Skip to main content

5-Hydroxytryptamine and Human Heart Function: The Role of 5-HT4 Receptors

  • Chapter
5-HT4 Receptors in the Brain and Periphery

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

Abstract

5-Hydroxytryptamine (5-HT) can elicit both cardioexcitation and cardiodepression. 5-HT exerts these effects both through a direct action in the heart and indirectly via stimulation of the central nervous system (CNS). Here we concentrate mainly on the direct effects of 5-HT on the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sawada M, Ichinose M, Ito I, Maeno T, Mcadoo DJ. Effects of 5hydroxytryptamine on membrane potential, contractility, accumulation of cyclic AMP, and Cat movements in anterior aorta and ventricle of aplysia. J Neurophysiol 1984; 51: 361–374.

    PubMed  CAS  Google Scholar 

  2. Greenberg MJ. Structure-activity relationshp of tryptamine analogues on the heart of venus mercenaria. Br J Pharmacol 1960; 15: 375–388.

    CAS  Google Scholar 

  3. Kaumann AJ. Two classes of myocardial 5-hydroxytryptamine receptors that are neither 5-HT1 nor 5-HT,. J Cardiovasc Pharmacol 1985; 7 (Suppl): S76 - S78.

    Article  PubMed  CAS  Google Scholar 

  4. Kaumann AJ. Further differences between 5-HT receptors of atrium and ventricle in cat heart. Br J Pharmacol 1986; 89: 546 P.

    Article  Google Scholar 

  5. Villalon CM, Heiligers JPC, Centurion D, DeVries P, Saxena PR. Characterization of putative 5-HT7 receptors mediating tachycardia in the cat. Br J Pharmacol 1997; 121: 1187–1195.

    Article  PubMed  CAS  Google Scholar 

  6. Docherty JR. Investigations of cardiovascular 5-hydroxytryptamine receptor subtypes in the rat. Naunyn-Schmiedeberg’s Arch Pharmacol 1988; 337: 1–8.

    PubMed  CAS  Google Scholar 

  7. Fozard JR. MDL 72222, a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 1984; 326: 36–44.

    Article  PubMed  CAS  Google Scholar 

  8. Kaumann AJ. 5-HT4_like receptors in mammalian atria. J Neural Transm 1991; 34(Suppl):195–201.

    Google Scholar 

  9. Kaumann AJ. Piglet sinoatrial 5-HT receptors resemble human atrial 5-HT4-like receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 1990; 342: 619–622.

    PubMed  CAS  Google Scholar 

  10. Villalon CM, DenBoer MO, Heiligers JPC, Saxena PR. Mediation of 5-hydroxytryptamine-induced tachycardia in the pig by the putative 5-HT4 receptor. Br J Pharmacol 1990; 100: 665–667.

    Article  PubMed  CAS  Google Scholar 

  11. Parker SG, Taylor EM, Hamburger SA, Vimal M, Kaumann AJ. Blockade of human and porcine myocardial 5-HT4 receptors by SB 203186. Naunyn-Schmiedeberg’s Arch Pharmacol 1995; 335: 28–35.

    Google Scholar 

  12. Kaumann AJ, Lynham JA, Brown AM. Labelling with [~~5I]-SB 207710 of a small 5-HT4 receptor population in piglet right atrium: functional relevance. Br J Pharmacol 1995; 115: 933–936.

    Article  PubMed  CAS  Google Scholar 

  13. Kaumann AJ, Sanders L, Brown AM, Murray KJ, Brown MJ. A 5hydroxytryptamine receptor in human atrium. Br J Pharmacol 1990; 100: 879–885.

    Article  PubMed  CAS  Google Scholar 

  14. Kaumann AJ, Sanders L, Brown AM, Murray KJ, Brown MJ. A 5-HT4_ like receptor in human right atrium. Naunyn-Schmiedeberg’s Arch Pharmacol 1991; 344150–159.

    Google Scholar 

  15. Ouadid H, Seguin J, Dumuis A, Bockaert J, Nargeot J. Serotonin increases calcium current in human atrial myocytes via the newly described 5-hydroxytryptamine4 receptors. Mol Pharmacol 1992; 41: 346–351.

    PubMed  CAS  Google Scholar 

  16. Sanders L, Kaumann AJ. A 5-HT4_like receptor in human left atrium. Naunyn-Schmiedeberg’s Arch Pharmacol 1992; 345: 382–386.

    PubMed  CAS  Google Scholar 

  17. Kaumann AJ, Sanders L. 5-Hydroxytryptamine causes rate-dependent arrhythmias through 5-HT4 receptors in human atrium: facilitation by chronic p-adrenoceptor blockade. Naunyn-Schmiedeberg’s Arch Pharmacol 1994; 349: 331–337.

    PubMed  CAS  Google Scholar 

  18. Kaumann AJ. Blockade of human atrial 5-HT4 receptors by GR 113808. Br J Pharmacol 1993; 110: 1172–1174.

    Google Scholar 

  19. Kaumann AJ, Gaster LM, King FD, Brown AM. Blockade of human atrial 5-HT4 receptors by SB 207710, a selective and high affinity 5-HT4 receptor antagonist. Naunyn-Schmiedeberg’s Arch Pharmacol 1994; 349: 546–548.

    Google Scholar 

  20. Kaumann AJ. Do human atrial 5-HT4 receptors mediate arrhythmias? Trends Pharmacol Sci 1994; 15: 451–455.

    Google Scholar 

  21. Sanders L, Lynham JA, Bond B, delMonte F, Harding SE, Kaumann AJ. Sensitization of human atrial 5-HT4 receptors by chronic 3 blocker treatment. Circulation 1995; 92: 2526–2639.

    Article  PubMed  CAS  Google Scholar 

  22. Kaumann AJ, Lynham JA, Brown AM. Comparison of the densities of 5-HT4 receptors, R,- and ßz adrenoceptors in human atrium: functional implications. Naunyn-Schmiedeberg’s Arch Pharmacol 1996; 353:592-595.

    Google Scholar 

  23. Kaumann AJ, Murray KJ, Brown AM, Frampton JE, Sanders L, Brown MJ. Heart 5-HT receptors. A novel 5-HT receptor in human atrium. In: Paoletti R, Vanhoutte P, Brunello N, Maggi FM, eds. Serotonin: From Cell Biology to Pharmacology & Therapeutics. Kluwers, Dordrecht, Boston, London 1989; 347–354.

    Google Scholar 

  24. Mohr B, Born AH, Kaumann AJ, Thämer V. Reflex inhibition of the efferent renal sympathetic activity by 5-hydroxytryptamine and nicotine elicited by different epicardial receptors. Pflügers Arch 1987; 409: 145–151.

    Article  PubMed  CAS  Google Scholar 

  25. Kaumann AJ, Brown AM. Allosteric modulation of arterial 5-HTZ receptors. Saxena PR, Wallis DI, Wouters W, Bevan P, eds. Cardiovascular pharmacology of 5-hydroxytryptamine. Boston, London: Kluwers, Dordrecht, 1990: 127–142.

    Google Scholar 

  26. Chester AH, Martin GR, Bodelsson M, Arneklo-Nobin B, Tadjkarimi S, Tornebrandt K, Yacoub M. 5-Hydroxytryptamine receptor profile in healthy and diseased human epicardial coronary arteries. Cardiovasc Res 1990; 24:932–937.

    Google Scholar 

  27. Kaumann AJ, Parsons AA, Brown AM. Human arterial constrictor 5-HT receptors. Cardiovasc Res 1993; 27: 2094–2103.

    Article  PubMed  CAS  Google Scholar 

  28. Kaumann AJ, Frenken M, Posival H, Brown AM. Variable participation of 5-HT,-like receptors and 5-HTZ receptors in serotonin-induced contraction of human isolated coronary arteries. Circulation 1994; 9o: 1141–1153.

    Google Scholar 

  29. Kaumann AJ, Murray KJ, Brown AM, Sanders L, Brown MJ. A receptor for 5-HT in human atrium. Br J Pharmacol 1989; 98: 664 P.

    Google Scholar 

  30. Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J. A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol Pharmacol 1988; 34: 880–887.

    PubMed  CAS  Google Scholar 

  31. Bockaert J, Sebben M, Dumuis A. Pharmacological characterization of 5-hydroxytryptamine4 (5-HT4) receptors coupled to adenylate cyclase in adult guinea pig hippocampal membranes: Effect of substituted benzamide derivatives. Mol Pharmacol 1990; 37: 408–411.

    PubMed  CAS  Google Scholar 

  32. Ansanay H, Sebben M, Bockaert J, Dumuis A. Characterization of homologous 5-hydroxytryptamine4 receptor desensitization in colliculi neurones. Mol Pharmacol 1992; 42: 808–816.

    Google Scholar 

  33. Dumuis A, Sebben M, Bockaert J. The gastrointestinal prokinetic benzamide derivatives are agonists at the non-classical 5-HT receptor (5-HT4) positively coupled to adenylate cyclase in neurones. Naunyn-Schmiedeberg’s Arch Pharmacol 1989; 340:403–410.

    Google Scholar 

  34. Bockaert J, Fozard J, Dumuis A, Clarke DE. The 5-HT4 receptor: a place in the sun. Trends Pharmacol Sci 1992; 13: 141–145.

    Article  PubMed  CAS  Google Scholar 

  35. Jahnel U, Rupp J, Ertl R, Nawrath H. Positive inotropic responses to 5-HT in human atrial but not in ventricular heart muscle. NaunynSchmiedeberg’s Arch Pharmacol 1992; 346: 482–485.

    CAS  Google Scholar 

  36. Jahnel U, Nawrath H, Rupp J, Ochi R. L-type calcium channel activity in human atrial myocytes as influenced by 5-HT. NaunynSchmiedeberg’s Arch Pharmacol 1993; 348: 396–402.

    CAS  Google Scholar 

  37. Turconi M, Schiantarelli P, Borsini F, Rizzi CA, Ladinsky H, Donetti A. Azabicycloalkyl benzimidazolones: Interaction with serotonergic 5-HT3 and 5-HT4 receptors and potential therapeutic implications. Drugs of the Future 1991; 19(11):1011–1o26.

    Google Scholar 

  38. Schoemaker RG, DU XY, Bax WA, Bos E, Saxena PR. 5-Hydroxytryptamine stimulates human isolated atrium but not ventricle. Eur J Pharmacol 1993; 230: 103–105.

    Google Scholar 

  39. Zerkowski H-R, Broede A, Kunde K, Hillemann S, Schäfer E, Vogelsang M, Michel MC, Brodde O-E. Comparison of the positive inotropic effects of serotonin, histamine, angiotensin II, endothelin and isoprenaline in the isolated human right atrium. NaunynSchmiedeberg’s Arch Pharmacol 1993; 347–352.

    Google Scholar 

  40. Kaumann AJ, Brown AM, Raval P. Putative 5-HT4_like receptors in piglet left atrium. Br J Pharmacol 1991; 101: 98 P.

    Google Scholar 

  41. Lorrain J, Grosset A, O’Connor E. 5-HT4 receptors, present in piglet atria and sensitive to SDZ 205–557, are absent in papillary muscle. Eur J Pharmacol 1992; 229: 105–108.

    Article  PubMed  CAS  Google Scholar 

  42. Hall JA, Kaumann AK, Brown MJ. Selective ß-adrenoceptor blockade enhances positive inotropic responses to endogenous catecholamines mediated through ß2 adrenoceptors in human atrial myocardium. Circ Res 1990; 66: 1610–1023.

    Article  PubMed  CAS  Google Scholar 

  43. Kaumann AJ, Hall JA, Murray KJ, Wells FC, Brown MJ. A comparison of the effects of adrenaline and noradrenaline on human heart: the role of adenylate cyclase and contractile force. Eur Heart J 1989; 1o (Suppl B): 29–37.

    Article  Google Scholar 

  44. Medhurst AD, Kaumann AJ. Characterisation of the 5-HT4 receptor mediating tachycardia in isolated piglet right atrium. Br J Pharmacol 1993; 110: 1023–1030.

    Article  PubMed  CAS  Google Scholar 

  45. Craig DA, Clarke DE. Pharmacological characterization of a neuronal receptor for 5-hydroxytryptamine in guinea pig ileum with properties similar to the 5-hydroxytryptamine4 receptor. J Pharmacol Exp Ther 1990; 252: 1378–1386.

    PubMed  CAS  Google Scholar 

  46. Elswood CJ, Bunce KT, Humphrey PPA. Identification of putative 5-HT4 receptors in guinea-pig ascending colon. Eur J Pharmacol 1991; 196: 149–155.

    Article  PubMed  CAS  Google Scholar 

  47. Baxter GS, Craig DA, Clarke DE. 5-Hydroxytryptamine4 receptors mediate relaxation of rat oesophageal tunica muscularis mucosae. Naunyn-Schmiedeberg’s Arch Pharmacol 1991; 343: 439–446.

    PubMed  CAS  Google Scholar 

  48. Ford APD, Baxter GS, Eglen RM, Clarke DE. 5-Hydroxytryptamine stimulates cyclic AMP formation in the tunica muscularis mucosae of the rat oesophagus via 5-HT4 receptors. Eur J Pharmacol 1992; 211: 117–120.

    Article  PubMed  CAS  Google Scholar 

  49. McLean PG, Coupar IM. 5-HT4 receptor antagonist affinities of SB 207710, SB 205008 and SB 203186 in human colon, rat oesophagus and guinea-pig ileum peristaltic reflex. Naunyn-Schmiedeberg’s Arch Pharmacol 1995; 352: 132–140.

    PubMed  CAS  Google Scholar 

  50. Gerald C, Adham N, Kao H-T, Olsen MA, Laz TM, Schechter LE, Bard JA, Vaysee Pj-J, Hartig PR, Branchek TA, Weinshank RL. The 5-HT4 receptor: molecular cloning and pharmacological characterization of two splice variants. EMBO J 1995; 14: 2806–2815.

    Google Scholar 

  51. Blondel O, Vandecasteele G, Gastineau M, Leclerc S, Dahmoune Y, Langlois M, Fischmeister R. Molecular and functional characterization of a 5-HT4 receptor cloned from human atrium. FEBS Letters 1997; 412: 465–474.

    Article  PubMed  CAS  Google Scholar 

  52. Claeysen S, Sebben M, Journot L, Bockaert J, Dumuis A. Cloning, expression and pharmacology of the mouse 5-HT4L receptor. FEBS Letters 1996; 398: 19–25.

    Article  PubMed  CAS  Google Scholar 

  53. Ullmer C, Schmuck K, Kalkman HO, Lübbert H. Expression of serotonin receptor mRNAs in blood vessels. FEBS Letters 1995; 370: 215–221.

    Google Scholar 

  54. Ouadid H, Albat B, Nargeot J. Calcium currents in diseased cardiac cells. J Cardiovasc Pharmacol 1995; 25: 282–291.

    Article  PubMed  CAS  Google Scholar 

  55. Beukelmann DJ, Erdmann E. Ca’ currents and intracellular [Ca2+] transients in single ventricular myocytes isolated from terminally failing human myocardium. Basic Res Cardiol 1992; 87 (Suppl 1): 235–243.

    Google Scholar 

  56. Sanders L, Lynham JA, Kaumann AJ. Chronic R1-adrenoceptor blockade sensitises the H1 and H2 receptor systems in human atrium: role of cyclic nucleotides. Naunyn-Schmiedeberg’s Arch Pharmacol 1996; 35: 3661–670.

    Google Scholar 

  57. Molenaar P, Sarsero D, Arch JRS, Kelly J, Henson SM, Kaumann AJ. Effects of (-)-RO363 at human atrial ß-adrenoceptor subtypes, the human cloned ß3-adrenoceptor and rodent intestinal p3-adrenoceptors. Br J Pharmacol 1997; 120: 165–176.

    Article  PubMed  CAS  Google Scholar 

  58. Kaumann AJ. (-)-CGP 12177-induced increase of human atrial contraction through a putative third ß-adrenoceptor. Br J Pharmacol 1996; 117: 93–98.

    Article  PubMed  CAS  Google Scholar 

  59. Kaumann AJ, Molenaar P. Modulation of human cardiac function through 4 ß-adrenoceptor populations. Naunyn-Schmiedeberg’s Arch Pharmacol 1997; 355: 667–681.

    Article  PubMed  CAS  Google Scholar 

  60. Kaumann AJ, Lynham JA, Sanders L, Brown AM, Molenaar P. Contribution of differential efficacy to the pharmacology of human p,- and ßz adrenoceptors. Pharmacol Commun 1995; 6: 215–222.

    CAS  Google Scholar 

  61. Hausdorff WP, Pitcher JA, Luttrell DK, Linder ME, Kurose H, Parsons SJ, Caron MG, Lefkowitz RJ. Tyrosine phosphorylation of G protein subunits by pp6o`-“`. Proc Natl Acad Sci USA 1992; 89: 5720–5724.

    Article  PubMed  CAS  Google Scholar 

  62. Gille E, Lemoine H, Ehle B, Kaumann AJ. The affinity of (-)-propranolol for R1- and ß2-adrenoceptors of human heart. Differential antagonism of the positive inotropic effects and adenylate cyclase stimulation by (-)-noradrenaline and (-)-adrenaline. NaunynSchmiedeberg’s Arch Pharmacol 1985; 331: 60–70.

    Article  CAS  Google Scholar 

  63. Kaumann AJ, Lemoine H. ß2 Adrenoceptor-mediated positive isotropic effect of adrenaline in human ventricular myocardium. Quantitative discrepancies with binding and adenylate cyclase stimulation. Naunyn-Schmiedeberg’s Arch Pharmacol 1987; 335403–411.

    Google Scholar 

  64. Green SA, Holt BD, Liggett SB. Pi-and ß2-adrenergic receptors display subtype-selective coupling to Gs. Mol Pharmacol 1992; 41: 889–893.

    PubMed  CAS  Google Scholar 

  65. Levy F-O, Zhu X, Kaumann AJ, Birnbaumer L. Efficacy of 131-adrenergic receptors is lower than that of ß2-adrenergic receptors. Proc Natl Acad Sci USA 1993; 90: 10798–10802.

    Article  PubMed  CAS  Google Scholar 

  66. Sole MJ, Shum A, VanLoon GR. Serotonin: metabolism in the normal and failing heart. Circ Res 1979; 45: 629–634.

    Article  PubMed  CAS  Google Scholar 

  67. Cohen RA. Platelet-induced neurogenic coronary contractions due to accumulation of the false neurotransmitter 5-hydroxytryptamine. J Clin Invest 1985; 75: 286–292.

    Article  PubMed  CAS  Google Scholar 

  68. Shah AM, Andries LJ, Meulemans AL, Brutsaert DL. Endocardium modulates myocardial inotropic responses to 5-hydroxytryptamine. Am J Physiol 1989; 257: H1790 - H1797.

    PubMed  CAS  Google Scholar 

  69. DiFrancesco D. Pacemaker mechanisms in cardiac tissues. Ann Rev Physiol 1993; 55:451-467.

    Google Scholar 

  70. Pino R, Cerbai E, Alajamo F, Porciatti F, Calamai G, Mugelli A. Effect of 5-hydroxytryptamine (5-HT) on the pacemaker current, if, in human atrial myocytes. Circulation 1996; 94: 1–473 (abstract 2770).

    Article  Google Scholar 

  71. Kannel WB, Abbott RD, Savage DD, McNamara PM. Epidemiological factors of atrial fibrillation: the Framingham study. N Engl J Med 1982; 306: 1018–1022.

    Article  PubMed  CAS  Google Scholar 

  72. Bialy D, Lehmann MH, Schumacher DN, Steinman RT, Meissner MD. Hospitalization for arrhythmias in the United States: importance of atrial fibrillation. JACC 1992; 19: 41.

    Google Scholar 

  73. Probst P, Goldschlager N, Selzer A. Left atrial size and atrial fibrillation in mitral stenosis: factors influencing this relationship. Circulation 1973; 48: 1282–1287.

    Article  PubMed  CAS  Google Scholar 

  74. Henry WL, Morganroth J, Pearlman AS, Clark CE, Redwood DR, Itscoitz SB, Epstein SE. Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 1976; 53: 273–279.

    Article  PubMed  CAS  Google Scholar 

  75. Petersen P, Kastrup J, Brinch K, Godtfredsen J, Boysen G. Relation between left atrial dimension and duration of atrial fibrillation. Am J Cardiol 1987; 60: 382–384.

    Article  PubMed  CAS  Google Scholar 

  76. Takahashi N, Imataka K. Seki A, Fujii J. Left atrial enlargement in patients with paroxysmal atrial fibrillation. Jap Heart J 1982; 23: 677–683.

    Article  PubMed  CAS  Google Scholar 

  77. Keren G, Etzion T, Sherez J, Selcer AA, Megidish R, Miller HI, Laniado S. Atrial fibrillation and atrial enlargement in patients with mitral stenosis. Am Heart J 1988; 114: 1146–1155.

    Article  Google Scholar 

  78. Nunain SO, Debbas NMG, Camm AJ. Determinants of the course and prognosis of atrial fibrillation. In: Atrial arrhythmias. Current Concepts and Management. Touboul P, Waldo AL, eds. Mosby Year Book, Boston 1990; 350–358.

    Google Scholar 

  79. Daniel WG, Nellessen U, Schröder Em Nonnast-Daniel B, Bednarski P, Nikutta P, Lichtlen PR. Left atrial spontaneous echo contrast in mitral valve disease: an indicator for an increased thromboembolic risk. JACC 1988; 11: 1204–1211.

    PubMed  CAS  Google Scholar 

  80. Halperin JL, Hart RG. Atrial fibrillation and stroke: new ideas, persisting dilemmas. Stroke 1988; 19: 937–941.

    Article  PubMed  CAS  Google Scholar 

  81. Kulbertus HE. Thromboembolism in atrial fibrillation. In: Atrial arrhythmias. Current Concepts and Management. Touboul P, Waldo A, eds. Mosby Year Book, Boston 1990; 359-361.

    Google Scholar 

  82. Wolf PA, Dawler TR, Thomas HE, Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham study. Neurology 1978; 28: 973–294.

    Article  PubMed  CAS  Google Scholar 

  83. Petersen P, Godtfredsen J. Risk factors for stroke in chronic atrial fibrillation. Eur Heart J 1988; 92: 91–294.

    Google Scholar 

  84. Lundin L, Norheim I, Landelius J, Oberg K, Theodorsson-Norheim E. Carcinoid heart disease: relationship of circulating vasoactive substances to ultrasound-detectable cardiac abnormalities. Circulation 1988; 77: 264–269.

    Article  PubMed  CAS  Google Scholar 

  85. Pellikka PA, Tajik J, Khandeira BK, Seward JB, Callahan JA, Pitot HC, Kvols LK. Carcinoid heart disease. Clinical and echocardiographic spectrum in 74 patients. Circulation 1993; 87: 1188–1196.

    Google Scholar 

  86. Olssen S, Edwards IR. Tachycardia during cisapride treatment. Br Med J 1992; 305: 748–749.

    Article  Google Scholar 

  87. Inman W, Kunota K. Tachycardia during cisapride treatment. Br med J 1992; 305: 1019.

    Article  CAS  Google Scholar 

  88. Harris P, Fritts HW, Cournand A. Some circulatory effects of 5-hydroxytryptamine in man. Circulation 1960; 21: 1134–1139.

    Article  PubMed  CAS  Google Scholar 

  89. Hollander W, Michelson AL, Wilkins RW. Serotonin and antiserotonins. I. Their circulatory, respiratory and renal effects in man. Circulation 1957; 16: 246–255.

    Google Scholar 

  90. Le Mesurier DH, Schwartz CJ, Whelan RF. Cardiovascular effects of intravenous infusions of 5-hydroxytryptamine in man. Br J Pharmacol 1959; 14246–250.

    Google Scholar 

  91. Parks VJ, Sandison AG, Skinner SL, Whelan RF. The stimulation of respiration by 5-hydroxytryptamine in man. J Physiol 1960; 151: 342–351.

    PubMed  CAS  Google Scholar 

  92. Rhodes KF, Coleman J, Lattimer A. A component of 5-HT-evoked depolarisations of the rat isolated vagus is mediated by a putative 5-HT4 receptor. Naunyn-Schmiedeberg’s Arch Pharmacol 1992; 346: 496–503.

    PubMed  CAS  Google Scholar 

  93. Villalon CM, DenBoer MO, Heiligers JAC, Saxena PR. Further characterization by the use of tryptamine and benzamide derivatives, of the putative 5-HT4 receptor mediating tachycardia in the pig. Br J Pharmacol 1991; 102: 107–112.

    Article  PubMed  CAS  Google Scholar 

  94. Bateman DN. The action of cisapride on gastric emptying and the pharmacodynamics and pharmacokinetics of oral diazepam. Eur J Clin Pharmacol 1986; 30: 205–208.

    Article  PubMed  CAS  Google Scholar 

  95. AJ. 5-Hydroxytryptamine and the human heart. Fozard JR, Saxena PR, eds, Serotonin: Molecular Biology, Receptors and Functional Effects. Birkhauser Basel Switzerland 1991; 365–373.

    Chapter  Google Scholar 

  96. Humphrey PPA, Bunce KT. Tachycardia during cisapride treatment. Br med J 1992; 305: 1019–1920.

    Article  CAS  Google Scholar 

  97. Saxena PR, Villalon CM. 5-Hydroxytryptamine: a chameleon in the heart. Trends Pharmacol Sci 1991; 12: 223–227.

    Article  PubMed  Google Scholar 

  98. Curtis MJ, Pugsley MK, Walker MJA. Endogenous chemical mediators of ventricular arrhythmias in ischaemic heart disease. Cardiovasc Res 1993; 27: 703–719.

    Article  PubMed  CAS  Google Scholar 

  99. Willet F, Curzen N, Adams J, Armitage M. Coronary vasospasm induced by subcutaneous sumatriptan. Br Med J 1992; 304: 1215.

    Article  Google Scholar 

  100. Ottervanger JP, Paalman HJA, Boxma GL, Stricker BHCh. Transmural myocardial infarction with sumatriptan. Lancet 1993; 341: 861–862.

    Google Scholar 

  101. Kaumann AJ. Adrenergic receptors in heart muscle: relations among factors influencing the sensitivity of the cat papillary muscle to catecholamines. J Pharmacol Exp Ther 1970; 173: 383–398.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaumann, A.J., Sanders, L. (1998). 5-Hydroxytryptamine and Human Heart Function: The Role of 5-HT4 Receptors. In: Eglen, R.M. (eds) 5-HT4 Receptors in the Brain and Periphery. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05553-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05553-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-05555-7

  • Online ISBN: 978-3-662-05553-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics