Skip to main content

Transactivation of Human cdc2 Promoter by Adenovirus E1A

  • Chapter
Adenoviruses: Model and Vectors in Virus-Host Interactions

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 272))

Abstract

Expression of the adenovirus oncoprotein E1A 12S induces the heterotrimeric transcription factor, NF-Y. NF-Y binds to the two CCAAT motifs upstream of the transcriptional start site of the human cdc2 promoter and is required for activation of the promoter by E1A 12S in cycling cells. The observations that a number of eukaryotic cell cycle regulatory genes also contain the CCAAT motifs and NF-Y binds to them support the notion that E1A 12S could play an important role in deregulated expression of these genes through activation of NF-Y gene in cycling cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoff SN and Wu B (1994) CBF mediates adenovirus Ela trans-activation by interaction at the C-terminal promoter targeting domain of conserved region 3. Oncogene 9: 3707–11

    PubMed  CAS  Google Scholar 

  • Alonso CR, Pesce CG and Kornblihtt AR (1996) The CCAAT-binding proteins CP1 and NF-I cooperate with ATF-2 in the transcription of the fibronectin gene. J Biol Chem 271: 22271–9

    Article  PubMed  CAS  Google Scholar 

  • Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS and Kelly K (1997) Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89: 1175–84

    Article  PubMed  CAS  Google Scholar 

  • Bagchi S, Raychaudhuri P and Nevins JR (1990) Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation. Cell 62: 659–69

    Article  PubMed  CAS  Google Scholar 

  • Bandara LR and La Thangue NB (1991) Adenovirus E1A prevents the retinoblastoma gene product from complexing with a cellular transcription factor. Nature 351: 494–7

    Article  PubMed  CAS  Google Scholar 

  • Barber GN (2001) Host defense, viruses and apoptosis. Cell Death Differ 8: 113–26

    Article  PubMed  CAS  Google Scholar 

  • Beach D, Durkacz B and Nurse P (1982) Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300: 706–9

    Article  PubMed  CAS  Google Scholar 

  • Beck GRJ, Zerler B and Moran E (1998) Introduction to DNA tumor viruses: Adenovirus, Simian Virus 40, Polyomavirus. In: Human Tumor Viruses ( DJ McCance, ed), pp 51–86. American Society for Microbiology Press, Washington DC

    Google Scholar 

  • Bi W, Wu L, Coustry F, De Crombrugghe B and Maity SN (1997) DNA binding specificity of the CCAAT-binding factor CBF/NF-Y. J Biol Chem 272: 26562–72

    Article  PubMed  CAS  Google Scholar 

  • Braithwaite AW, Cheetham BF, Li P, Parish CR, Waldron-Stevens LK and Bellett AJ (1983) Adenovirus-induced alterations of the cell growth cycle: a requirement for expression of E1A but not of E1B. J Virol 45: 192–9

    PubMed  CAS  Google Scholar 

  • Buchkovich K, Duffy LA and Harlow E (1989) The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58: 1097–105

    Article  PubMed  CAS  Google Scholar 

  • Chang ZF and Liu CJ (1994) Human thymidine kinase CCAAT-binding protein is NF-Y, whose A subunit expression is serum-dependent in human IMR-90 diploid fibroblasts. J Biol Chem 269: 17893–8

    PubMed  CAS  Google Scholar 

  • Chellappan S, Kraus VB, Kroger B, Munger K, Howley PM, Phelps WC and Nevins JR (1992) Adenovirus E1A, simian virus 40 tumor antigen and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc Natl Acad Sci USA 89: 4549–53

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Campisi J and Padmanabhan R (1996) SV40 large T antigen transactivates the human cdc2 promoter by inducing a CCAAT box binding factor. J Biol Chem 271: 13959–67

    Article  PubMed  CAS  Google Scholar 

  • Chen PL, Scully P, Shew JY, Wang JY and Lee WH (1989) Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58: 1193–8

    Article  PubMed  CAS  Google Scholar 

  • Chodosh LA, Olesen J, Hahn S, Baldwin AS, Guarente L and Sharp PA (1988). A yeast and a human CCAAT-binding protein have heterologous subunits that are functionally interchangeable. Cell 53: 25–35

    Article  PubMed  CAS  Google Scholar 

  • Cobrinik D (1996) Regulatory interactions among E2Fs and cell cycle control proteins. Curr Top Microbiol Immunol 208: 31–61

    Article  PubMed  CAS  Google Scholar 

  • Cole C (1996) Polyomavirinae. In: `Fundamental Virology’ ( Fields B, Knipe D and Howley P, eds), pp 917–946. Lippencott-Raven, Philadelphia

    Google Scholar 

  • Corbeil HB and Branton PE (1997) Characterization of an E2F-p130 complex formed during growth arrest. Oncogene 15: 657–68

    Article  PubMed  CAS  Google Scholar 

  • Cress WD and Nevins JR (1996) Use of the E2F transcription factor by DNA tumor virus regulatory proteins. Curr Top Microbiol Immunol 208: 63–78

    Article  PubMed  CAS  Google Scholar 

  • Crook T, Tidy JA and Vousden KH (1991) Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 67: 547–56

    Article  PubMed  CAS  Google Scholar 

  • Dagnino L, Fry CJ, Bartley SM, Farnham P, Gallie BL and Phillips RA (1997) Expression patterns of the E2F family of transcription factors during murine epithelial development. Cell Growth Differ 8: 553–63

    PubMed  CAS  Google Scholar 

  • Dalton S (1992) Cell cycle regulation of the human cdc2 gene. EMBO J 11: 1797–1804

    PubMed  CAS  Google Scholar 

  • Dean DC, Blakeley MS, Newby RF, Ghazal P, Hennighausen L and Bourgeois S (1989) Forskolin inducibility and tissue-specific expression of the fibronectin promoter. Mol Cell Biol 9: 1498–506

    PubMed  CAS  Google Scholar 

  • Dean DC, Mcquillan JJ and Weintraub S (1990) Serum stimulation of fibronectin gene expression appears to result from rapid serum-induced binding of nuclear proteins to a cAMP response element. J Biol Chem 265: 3522–7

    PubMed  CAS  Google Scholar 

  • Dean DC, Newby RF and Bourgeois S (1988) Regulation of fibronectin biosynthesis by dexamethasone, transforming growth factor beta and cAMP in human cell lines. J Cell Biol 106: 2159–70

    Article  PubMed  CAS  Google Scholar 

  • Decaprio JA, Ludlow JW, Figge J, Shew JY, Huang CM, Lee WH, Marsilio E, Paucha E and Livingston DM (1988) SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54: 275–83

    Article  PubMed  CAS  Google Scholar 

  • Decaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, Huang CM and Livingston DM (1989) The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58: 1085–95

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1968) The fate of the DNA of adenovirus type 12 in baby hamster kidney cells. Proc Natl Acad Sci USA 60: 636–43

    Article  PubMed  CAS  Google Scholar 

  • Doerfler W (1975) Integration of viral DNA into the host genome. Curr Top Microbiol Immunol 71: 1–78

    PubMed  CAS  Google Scholar 

  • Dooley KA, Millinder S and Osborne TF (1998) Sterol regulation of 3-hydroxy-3methylglutaryl-coenzyme A synthase gene through a direct interaction between sterol regulatory element binding protein and the trimeric CCAAT-binding factor/ nuclear factor Y. J Biol Chem 273: 1349–56

    Article  PubMed  CAS  Google Scholar 

  • Dorn A, Bollekens J, Staub A, Benoist C and Mathis D (1987) A multiplicity of CCAAT box-binding proteins. Cell 50: 863–72

    Article  PubMed  CAS  Google Scholar 

  • Draetta G (1990) Cell cycle control in eukaryotes: molecular mechanisms of cdc2 activation. Trends in Biochemical Sciences 15: 378–383

    Article  PubMed  CAS  Google Scholar 

  • Draetta G and Beach D (1988) Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell 54: 17–26

    Article  PubMed  CAS  Google Scholar 

  • Draetta G, Beach D and Moran E (1988) Synthesis of p34, the mammalian homolog of the yeast cdc2+/CDC28 protein kinase, is stimulated during adenovirus-induced proliferation of primary baby rat kidney cells. Oncogene 2: 553–7

    PubMed  CAS  Google Scholar 

  • Draetta G, Brizuela L, Potashkin J and Beach D (1987) Identification of p34 and p13, human homologs of the cell cycle regulators of fission yeast encoded by cdc2+ and sucl+. Cell 50: 319–25

    Article  PubMed  CAS  Google Scholar 

  • D’urso G, Marraccino RL, Marshak DR and Roberts JM (1990) Cell cycle control of DNA replication by a homologue from human cells of the p34cdc2 protein kinase. Science 250: 786–91

    Article  PubMed  Google Scholar 

  • Dyson N, Bernards R, Friend SH, Gooding LR, Hassell JA, Major EU, Pipas JM, Vandyke T and Harlow E (1990) Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. J Virol 64: 1353–6

    PubMed  CAS  Google Scholar 

  • Dyson N and Harlow E (1992) Adenovirus E1A targets key regulators of cell proliferation. Cancer Sury 12: 161–95

    CAS  Google Scholar 

  • Egan C, Jelsma TN, Howe JA, Bayley ST, Ferguson B and Branton PE (1988) Mapping of cellular protein-binding sites on the products of early-region lA of human adenovirus type 5. Mol Cell Biol 8: 3955–9

    PubMed  CAS  Google Scholar 

  • Ewen ME, Xing YG, Lawrence JB and Livingston DM (1991) Molecular cloning, chromosomal mapping and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66: 1155–64

    Article  PubMed  CAS  Google Scholar 

  • Fagan R, Flint KJ and Jones N (1994) Phosphorylation of E2F-1 modulates its interaction with the retinoblastoma gene product and the adenoviral E4 19 kDa protein. Cell 78: 799–811

    Article  PubMed  CAS  Google Scholar 

  • Fang F and Newport JW (1991) Evidence that the G1 -S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 66: 731–42

    Article  PubMed  CAS  Google Scholar 

  • Fechteler K, Tatzelt J, Huppertz S, Wilgenbus P and Doerfler W (1995) The mechanism of adenovirus DNA integration: studies in a cell-free system. Curr Top Microbiol Immunol 199: 109–37

    Article  PubMed  CAS  Google Scholar 

  • Ferguson B, Krippl B, Andrisani O, Jones N, Westphal H and Rosenberg M (1985) E1A 13 S and 12 S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol Cell Biol 5: 2653–61

    PubMed  CAS  Google Scholar 

  • Flint J and Shenk T (1989) Adenovirus E1A protein paradigm viral transactivator. Annu Rev Genet 23: 141–61

    Article  PubMed  CAS  Google Scholar 

  • Furukawa Y, Piw NICA Worms H, Ernst TJ, Kanakura Y and Griffin JD (1990) cdc2 gene expression at the G1 to S transition in human T lymphocytes. Science 250: 805–8

    Google Scholar 

  • Gallimore PH (1974) Viral DNA in transformed cells. II. A study of the sequences of adenovirus 2 dna in nine lines of transformed rat cells using specific fragments of the viral genome. J Mol Biol 89: 49–72

    Article  PubMed  CAS  Google Scholar 

  • Girling R, Bandara LR, Zamanian M, Sorensen TS, Xu FH and La Thangue NB (1993) DRTFI/E2F transcription factor: an integrator of cell-cycle events with the transcriptional apparatus. Biochem Soc Trans 21: 939–42

    PubMed  CAS  Google Scholar 

  • Goon L, Chen J and Chen KY (1995) Analysis of sequence-specific binding activity of cis-elements in human thymidine kinase gene promoter during Gl/S phase transition. J Cell Physiol 163: 636–44

    Article  Google Scholar 

  • Gopalakrishnan S, Douglas JL and Quinlan MP (1997) Immortalization of primary epithelial cells by E1A 12 S requires late, second exon-encoded functions in addition to complex formation with pRB and p300. Cell Growth Differ 8: 541–51

    PubMed  CAS  Google Scholar 

  • Gottlieb TM and Oren M (1996) p53 in growth control and neoplasia. Biochim Biophys Acta 1287:77–102

    Google Scholar 

  • Graham FL, Smiley J, Russell WC and Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36: 59–74

    Article  PubMed  CAS  Google Scholar 

  • Graham FL, Van Der Eb AJ and Heijneker HL (1974). Size and location of the transforming region in human adenovirus type 5 DNA. Nature 251: 687–91

    Article  PubMed  CAS  Google Scholar 

  • Grana X and Reddy EP (1995) Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene 11: 211–9

    PubMed  CAS  Google Scholar 

  • Gu W, Shi X-L and Roeder RG (1997) Synergistic activation of transcription by CBP and p53. Nature (Lond) 387: 823–827

    Article  CAS  Google Scholar 

  • Habener JF (1990) Cyclic AMP response element binding proteins: a cornucopia of transcription factors. Mol Endocrinol 4: 1087–94

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ, Demetrick D and Beach D (1993) Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev 7: 2378–91

    Article  PubMed  CAS  Google Scholar 

  • Harlow E, Whyte P, Franza BR, Jr and Schley C (1986) Association of adenovirus early-region 1 A proteins with cellular polypeptides. Mol Cell Biol 6: 1579–89

    PubMed  CAS  Google Scholar 

  • Hatamochi A, Golumbek PT, Van Schaftingen E and De Crombrugghe B (1988) A Ccaat DNA binding factor consisting of two different components that are both required for DNA binding. J Biol Chem 263: 5940–7

    PubMed  CAS  Google Scholar 

  • Hooft Van Huijsduijnen RA, Bollekens J, Dorn A, Benoist C and Mathis D (1987) Properties of a CCAAT box-binding protein. Nucleic Acids Res 15: 7265–82

    Article  Google Scholar 

  • Horowitz JM, Park SH, Bogenmann E, Cheng JC,Yandell DW, Kaye FJ, Minna JD, Dryja TP and Weinberg RA (1990) Frequent inactivation of the retinoblastoma anti-oncogene is restricted to a subset of human tumor cells. Proc Natl Acad Sci USA 87: 2775–9

    Article  CAS  Google Scholar 

  • Houweling A, Van Den Elsen PJ and Van Der Eb AJ (1980) Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105: 537–50

    Article  PubMed  CAS  Google Scholar 

  • Howe JA, Mymryk JS, Egan C, Branton PE and Bayley ST (1990) Retinoblastoma growth suppressor and a 300 kDa protein appear to regulate cellular DNA synthesis. Proc Natl Acad Sci USA 87: 5883–7

    Article  PubMed  CAS  Google Scholar 

  • Imbriano C, Bolognese F, Gurtner A, Piaggio G and Mantovani R (2001) HSP-CBF is an NF-Y-dependent coactivator of the heat shock promoters CCAAT boxes. J Biol Chem 276: 26332–9

    Article  PubMed  CAS  Google Scholar 

  • Innocente SA,Abrahamson JL, Cogswell JP and Lee JM (1999) p53 regulates a G2 checkpoint through cyclin B 1. Proc Natl Acad Sci USA 96: 2147–52

    Google Scholar 

  • Jones KA, Kadonaga JT, Rosenfeld PJ, Kelly TJ and Tjian R (1987) A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 48: 79–89

    Article  PubMed  CAS  Google Scholar 

  • Kao CY, Tanimoto A, Arima N, Sasaguri Y and Padmanabhan R (1999) Transactivation of the human cdc2 promoter by adenovirus E1A: E1A induces the expression and assembly of a heteromeric complex consisting of the CCAAT box binding factor, CBF/NF-Y and a 110 kDa DNA binding protein’. J Biol Chem 274: 23043–23051

    Article  PubMed  CAS  Google Scholar 

  • Knudson AG (1996) Hereditary cancer: two hits revisited. J Cancer Res Clin Oncol 122: 135–40

    Article  PubMed  CAS  Google Scholar 

  • Ko LJ and Prives C (1996) p53: puzzle and paradigm. Genes Dev 10:1054–72

    Google Scholar 

  • Kramer A, Carstens CP, Wasserman WW and Fahl WE (1997) CBP/cycA, a CCAAT-binding Protein Necessary for Adhesion-dependent Cyclin A Transcription, Consists of NF-Y and a Novel Mr 115,000 Subunit. Cancer Res 57: 5117–5121

    PubMed  CAS  Google Scholar 

  • Krek W and Nigg EA (1989) Structure and developmental expression of the chicken CDC2 kinase. EMBO J 8: 3071–3078

    PubMed  CAS  Google Scholar 

  • Ku DH, Wen SC, Engelhard A, Nicolaides NC, Lipson KE, Marino TA and Calabretta B (1993) c-myb transactivates cdc2 expression via Myb binding sites in the 5’-flanking region of the human cdc2 gene [published erratum appears in J Biol Chem 1993 Jun 15; 268 (17): 130–101.

    Google Scholar 

  • Calabretta B (1993) J Biol Chem 268: 2255–9

    PubMed  Google Scholar 

  • La Thangue NB (1996) E2F and the molecular mechanisms of early cell-cycle control. Biochem Soc Trans 24: 54–9

    PubMed  CAS  Google Scholar 

  • Lane DP and Craw Ford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278: 261–3

    Article  PubMed  CAS  Google Scholar 

  • Lee EY, To H, Shew JY, Bookstein R, Scully P and Lee WH (1988a) Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241: 218–21

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Norbury CJ, Spurr NK and Nurse P (1988b) Regulated expression and phosphorylation of a possible mammalian cell-cycle control protein. Nature 333: 676–9

    Article  PubMed  CAS  Google Scholar 

  • Lee MG and Nurse P (1987) Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327: 31–5

    Article  PubMed  CAS  Google Scholar 

  • Levine AJ (1997) p53, the cellular gatekeeper for growth and division. Cell 88:323–31

    Google Scholar 

  • Li Y, Graham C, Lacy S, Duncan AM and Whyte P (1993) The adenovirus E1A-associated 130 kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev 7: 2366–77

    Article  CAS  Google Scholar 

  • Lill NL, Grossman SR, Ginsberg D, Decaprio J and Livingston DM (1997) Binding and modulation of p53 by p300/CBP coactivators. Nature 387: 823–7

    Article  PubMed  CAS  Google Scholar 

  • Lillie JW, Green M and Green MR (1986) An adenovirus E1A protein region required for transformation and transcriptional repression. Cell 46: 1043–51

    Article  PubMed  CAS  Google Scholar 

  • Lillie JW and Green MR (1989) Transcription activation by the adenovirus E1A protein. Nature 338: 39–44

    Article  PubMed  CAS  Google Scholar 

  • Linzer DI and Levine AJ (1979) Characterization of a 54 K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43–52

    Article  PubMed  CAS  Google Scholar 

  • Liu F and Green MR (1990) A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1A protein. Cell 61: 1217–24

    Article  PubMed  CAS  Google Scholar 

  • Lucibello FC, Truss M, Zwicker J, Ehlert F, Beato M and Muller R (1995) Periodic cdc25 C transcription is mediated by a novel cell cycle-regulated repressor element ( CDE ). EMBO J 14: 132–42

    Google Scholar 

  • Ludlow JW (1993) Interactions between SV40 large-tumor antigen and the growth suppressor proteins pRB and p53. Faseb J 7: 866–71

    PubMed  CAS  Google Scholar 

  • Ludlow JW, Shon J, Pipas JM, Livingston DM and Decaprio JA (1990). The retinoblastoma susceptibility gene product undergoes cell cycle-dependent dephosphorylation and binding to and release from SV40 large T. Cell 60: 387–96

    Article  PubMed  CAS  Google Scholar 

  • Lukas J, Petersen BO, Holm K, Bartek J and Helin K (1996) Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4Amediated growth suppression. Mol Cell Biol 16: 1047–57

    PubMed  CAS  Google Scholar 

  • Lum LS, Hsu S, Vaewhongs M and Wu B (1992) The hsp70 gene CCAAT-binding factor mediates transcriptional activation by the adenovirus E1A protein. Mol Cell Biol 12: 2599–605

    PubMed  CAS  Google Scholar 

  • Lum LS, Sultzman LA, Kaufman RJ, Linzer DI and Wu BJ (1990) A cloned human CCAAT-box-binding factor stimulates transcription from the human hsp70 promoter. Mol Cell Biol 10: 6709–17

    PubMed  CAS  Google Scholar 

  • Maity SN, Golumbek PT, Karsenty G and De Crombrugghe B (1988). Selective activation of transcription by a novel CCAAT binding factor. Science 241: 582–5

    Article  PubMed  CAS  Google Scholar 

  • Mantovani R (1998) A survey of 178 NF-Y binding CCAAT boxes. Nucleic Acids Res 26: 1135–43

    Article  PubMed  CAS  Google Scholar 

  • Mantovani R, Li XY, Pessara U, Hooft Van Huisjduijnen R, Benoist C and Mathis D (1994) Dominant negative analogs of NF-YA. J Biol Chem 269: 20340–6

    PubMed  CAS  Google Scholar 

  • Mayol X, Grana X, Baldi A, Sang N, Hu Q and Giordano A (1993) Cloning of a new member of the retinoblastoma gene family (pRb2) which binds to the E1A transforming domain. Oncogene 8: 2561–6

    PubMed  CAS  Google Scholar 

  • Mihara K, Cao XR, Yen A, Chandler S, Driscoll B, Murphree AL, T’ang A and Fung YK (1989) Cell cycle-dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246: 1300–3

    Article  PubMed  CAS  Google Scholar 

  • Milarski KL and Morimoto RI (1986) Expression of human HSP70 during the synthetic phase of the cell cycle. Proc Natl Acad Sci USA 83: 9517–21

    Article  PubMed  CAS  Google Scholar 

  • Milos PM and Zaret KS (1992) A ubiquitous factor is required for C/EBP-related proteins to form stable transcription complexes on an albumin promoter segment in vitro. Genes Dev 6: 991–1004

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Fisher EF, Caruthers MH and Berk AJ (1982) Resolving the functions of overlapping viral genes by site-specific mutagenesis at a mRNA splice site. Nature 295: 380–4

    Article  PubMed  CAS  Google Scholar 

  • Moran B and Zerler B (1988). Interactions between cell growth-regulating domains in the products of the adenovirus E1A oncogene. Mol Cell Biol 8: 1756–64

    PubMed  CAS  Google Scholar 

  • Moran E (1993) Interaction of adenoviral proteins with pRB and p53. Faseb J 7: 880–5

    PubMed  CAS  Google Scholar 

  • Morgan DO (1995) Principles of CDK regulation. Nature 374: 131–4

    Article  PubMed  CAS  Google Scholar 

  • Muller H, Moroni MC, Vigo E, Petersen BO, Bartek J and Helin K (1997) Induc tion of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol Cell Biol 17: 5508–20

    PubMed  CAS  Google Scholar 

  • Murray AW (1992) Creative blocks: cell-cycle checkpoints and feedback controls. Nature 359: 599–604

    Article  PubMed  CAS  Google Scholar 

  • Murray AW (1995) The genetics of cell cycle checkpoints. Curr Opin Genet Dev 5: 5–11

    Article  PubMed  CAS  Google Scholar 

  • Mymryk JS and Bayley ST (1994) Multiple pathways for activation of E2 A expression in human KB cells by the 243R E1A protein of adenovirus type 5. Virus Res 33: 89–97

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1992) E2F: a link between the Rb tumor suppressor protein and viral oncoproteins. Science 258: 424–9

    Article  PubMed  CAS  Google Scholar 

  • Nevins JR (1993) Disruption of cell-cycle control by viral oncoproteins. Biochem Soc Trans 21: 935–8

    PubMed  CAS  Google Scholar 

  • Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344: 503–8

    Article  PubMed  CAS  Google Scholar 

  • Nurse P and Bissett Y (1981) Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292: 558–60

    Article  PubMed  CAS  Google Scholar 

  • Oshima J, Steinmann KE, Campisi J and Schlegel R (1993) Modulation of cell growth, p34cdc2 and cyclin A levels by SV-40 large T antigen. Oncogene 8: 2987–93

    PubMed  CAS  Google Scholar 

  • Pagano M, Pepperkok R, Lukas J, Baldin V, Ansorge W, Bartek J and Draetta G (1993) Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J Cell Biol 121: 101–11

    Article  PubMed  CAS  Google Scholar 

  • Pesce CG, Nogues G, Alonso CR, Baralle FE and Kornblihtt AR (1999). Interaction between the (-170) CRE and the (-150) CCAAT box is necessaryfor efficient activation of the fibronectin gene promoter by cAMP and ATF-2. FEBS Lett 457: 445–51

    Article  PubMed  CAS  Google Scholar 

  • Pines J (1995) Cyclins, CDKs and cancer. Semin Cancer Biol 6: 63–72

    Article  PubMed  CAS  Google Scholar 

  • Pipas JM and Levine AJ (2001) Role of T antigen interactions with p53 in tumori-genesis. Semin Cancer Biol 11: 23–30

    Article  PubMed  CAS  Google Scholar 

  • Pise-Masison CA, Dittmer J, Clemens KE and Brady JN (1997) Physical and functional interaction between the human T-cell lymphotropic virus type 1 Taxl protein and the CCAAT binding protein NF-Y. Mol Cell Biol 17: 1236–43

    PubMed  CAS  Google Scholar 

  • Quinlan MP (1994) Enhanced proliferation, growth factor induction and immortalization by adenovirus E1A 12 S in the absence of E1B. Oncogene 9: 2639–47

    PubMed  CAS  Google Scholar 

  • Quinlan MP, Whyte P and Grodzicker T (1988) Growth factor induction by the adenovirus type 5 E1A 12 S protein is required for immortalization of primary epithelial cells. Mol Cell Biol 8: 3191–203

    PubMed  CAS  Google Scholar 

  • Ramachandra M, Nakano R, Mohan PM, Rawitch AB and Padmanabhan R (1993) Adenovirus DNA polymerase is a phosphoprotein. J Biol Chem 268: 442–8

    PubMed  CAS  Google Scholar 

  • Ramachandra M and Padmanabhan R (1993) Adenovirus DNA polymerase is phosphorylated by a stably associated histone H1 kinase. J Biol Chem 268: 17448–56

    PubMed  CAS  Google Scholar 

  • Ramachandra M and Padmanabhan R (1995) Expression, nuclear transport and phosphorylation of adenovirus DNA replication proteins. Curr Top Microbiol Immunol 199: 50–88

    PubMed  Google Scholar 

  • Rao L, Debbas M, Sabbatini P, Hockenbery D, Korsmeyer S and White E (1992) The adenovirus E1A proteins induce apoptosis, which is inhibited by the EiB 19 kDa and Bd-2 proteins. Proc Natl Acad Sci USA 89: 7742–6

    Article  PubMed  CAS  Google Scholar 

  • Raychaudhuri P, Bagchi S, Devoto SH, Kraus VB, Moran E and Nevins JR (1991) Domains of the adenovirus E1A protein required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes Dev 5: 1200–11

    Article  PubMed  CAS  Google Scholar 

  • Reed SI, Hadwiger JA and Lorincz AT (1985) Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proc Natl Acad Sci USA 82: 4055–9

    Article  PubMed  CAS  Google Scholar 

  • Riabowol K, Draetta G, Brizuela L, Vandre D and Beach D (1989) The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57: 393–401

    Article  PubMed  CAS  Google Scholar 

  • Ruley HE (1983) Adenovirus early region 1 A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304: 602–6

    Article  PubMed  CAS  Google Scholar 

  • Sarnow P, Ho YS, Williams J and Levine AJ (1982) Adenovirus Elb-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28: 387–94

    Article  PubMed  CAS  Google Scholar 

  • Scolnick DM, Chehab NH, Stavridi ES, Lien MC, Caruso L, Moran E, Berger SL and Halazonetis TD (1997) CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res 57: 3693–6

    PubMed  CAS  Google Scholar 

  • Sharp PA, Pettersson U and Sambrook J (1974) Viral DNA in transformed cells. I. A study of the sequences of adenovirus 2 DNA in a line of transformed rat cells using specific fragments of the viral genome. J Mol Biol 86: 709–26

    Article  PubMed  CAS  Google Scholar 

  • Shenk T and Flint J (1991) Transcriptional and transforming activities of the adenovirus E1A proteins. Adv Cancer Res 57: 47–85

    Article  PubMed  CAS  Google Scholar 

  • Simanis V and Nurse P (1986) The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell 45: 261–8

    Article  PubMed  CAS  Google Scholar 

  • Simon MC, Kitchener K, Kao HT, Hickey E, Weber L, Voellmy R, Heintz N and Nevins JR (1987) Selective induction of human heat shock gene transcription by the adenovirus E1A gene products, including the 12 S E1A product. Mol Cell Biol 7: 2884–90

    PubMed  CAS  Google Scholar 

  • Sinha S, Maity SN, Lu J and De Crombrugghe B (1995) Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc Natl Acad Sci USA 92: 1624–8

    Article  PubMed  CAS  Google Scholar 

  • Slansky JE and Farnham PJ (1996) Transcriptional regulation of the dihydrofolate reductase gene. Bioessays 18: 55–62

    Article  PubMed  CAS  Google Scholar 

  • Stillman B (1996) Cell cycle control of DNA replication. Science 274: 1659–64

    Article  PubMed  CAS  Google Scholar 

  • Subramanian T, Boyd JM and Chinnadurai G (1995) Functional substitution identifies a cell survival promoting domain common to adenovirus EIB 19 kDa and Bd-2 proteins. Oncogene 11: 2403–9

    PubMed  CAS  Google Scholar 

  • Subramanian T and Chinnadurai G (2001) Interaction of cellular apoptosis regulating proteins with adenovirus anti-apoptosis protein E1B-19 K. Methods Mol Biol 177: 211–8

    PubMed  CAS  Google Scholar 

  • Subramanian T, Kuppuswamy M, Nasr RJ and Chinnadurai G (1988) An N-terminal region of adenovirus MA essential for cell transformation and induction of an epithelial cell growth factor. Oncogene 2: 105–12

    PubMed  CAS  Google Scholar 

  • Sugarman JL, Schonthal AH and Glass CK (1995) Identification of a cell-typespecific and E2F-independent mechanism for repression of cdc2 transcription. Mol Cell Biol 15: 3282–90

    PubMed  CAS  Google Scholar 

  • Sugrue MM, Shin DY, Lee SW and Aaronson SA (1997) Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc Natl Acad Sci USA 94: 9648–53

    Article  PubMed  CAS  Google Scholar 

  • Sundseth R, Macdonald G, Ting J and King AC (1997) DNA elements recognizing NF-Y and Spl regulate the human multidrug-resistance gene promoter. Mol Pharmacol 51: 963–71

    PubMed  CAS  Google Scholar 

  • Tanimoto A, Chen H, Kao CY, Moran E, Sasaguri Y and Padmanbhan R (1998a) Transactivation of the human cdc2 promoter by adenovirus EIA in cycling cells is mediated by induction of a 110 kDa CCAAT-box-binding factor. Oncogene 17: 3103–3114

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto A, Kao CY, Chang CC, Sasaguri Y and Padmanabhan R (1998b) Deregulation of cdc2 gene expression correlates with overexpression of a 110 kDa CCAAT box binding factor in transformed cells. Carcinogenesis 19: 1735–41

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Kassatly RF, Cress WD and Horowitz JM (1997) Subunit composition determines E2F DNA-binding site specificity. Mol Cell Biol 17: 6994–7007

    PubMed  CAS  Google Scholar 

  • Taylor WR, Schonthal AH, Galante J and Stark GR (2001) p130/E2F4 binds to and represses the cdc2 promoter in response to p53. J Biol Chem 276: 1998–2006

    Google Scholar 

  • Taylor WR and Stark GR (2001) Regulation of the G2/M transition by p53. Oncogene 20: 1803–15

    Article  PubMed  CAS  Google Scholar 

  • Templeton D and Eckhart W (1982) Mutation causing premature termination of the polyoma virus medium T antigen blocks cell transformation. J Virol 41: 1014–24

    PubMed  CAS  Google Scholar 

  • Tommasi S and Pfeifer GP (1995) In vivo structure of the human cdc2 promoter: release of a p130-E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. Mol Cell Biol 15: 6901–13

    PubMed  CAS  Google Scholar 

  • Treisman R, Novak U, Favaloro J and Kamen R (1981) Transformation of rat cells by an altered polyoma virus genome expressing only the middle-T protein. Nature 292: 595–600

    Article  PubMed  CAS  Google Scholar 

  • Trentin JJ, Van Hoosier GL, Jr and Samper L (1968) The oncogenicity of human adenoviruses in hamsters. Proc Soc Exp Biol Med 127: 683–9

    PubMed  CAS  Google Scholar 

  • Tsai L.-H, Harlow E and Meyerson M (1991) Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature 353: 174–177

    Article  PubMed  CAS  Google Scholar 

  • Wang HG, Draetta G and Moran E (1991) E1A induces phosphorylation of the retinoblastoma protein independently of direct physical association between the E1A and retinoblastoma products. Mol Cell Biol 11: 4253–65

    PubMed  CAS  Google Scholar 

  • Wang HG, Moran E and Yaciuk P (1995) E1A promotes association between p300 and pRB in multimeric complexes required for normal biological activity. J Virol 69: 7917–24

    PubMed  CAS  Google Scholar 

  • Wang HG, Rikitake Y, Carter MC, Yaciuk P, Abraham SE, Zerler B and Moran E (1993) Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J Virol 67: 476–88

    PubMed  CAS  Google Scholar 

  • Weinberg RA (1985) The action of oncogenes in the cytoplasm and nucleus. Science 230: 770–6

    Article  PubMed  CAS  Google Scholar 

  • Weintraub SJ, Chow KN, Luo RX, Zhang SH, He S and Dean DC (1995). Mechanism of active transcriptional repression by the retinoblastoma protein. Nature 375: 812–5

    Article  PubMed  CAS  Google Scholar 

  • Weintraub SJ and Dean DC (1992) Interaction of a common factor with ATF, Spl, or TATAA promoter elements is required for these sequences to mediate trans-activation by the adenoviral oncogene E1A. Mol Cell Biol 12: 512–7

    PubMed  CAS  Google Scholar 

  • Weintraub SJ, Prater CA and Dean DC (1992) Retinoblastoma protein switches the E2F site from positive to negative element. Nature 358: 259–61

    Article  PubMed  CAS  Google Scholar 

  • Werness BA, Levine AJ and Howley PM (1990) Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248: 76–9

    Article  PubMed  CAS  Google Scholar 

  • White E (1993) Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus. Proc Soc Exp Biol Med 204: 30–9

    PubMed  CAS  Google Scholar 

  • White E (1996) Life, death and the pursuit of apoptosis. Genes Dev 10: 1–15

    Article  PubMed  CAS  Google Scholar 

  • Whyte P, Buchkovich KJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA and Harlow E (1988) Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334: 124–9

    Article  PubMed  CAS  Google Scholar 

  • Whyte P, Williamson NM and Harlow E (1989) Cellular targets for transformation by the adenovirus E1A proteins. Cell 56: 67–75

    Article  PubMed  CAS  Google Scholar 

  • Williams GT, Mcclanahan TK and Morimoto RI (1989) E1A transactivation of the human HSP70 promoter is mediated through the basal transcriptional complex. Mol Cell Biol 9: 2574–87

    PubMed  CAS  Google Scholar 

  • Winberg G and Shenk T (1984) Dissection of overlapping functions within the adenovirus type 5 E1A gene. EMBO J 3: 1907–12

    PubMed  CAS  Google Scholar 

  • Wu BJ, Kingston RE and Morimoto RI (1986) Human HSP70 promoter contains at least two distinct regulatory domains. Proc Natl Acad Sci USA 83: 629–33

    Article  PubMed  CAS  Google Scholar 

  • Wu BJ and Morimoto RI (1985) Transcription of the human hsp70 gene is induced by serum stimulation. Proc Natl Acad Sci USA 82: 6070–4

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto KK, Gonzalez GA, Menzel P, Rivier J and Montminy MR (1990) Characterization of a bipartite activator domain in transcription factor CREB. Cell 60: 611–7

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Wu Q, Yang CP and Horwitz SB (1995) Coordination of transcription factors, NF-Y and C/EBP beta, in the regulation of the mdrlb promoter. Cell Growth Differ 6: 1505–12

    Google Scholar 

  • Yun J, Chae HD, Choy HE, Chung, J, Yoo HS, Han MH and Shin DY (1999) p53 negatively regulates cdc2 transcription via the CCAAT-binding NF-Y transcription factor. J Biol Chem 274: 29677–82

    Google Scholar 

  • Zerfass K, Spitkovsky D, Schulze A, Joswig S, Henglein B and Jansen-Dura P (1996) Adenovirus E1A activates cyclin A gene transcription in the absence of growth factors through interaction with p107. J Virol 70: 2637–42

    PubMed  CAS  Google Scholar 

  • Zerler B, Moran B, Maruyama K, Moomaw J, Grodzicker T and Ruley HE (1986) Adenovirus E1A coding sequences that enable ras and pmt oncogenes to transform cultured primary cells. Mol Cell Biol 6: 887–99

    PubMed  CAS  Google Scholar 

  • Zerler B, Roberts RJ, Mathews MB and Moran E (1987) Different functional domains of the adenovirus E1A gene are involved in regulation of host cell cycle products. Mol Cell Biol 7: 821–9

    PubMed  CAS  Google Scholar 

  • Zwicker J, Gross C, Lucibello FC, Truss M, Ehlert F, Engeland K and Muller R (1995a) Cell cycle regulation of cdc25 C transcription is mediated by the periodic repression of the glutamine-rich activators NF-Y and Sp1. Nucleic Acids Res 23: 3822–30

    Article  PubMed  CAS  Google Scholar 

  • Zwicker J, Lucibello FC, Wolfraim LA, Gross C, Truss M, Engeland K and Muller R (1995b) Cell cycle regulation of the cyclin A, cdc25 C and cdc2 genes is based on a common mechanism of transcriptional repression. EMBO J 14: 4514–22

    PubMed  CAS  Google Scholar 

  • Zwicker J and Muller R (1997) Cell-cycle regulation of gene expression by transcriptional repression. Trends Genet 13: 3–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Padmanabhan, R., Tanimoto, A., Sasaguri, Y. (2003). Transactivation of Human cdc2 Promoter by Adenovirus E1A. In: Doerfler, W., Böhm, P. (eds) Adenoviruses: Model and Vectors in Virus-Host Interactions. Current Topics in Microbiology and Immunology, vol 272. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-05597-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-05597-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05517-1

  • Online ISBN: 978-3-662-05597-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics