 

  • Alvarez J, Montero M, Garcia-Sancho J (1992) High affinity inhibition of Ca2+-dependent K+ channels by cytochrome P-450 inhibitors. J Biol Chem 267:11789–11793

    Google Scholar 

  • Armando-Hardy M, Ellory JC, Ferreira HG, Fleminger S, Lew VL (1975) Inhibition of the calcium-induced increase in the potassium permeability of human red blood cells by quinine. J Physiol 250:32P

    Google Scholar 

  • Bennekou P (1993) The voltage-gated non-selective cation channel from human red cells is sensitive to acetylcholine. Biochim Biophys Acta 1147:165–167

    Article  Google Scholar 

  • Bennekou P, Christophersen P (1988) The occurrence of a low conductance channel in the human red cell. Acta Physiol Scand 13:S575

    Google Scholar 

  • Bennekou P, Christophersen P (1992) A human red cell cation channel showing hysteresis like voltage activation/inactivation. Acta Physiol Scand 146:608

    Google Scholar 

  • Bennekou P, Rasmussen DE, Kristensen BI (1999) The effect of a channel opener, 1-EBIO, on the human red cell Ca2+-activated K+-channel. Physiol Research 48, suppl 1:57

    Google Scholar 

  • Bennekou P, Pedersen O, M0ller A, Christophersen P (2000) Volume control in sickle cells is facilitated by the novel anion conductance inhibitor NS1652. Blood 95:1842–1848

    Google Scholar 

  • Berkowitz LR, Orringer EP (1982) Effects of cetiedil on monovalent cation permeability in the erythrocyte: An explanation for the efficacy of cetiedil in the treatment of sickle cell anemia. Blood Cells 8:283–288

    Google Scholar 

  • Bernhardt I, Bogdanova AY, Kummerow D, Kiessling K, Hamann J, Ellory JC (1999) Characterization of the K+(Na+)/H+ monovalent cation exchanger in the human red blood cell membrane: Effects of transport inhibitors. J Gen Physiol 18:119–137

    Google Scholar 

  • Blum RM, Hoffman JF (1972) Ca-induced K transport in human red cells: Localization of the Ca-sensitive site to the inside of the membrane. Biochem Biophys Res Commun 46:1146–1153

    Article  Google Scholar 

  • Brugnara C, De Franceschi L, Alper SL (1993) Ca2+-activated K+ transport in erythrocytes. J Biol Chem 268:8760–8768

    Google Scholar 

  • Brugnara C, Armsby CC, De Franceschi L, Crest M, Euclaire MF, Alper SL (1995) Ca2+-activated K+ channels of human and rabbit erythrocytes display distinctive patterns of inhibition by venom peptide toxins. J Membrane Biol 147:71–82

    Article  Google Scholar 

  • Castle NA, Strong PN (1986) Identification of two toxins from scorpion (Leiurus quinques-triatus) venom which block distinct classes of calcium-activated potassium channel. FEBS Letters 209:117–121

    Article  Google Scholar 

  • Christophersen P (1991) Ca2+-activated K+ channel from human erythrocyte membranes: Single channel rectification and selectivity. J Membrane Biol 119:75–83

    Article  Google Scholar 

  • Christophersen P, Bennekou P (1988) Mg2+ affects the single channel conductance of the human red cell K+-channel, but not rectification. Acta Physiol Scand 132:41 A

    Google Scholar 

  • Christophersen P, Bennekou P (1990) The gating of human red cell Ca2+-activated K+-channels is strongly affected by the permeant cation species. Biochim Biophys Acta 1030:183–187

    Article  Google Scholar 

  • Christophersen P, Bennekou P (1991) Evidence for a voltage-gated, non-selective cation channel in the human red cell membrane. Biochim Biophys Acta 1065:103–106

    Article  Google Scholar 

  • Dawson H (1939) Studies on the permeability of erythrocytes. VI. The effect of reducing the salt concentration in the medium surrounding the cell. Biochem J 33:389–401

    Google Scholar 

  • Demo SD, Yellen G (1992) Ion effects on gating of the Ca2+-activated K+ channel correlate with occupancy of the pore. Biophys J 61:639–648

    Article  Google Scholar 

  • Desai SA, Bezrukov SM, Zimmerberg J (2000) A voltage-dependent channel involved in nutrient uptake by the red blood cells infected with the malaria parasite. Nature 406:1001–1004

    Article  ADS  Google Scholar 

  • Devor DC, Singh AK, Frizzell RA, Bridges RJ (1996) Modulation of Cl- secretion by ben-zimidazolones. I. Direct activation of a Ca2+-dependent K+ channel. Am J Physiol 271:L775–L784

    Google Scholar 

  • Dunn PM (1998) The action of blocking agents applied to the inner face of Ca2+-activated K+ channels from human erythrocytes. J Membrane Biol 165:133–143

    Article  Google Scholar 

  • Duranton SM, Huber SM, Lang F (2002) Oxidation induces a Cl-dependent cation conductance in human red blood cells. J Physiol 539:847–855

    Article  Google Scholar 

  • Ekman A, Manninen V, Salminen S (1969) Ion movements in red cells treated with propranolol. Acta Physiol Scand 75:333–344

    Article  Google Scholar 

  • Ellory JC, Kirk K, Culliford SJ, Nash GB, Stuart J (1992) Nitrendipine is a potent inhibitor of the Ca2+-activated K+ channel of human erythrocytes. FEBS Letters 296:219–221

    Article  Google Scholar 

  • Fanger CM, Ghanshani S, Logsdon NJ, Rauer H, Kaiman K, Zhou J, Beckingham K, Chandy KE, Cahalan MD, Aiyar J (1999) Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCal. J Biol Chem 274:5746–5754

    Article  Google Scholar 

  • Formenti A, Rodighiero S (2001) Whole-cell and perforated-patch recordings of voltage-dependent outward and inward cation currents in human red blood cells. XIII Meeting of the European Association for Red Cell Research. Abstract 72, p 59

    Google Scholar 

  • Gárdos G (1958) The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta 30:653–654

    Article  Google Scholar 

  • Gárdos G, Szász I, Sarkadi B (1975) Mechanism of Ca-dependent K-transport in human red cells. In: Gárdos G, Szász I (eds) Biomembranes: structure and function. North-Holland, Amsterdam, pp 167–180

    Google Scholar 

  • Grygorczyk R (1987) Temperature dependence of Ca2+ activated K+ currents in the membrane of human erythrocytes. Biochim Biophys Acta 902:159–168

    Article  Google Scholar 

  • Grygorczyk R, Schwarz W (1983) Properties of the Ca2+ activated K+ conductance of human red cells as revealed by the patch-clamp technique. Cell Calcium 4:499–510

    Article  Google Scholar 

  • Grygorczyk R, Schwarz W (1985) Ca2+-activated K+ permeability in human erythrocytes: Modulation of single-channel events. Eur Biophys J 12:57–65

    Article  Google Scholar 

  • Grygorczyk R, Schwarz W, Passow H (1984) Ca2+-activated K+ channels in human red cells. Comparison of single-channel currents with ion fluxes. Biophys J 45:693–698

    Article  Google Scholar 

  • Halperin JA, Brugnara C, Van Ha T, Tosteson DC (1990) Voltage-activated cation permeability in high-potassium but not low-potassium red blood cells. Am J Physiol 258:C1169–C1172

    Google Scholar 

  • Hamill OP (1981) Potassium channel currents in human red blood cells. J Physiol 319:97–98

    Google Scholar 

  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100

    Article  Google Scholar 

  • Heinz A, Passow H (1980) Role of external potassium in the calcium-induced potassium efflux from human red blood cell ghosts. J Membrane Biol 57:119–131

    Article  Google Scholar 

  • Hodgkin AL, Keynes RD (1955) The potassium permeability of a giant nerve fibre. J Physiol 128:61–88

    Google Scholar 

  • Hoffman JF, Laris PC (1974) Determinations of membrane potentials in human and Am-phiuma red blood cells by means of a fluorescent probe. J Physiol 239:519–552

    Google Scholar 

  • Huber SM, Gamper N, Lang F (2001) Chloride conductance and volume-regulatory nonselective cation conductance in human red blood cell ghosts. Pflügers Arch 441:551–558

    Article  Google Scholar 

  • Huber SM, Uhlemann AC, Gamper NL, Duranton C, Kremsner PG, Lang F (2002) Plasmodium falciparum activates endogenous Cl- channels of human erythrocytes by membrane oxidation. EMBO J 21:22–30

    Article  Google Scholar 

  • Ishii TM, Silvia C, Hirsberg B, Bond CT, Adelman JP, Maylie J (1997) A human intermediate conductance calcium-activated potassium channel. Proc Natl Acad Sci USA 94:11651–11656

    Article  ADS  Google Scholar 

  • Jensen BS, Strøbæk D, Christophersen P, Jørgensen TD, Hansen C, Silahtaroglu A, Olesen SP, Ahring PK (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+-channel. Am J Physiol 275:C848–C856

    Google Scholar 

  • Joiner WJ, Wang LY, Tang MD, Kaczmarek LK (1997) hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc Natl Acad Sci USA 94:11013–11018

    Article  ADS  Google Scholar 

  • Kaestner L, Bollensdorff C, Bernhardt I (1999) Non-selective voltage-activated cation channel in human red blood cell membrane. Biochim Biophys Acta 1417:9–15

    Article  Google Scholar 

  • Kaestner L, Christophersen P, Bernhardt I, Bennekou P (2000) The non-selective voltage-activated cation channel in the human red blood cell membrane: Reconciliation between two conflicting reports and further characterization. Biolectrochem 52:117–125

    Article  Google Scholar 

  • Kaji DM (1990) Nifedipine inhibits calcium-activated K transport in human erythrocytes. Am J Physiol 259:C332–C339

    Google Scholar 

  • Knauf PA, Riordan JR, Schuhman B, Wood-Guth I, Passow H (1975) Calcium-potassium-stimulated net potassium efflux from human erythrocyte ghosts. J Membrane Biol 25:1–22

    Article  Google Scholar 

  • Kristensen P, Rasmussen DE, Kristensen BI (1999) Properties of thiol-specific anti-oxidant protein or calpromotin in solution. Biochem Biophys Res Commun 262:127–131

    Article  Google Scholar 

  • Lassen UV, Rasmussen BE (1978) Use of microelectrodes for measurement of membrane potentials. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology. Springer-Verlag, Berlin, pp 169–203

    Google Scholar 

  • Lassen UV, Vestergaard-Bogind B, Bengtson O (1974) Calcium-related hyperpolarization of the Amphiuma red cell membrane following micropuncture. J Membrane Biol 18:125–144

    Article  Google Scholar 

  • Lassen UV, Pape L, Vestergaard-Bogind B (1976) Effect of calcium on the membrane potential of Amphiuma red cells. J Membrane Biol 26:51–70

    Article  Google Scholar 

  • Latorre R, Miller C (1983) Conduction and selectivity in potassium channels. J Membrane Biol 71:11–30

    Article  Google Scholar 

  • Lepke S, Shields M, Passow H (1987) Irreversible inhibition of Ca2+ activated K+ channels in the red blood cell membrane by Ca2+. Deutsches Membranforum 368:1262

    Google Scholar 

  • Lew VL, Muallem S, Seymour CA (1982) Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes. Nature 296:742–744

    Article  ADS  Google Scholar 

  • Logsdon NJ, Kang J, Togo JA, Christian EP, Ayiar J (1997) A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J Biol Chem 272:32723–32726

    Article  Google Scholar 

  • Meltzer HL, Kassir S (1983) Inhibition of calmodulin-activated Ca2+-ATPase by propranolol and nadol. Biophys Biochem Acta 755:452–456

    Article  Google Scholar 

  • Moore RG, Plishker GA, Shriver SK (1990) Purification and measurement of calpromotin, the cytoplasmic protein which activates calcium-dependent potassium transport. Biochem Biophys Res Commun 166:146–153

    Article  Google Scholar 

  • Moore RB, Mankad MV, Shriver SK, Mankad VN, Plishker GA (1991) Reconstitution of Ca2+-dependent K+ transport in erythrocyte membrane vesicles requires a cytoplasmic protein. J Biol Chem 266:18964–18968

    Google Scholar 

  • Pape L, Kristensen BI (1984) A calmodulin activated Ca2+-independent K+ channel in human erythrocyte membrane inside-out vesicles. Biochem Biophys Acta 770:1–6

    Article  Google Scholar 

  • Passow H, Schwarz W, Glibowicka M, Aranibar N, Raida M (1988) Studies of erythroid band 3 protein-mediated anion transport in red blood cells and in Xenopus oocytes. In: Palmieri F, Quagliariello E (eds) Molecular basis of biomembrane transport. Elsevier, Amsterdam, pp 121–140

    Google Scholar 

  • Pellegrino M, Pellegrini M (1998) Modulation of Ca2+-activated K+ channels of human erythrocytes endogeneous cAMP-dependent protein kinase. Pflügers Arch 436:749–756

    Article  Google Scholar 

  • Porzig H (1975) Comparative study of the effects of propranolol and tetracaine on cation movements in resealed human red cell ghosts. J Physiol 249:27–49

    Google Scholar 

  • Reichstein E, Rothstein A (1981) Effects of Quinine on Ca++-induced K+ efflux from human red blood cells. J Membrane Biol 59:57–63

    Article  Google Scholar 

  • Riordan JR, Passow H (1971) Effects of calcium and lead on potassium permeability of human erythrocyte ghosts. Biochim Biophys Acta 249:601–605

    Article  Google Scholar 

  • Schrøder RL, Jensen BS, Strøbæk D, Olesen S-P, Christophersen P (2000) Activation of the human intermediate-conductance Ca2+-activated K+ channel by methylxanthines. Pflügers Arch 40:809–818

    Google Scholar 

  • Schwarz W, Grygorczyk R, Hof D (1989a) Recording single-channel currents from human red cells. Methods Enzymol 173:112–122

    Article  Google Scholar 

  • Schwarz W, Keim H, Fehlau R, Fuhrmann GF (1989b) Modulation of the Ca2+- or Pb2+-activated K+-selective channels in human red cells. I. Effects of propranolol. Biochim Biophys Acta 978:32–36

    Article  Google Scholar 

  • Smith C, Phillips M, Miller C (1986) Purification of charybdotoxin, a specific inhibitor of the high-conductance Ca2+-activated K+-channel. J Biol Chem 261:14607–14613

    Google Scholar 

  • Stampe P, Vestergaard-Bogind B (1989) Ca2+-activated K+ conductance of the human red cell membrane: Voltage-dependent Na+ block of outward-going currents. J Membrane Biol 112:9–14

    Article  Google Scholar 

  • Swenson RP Jr, Armstrong CM (1981) K+ channels close more slowly in the presence of external K+ and Rb+. Nature 292:427–429

    Article  ADS  Google Scholar 

  • Vestergaard-Bogind B, Bennekou P (1982) Induced oscillations in K+-conductance and membrane potential of human erythrocytes mediated by ionophore A23187. Biochem Biophys Acta 688:37–44

    Article  Google Scholar 

  • Vestergaard-Bogind B, Stampe P, Christophersen P (1985) Single-file diffusion through the Ca2+-activated K+ channel of human red cells. J Membrane Biol 88:67–75

    Article  Google Scholar 

  • Vestergaard-Bogind B, Stampe P, Christophersen P (1987) Voltage dependence of the Ca2+-activated K+ conductance of the human red cell membranes is strongly dependent on the extracellular K+ concentration. J Membrane Biol 95:121–130

    Article  Google Scholar 

  • Wilbrandt W (1937) A relation between the permeability of the red cell membrane and its metabolism. Trans Faraday Soc 33:956–959

    Article  Google Scholar 

  • Wilbrandt W, Schatzmann HJ (1960) Changes in the passive cation permeability of erythrocytes in low elelectrolyte media. In: Wolstenholme GEW, O’Connor CM (eds) Ciba Foundation Study Group No. 5. J & A Churchill, London, pp 34–53

    Google Scholar 

  • Wolff D, Cecchi X, Spalvins A, Canessa M (1988) Charybdotoxin blocks with high affinity the Ca2+-activated K+ channel of Hb A and Hb S red cells: individual differences in the number of channels. J Membrane Biol 106:243–252

    Article  Google Scholar 

  • Wood PG (1984) The spontaneous activation of a potassium channel during the preparation of resealed human erythrocyte ghosts. Biochim Biophys Acta 774:103–109

    Article  Google Scholar 

  • Xia X-M, Fakler B, Rivard A, Wayman G, Johnson-Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP (1998) Mechanism of calcium gating in small conductance calcium-activated potassium channels. Nature 395:503–507

    Article  ADS  Google Scholar 

  • Yingst DR, Hoffman JF (1984) Ca-induced K transport in human red blood cell ghosts containing arsenazo III. Transmembrane interactions of Na, K, and Ca and the relationship to the functioning Na-K pump. J Gen Physiol 83:19–45

    Article  Google Scholar 

  • Ørskov SL (1935) Untersuchungen über den Einfluss von Kohlensäure und Blei auf die Permeabilität der Blutkörperchen für Kalium und Rubidium. Biochem Z 279:250–261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bennekou, P., Christophersen, P. (2003). Ion Channels. In: Bernhardt, I., Ellory, J.C. (eds) Red Cell Membrane Transport in Health and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05181-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05181-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07920-7

  • Online ISBN: 978-3-662-05181-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics