Skip to main content

Nitrogen Regulation in Mycelial Fungi

  • Chapter
Biochemistry and Molecular Biology

Part of the book series: The Mycota ((MYCOTA,volume 3))

Abstract

Nitrogen is essential for the production of most biological macromolecules, not least proteins and nucleic acids. Consequently, its effective acquisition and utilisation are fundamental to all biological systems. Generally, fungi can utilise a very diverse range of compounds as their source of nitrogen. Inevitably, this metabolic versatility demands appropriate expression of the many genes involved in nitrogen assimilation. Many of the regulatory mechanisms involved in determining effective and efficient utilisation of available nitrogen have been well studied (Wiame et al. 1985; Caddick 1994; Marzluf 1997). However, nitrogen is also an important signal for other aspects of growth including morphological development, the production of secondary metabolites and the regulation of virulence determinants in phytopathogenic fungi (Brakhage 1998; Pan et al. 2000; Snoeijers et al. 2000).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaar YG, Moore MM (1998) Mapping of the nitrate assimilation gene cluster (crnA-niiA-niaD) and characterization of the nitrite reductase gene (niiA) in the opportunistic fungal pathogen Aspergillus fumigatus. Curr Genet 33:206–215

    Article  PubMed  CAS  Google Scholar 

  • Amrani L, Cecchetto G, Scazzocchio C, Glatigny A (1999) The hxBI gene, necessary for the post-translational activation of purine hydroxylases in Aspergillus nidulans, is independently controlled by the purine utilization and the nicotinate utilization transcriptional activating systems. Mol Microbiol 31:1065–1073

    Article  PubMed  CAS  Google Scholar 

  • Andrianopoulos A, Kourambas S, Sharp JA, Davis MA, Hynes MJ (1998). Characterization of the Aspergillus nidulans nmrA gene involved in nitrogen metabolite repression. J Bacteriol 180:1973–1977

    PubMed  CAS  Google Scholar 

  • Arst HN (1990) Wide domain regulation of gene expression in Aspergillus nidulans with specific attention to the role of the meaB gene. In: Heslot H, Davies J, Florent J, Bobichon L, Durand G, Penasse L (eds) 6th International Symposium on Genetics of industrial microbiology (GIM90), vol II. Société Française de Microbiologie, Paris, pp 555–566

    Google Scholar 

  • Arst HN, Cove DJ (1973) Nitrogen metabolite repression in Aspergillus nidulans. Mol Gen Genet 126:111–142

    Article  PubMed  CAS  Google Scholar 

  • Arst HN, MacDonald DW (1975) A gene cluster of Aspergillus nidulans with an internally located cis-acting regulatory region. Nature 254:26–31

    Article  PubMed  CAS  Google Scholar 

  • Arst HN, Scazzocchio C (1975) Initiator constitutive mutation with an “up-promoter” effect in Aspergillus nidulans. Nature 256:26–31

    Article  Google Scholar 

  • Arst HN, MacDonald DW (1978) Reduced expression of a distal gene of the prn gene cluster Aspergillus nidulans: genetic evidence for a dicistronic messenger in an eukaryotes. Mol Gen Genet 163:17–22

    Article  PubMed  Google Scholar 

  • Arst HN, MacDonald DW, Jones SA (1980) Regulation of proline transport in Aspergillus nidulans. J Gen Microbiol 116:285–294

    CAS  Google Scholar 

  • Axelrod JD, Majors J, Brandis MC (1991) Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo. Mol Cell Biol 11:564–567

    PubMed  CAS  Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    PubMed  CAS  Google Scholar 

  • Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692.

    Article  PubMed  CAS  Google Scholar 

  • Bertram PG, Choi JH, Carvalho J, Ai W, Zeng C, Chan TF, Zheng XF (2000) Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J Biol Chem 275: 35727–35733

    Article  PubMed  CAS  Google Scholar 

  • Brakhage AA (1998) Molecular regulation of β-lactam biosynthesis in filamentous fungi. Microbiol Mol Biol Rev 62:547–585

    PubMed  CAS  Google Scholar 

  • Burger G, Strauss J, Scazzocchio C, Lang BF (1991) nirA, the pathway-specific regulatory gene of nitrate assimilation in Aspergillus nidulans, encodes a putative GAL4-type zinc finger protein and contains four introns in highly conserved regions. Mol Cell Biol 11:5746–5755

    Google Scholar 

  • Caddick MX (1994) Nitrogen metabolite repression. Prog Ind Microbiol 29:323–353

    PubMed  CAS  Google Scholar 

  • Caddick MX, Arst HN (1990) Nitrogen regulation in Aspergillus: are two fingers better than one? Gene 99:123–127

    Article  Google Scholar 

  • Caddick MX, Arst HN (1998) Deletion of the 389 N-terminal residues of the transcriptional activator AreA does not result in nitrogen metabolite derepression in Aspergillus nidulans. J Bacteriol 180:5762–5764

    PubMed  CAS  Google Scholar 

  • Caddick MX, Peters DG, Hooley P, Nayler A (1997) Genetic and molecular characterization of murine GATA-1 in Aspergillus defines a critical role for the N-terminal finger. Genes Funct 1:37–49

    Article  PubMed  CAS  Google Scholar 

  • Cardenas ME, Cutler NS, Lorenz MC, di Como CJ, Heitman J (1999) The TOR signalling cascade regulates gene expression in response to nutrients Genes Dev 13: 3271–3279

    CAS  Google Scholar 

  • Cazelle B, Pokorska A, Hull E, Green PM, Stanway G, Scazzocchio C (1998) Sequence, exon-intron organization, transcription and mutational analysis of prnA, the gene encoding the transcriptional activator of the prn gene cluster in Aspergillus nidulans. Mol Microbiol 28:355–370

    Article  PubMed  CAS  Google Scholar 

  • Chiang TY, Marzluf GA (1994) DNA recognition by the NIT2 nitrogen regulatory protein: importance of the number, spacing and orientation of GATA core elements and their flanking sequences upon NIT2 binding. Biochemistry 33:576–582

    Article  PubMed  CAS  Google Scholar 

  • Chiang TY, Marzluf GA (1995) Binding affinity and functional significance of NIT2 and NIT4 binding sites in the promoter of the highly regulated nit-3 gene, which encodes nitrate reductase in Neurospora crassa. J Bacteriol 177:6093–6099

    PubMed  CAS  Google Scholar 

  • Chiang TY, Rai R, Cooper TG, Marzluf GA (1994) DNA binding site specificity of the Neurospora global nitrogen regulatory protein NIT2: analysis with mutated binding sites. Mol Gen Genet 245:512–516

    Article  PubMed  CAS  Google Scholar 

  • Chrisensen T, Hynes MJ, Davis MA (1998) Role of the regulatory gene areA of Aspergillus oryzae in nitrogen metabolism. Appl Environ Microbiol 64:3232–3237

    Google Scholar 

  • Cohen BL (1972) Ammonium repression of extracellular protease in Aspergillus nidulans. J Gen Microbiol 71: 293–299

    CAS  Google Scholar 

  • Conlon H, Zadra I, Haas H, Arst HN Jr, Jones MG, Caddick MX (2001)The Aspergillus nidulans GATA transcription factor gene areB encodes at least three proteins and features three classes of mutation. Mol Microbiol 40:361–375

    Google Scholar 

  • Coschigano PW, Magasanik B (1991) The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferase. Mol Cell Biol 11:822–832

    PubMed  CAS  Google Scholar 

  • Cove DJ (1979) Genetic studies of nitrate assimilation in Aspergillus nidulans Biol Rev 54:291–327

    Article  PubMed  CAS  Google Scholar 

  • Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2: Transcription, photoresponses, and the origins of circadian rhythmicity Science 276:763–769

    Article  PubMed  CAS  Google Scholar 

  • Cubero B, Scazzocchio C (1994) Two different adjacent and divergent zinc-finger binding sites are necessary for CREA-mediated carbon catabolite repression in the proline gene cluster of Aspergillus nidulans. EMBO J 13:407–415

    PubMed  CAS  Google Scholar 

  • Cubero B, Gomez D, Scazzocchio C (2000) Metabolite repression and inducer exclusion in the proline utilization gene cluster of Aspergillus nidulans. J Bacteriol 182:233–235

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Hynes MJ (1987) Complementation of areA -regulatory gene mutations of Aspergillus nidulans by the heterologous regulatory gene nit-2 of Neurospora crassa. Proc Natl Acad Sci USA 84:3753–3757

    Article  PubMed  CAS  Google Scholar 

  • Davis MA, Small AJ, Kourambas S, Hynes MJ (1996) The tamA gene of Aspergillus nidulans contains a putative zinc cluster motif which is not required for gene function. J Bacteriol 178:3406–3409

    PubMed  CAS  Google Scholar 

  • Druker H (1973) Regulation of exocellular proteases in Neurospora crassa: role of Neurospora proteases in induction. J Bacteriol 116:593–599

    Google Scholar 

  • Dunn-Coleman NS, Tomsett AB, Garrett RH (1980) The regulation of nitrate assimilation in Neurospora crassa: biochemical analysis of the nmr-1 mutants. Mol Gen Genet 182:234–239

    Article  Google Scholar 

  • Dzikowska A, Swianiewicz M, Talarczyk A, Wisniewska M, Goras M, Scazzocchio C, Weglenski P (1999) Cloning, characterisation and regulation of the ornithine transaminase (otaA) gene from Aspergillus nidulans. Curr Genet 35:118–126

    Article  PubMed  CAS  Google Scholar 

  • Exley GE, Colandene JD, Garrett RH (1993) Molecular cloning characterization, and nucleotide sequence of nit-6y the structural gene form nitrite reductase in Neurospora crassa. J Bacteriol 175:2379–2392

    PubMed  CAS  Google Scholar 

  • Feng B, Marzluf GA (1998) Interactions between major nitrogen regulatory protein NIT2 and pathway specific regulatory factor NIT4 is required for their synergistic activation of gene expression in Neurospora crassa. Mol Cel Biol 18:3983–3990

    CAS  Google Scholar 

  • Feng B, Frielin E, Marzluf G A (1994) A reporter gene analysis of penicillin biosynthesis gene expression in Penicillium chrysogenum and its regulation by nitrogen and glucose catabolite repression. Appl Environ Microbiol 60:4432–4439

    PubMed  CAS  Google Scholar 

  • Feng B, Frielin E, Marzluf GA (1995) Nuclear DNA-binding proteins which recognize the intergenic control region of penicillin biosynthetic genes. Curr Genet 27: 351–358

    Article  PubMed  CAS  Google Scholar 

  • Feng B, Haas H, Marzluf GA (2000) ASD4, a new GATA factor of Neurospora crassa, displays sequence specific DNA binding and functions in ascus and ascospore development. Biochemistry 39:11065–11073

    Article  PubMed  CAS  Google Scholar 

  • Fernandes L, Rodrigues-Pousada C, Strul K (1997) Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Mol Cell Biol 17:6982–6993

    PubMed  CAS  Google Scholar 

  • Fraser JA, Davis MA, Hynes MJ (2002) A gene from Aspergillus nidulans with similarity to URE2 of Saccharomyces cerevisiae encodes a glutathione S-transferase which contributes to heavy metal and xenobiotic resistance. Appl Environ Microbiol 68: 2801–2808

    Article  CAS  Google Scholar 

  • Froeliger E, Carpenter B (1996) NUT-1, a major nitrogen regulator in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet 251:647–656

    PubMed  CAS  Google Scholar 

  • Fu Y, Marzluf GA (1987) Molecular cloning and analysis of the regulation of nit-3, the structural gene for nitrate reductase in Neurospora crassa. Proc Natl Acad Sci USA 84:8243–8247

    Article  PubMed  CAS  Google Scholar 

  • Fu Y, Marzluf GA (1988) Metabolic control and autogenous regulation of nit-3, the nitrate reductase structural gene of Neurospora crassa. J Bacteriol 170:657–661

    PubMed  CAS  Google Scholar 

  • Fu Y, Marzluf GA (1990) nit-2, the major nitrogen regulatory gene of Neurospora crassa, encodes a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 10:1055–1065

    Google Scholar 

  • Fu YH, Feng B, Marzluf GA (1995) Sequence-specific DNA binding by NIT4, the pathway-specific regulatory protein that mediates nitrate induction in Neurospora. Mol Microbiol 15:935–942

    Article  PubMed  CAS  Google Scholar 

  • Gomez D, Cubero B, Cecchetto G, Scazzocchio C (2002) PrnA, a Zn2Cys2 activator with a unique DNA recognition mode, requires inducer for in vivo binding. Mol Microbiol 44:585–597

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez R, Gavrias V, Gomez D, Scazzocchio C, Cubero B (1997). The integration of nitrogen and carbon catabolite repression in Aspergillus nidulans requires the GATA factor AreA and an additional positive-acting element, ADA. EMBO J 16:2937–2944

    Article  PubMed  CAS  Google Scholar 

  • Gorfinkiel L, Diallinas G, Scazzocchio C (1993) Sequence and regulation of the uapA gene encoding a uric acid-xanthine permease in the fungus Aspergillus nidulans. J Biol Chem 268:23376–23381

    PubMed  CAS  Google Scholar 

  • Haas H, Marzluf GA (1995) NRE, the major nitrogen regulatory protein of Pénicillium chrysogenum binds specifically to elements in the intergenic promoter regions of nitrate assimilation and penicillin biosynthetic gene cluster. Curr Genet 28:177–183

    Article  PubMed  CAS  Google Scholar 

  • Haas H, Baure B, Redl B, Stoffler G, Marzluf GA (1995) Molecular cloning and analysis of nre, the major nitrogen regulatory gene of Penicillium chrysogenum. Curr Genet 27:150–158

    Article  PubMed  CAS  Google Scholar 

  • Haas H, Angermayr K, Zadra I, Stoffler G (1997) Overex-pression of nreB, a new GATA factor-encoding gene of Penicillium chrysogenum, leads to repression of the nitrate assimilatory gene cluster. J Biol Chem 272: 22576–22582

    Article  PubMed  CAS  Google Scholar 

  • Han K-H, Han K-Y, Yu J-H, Chae K-S, Jahng K-Y, Han D-M (2001) The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol 41:299–309

    Article  PubMed  CAS  Google Scholar 

  • Hanson MA, Marzluf GA (1975) Control of the synthesis of a single enzyme by multiple regulatory circuits in Neurospora crassa. Proc Natl Acad Sci USA 72:1240–1244

    Article  PubMed  CAS  Google Scholar 

  • Hensel M, Arst HN, Aufauvre-Brown A, Holden DW (1998) The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol Gen Genet 258: 553–557

    Article  PubMed  CAS  Google Scholar 

  • Huang HL, Brandiss MC (2000) The regulator of the yeast proline utilization pathway is differentially phospho-rylated in response to the quality of the nitrogen source. Mol Cell Biol 20:892–899

    Article  PubMed  CAS  Google Scholar 

  • Hull EP, Green PM, Arst HN, Scazzocchio C (1989) Cloning and physical characterization of the L-proline catabolism gene cluster of Aspergillus nidulans. Mol Microbiol 3:553–559

    Article  PubMed  CAS  Google Scholar 

  • Hynes MJ, Pateman JAJ (1970) The genetic analysis of regulation of amidase synthesis in Aspergillus nidulans I. Mutations resistant to fluoroacetamide. Mol Gen Genet 108:97–106

    Article  PubMed  CAS  Google Scholar 

  • Iraqui I, Vissers S, Bernard F, de Craene J-O, Boles E, Urrestarazu A, Andre B (1999) Amino acid signalling in Saccharomyces cerevisiae: a permease like sensor of external amino acids and F-box protein Grrlp are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19:989–1001

    PubMed  CAS  Google Scholar 

  • Jari G, Marzluf GA (1990) Analysis of conventional and in vitro generated mutants of nmr, the negative acting nitrogen regulatory gene of Neurospora crassa. Mol Gen Genet 222:233–240

    Article  Google Scholar 

  • Johnstone IL, McCabe PC, Greaves P, Gurr SJ, Cole GE, Brow MAD, Unkles SE, Clutterbuck AJ, Kinghorn JR, Innis MA (1990) Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene 90:181–192

    Article  PubMed  CAS  Google Scholar 

  • Katz ME, Rice RN, Cheetham BF (1994) Isolation and characterization of an Aspergillus nidulans gene encoding an alkaline protease. Gene 150:287–292

    Article  PubMed  CAS  Google Scholar 

  • Keller NP, Nesbitt C, Sarr B, Phillips TD, Burow GB (1997) pH regulation of sterigmatocystin and aflatoxin biosynthesis in Aspergillus spp. Phytopathology 87: 643–648

    Article  PubMed  CAS  Google Scholar 

  • Kinghorn JR, Pateman JA (1975) Studies of partially repressed mutants at the tamA and areA loci in Aspergillus nidulans. Mol Gen Genet 140:137–147

    Article  PubMed  CAS  Google Scholar 

  • Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arst HN Jr (1990) The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of the activation alter a loop residue of a putative zinc finger. EMBO J 9:1355–1364

    PubMed  CAS  Google Scholar 

  • Kulkarni AA, Abul-Hamd AT, Rai R, Berry HE, Cooper TG (2001) Gln3p nuclear localization and interaction with Ure2p in Saccharomyces cerevisiae. J Biol Chem 276:32136–32144

    Article  PubMed  CAS  Google Scholar 

  • Kuruvilla FG, Shamji AF, Schreiber SL (2001) Carbon- and nitrogen-quality signalling to translation are mediated by distinct GATA-type transcription factors. Proc Natl Acad Sci USA 98:7283–7288

    Article  PubMed  CAS  Google Scholar 

  • Kuruvilla FG, Shamji AF, Sternson SM, Hergenrother PJ, Schreiber SL (2002) Dissecting glucose signalling with diversity-oriented synthesis and small-molecule microarrays. Nature 416:653–657

    Article  PubMed  CAS  Google Scholar 

  • Langdon T, Sheerins S, Ravagnani A, Gielkens M, Caddick MX, Arst HN (1995) Mutational analysis reveals dispensability of the N-terminal region of the Aspergillus transcription factor mediating nitrogen metabolite repression. Mol Microbiol 17:877–888

    Article  PubMed  CAS  Google Scholar 

  • Lau G, Hamer JE (1996) Regulatory genes controlling MGP1 expression and pathogenicity in the rice blast fungus Magnaporthe grisea. Plant Cell 8:771–781

    PubMed  CAS  Google Scholar 

  • Lee BN, Adams TH (1994) The Aspergillus nidulans fluG gene is required for the production of an extracellular developmental signal and is related to prokaryotic glutamine synthetase I. Genes Dev 8:641–651

    Article  PubMed  CAS  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C, Harasima T, Shen W-C, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64: 746–785

    Article  PubMed  CAS  Google Scholar 

  • Linden H, Rodriguez-Franco M, Macino G (1997) Mutants of Neurospora crassa defective in regulation of blue light perception. Mol Gen Genet 254:111–118

    Article  PubMed  CAS  Google Scholar 

  • Lorenz MC, Heitman J (1998) The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 17:1236–1247

    Article  PubMed  CAS  Google Scholar 

  • Lowry JA, Atchley WR (2000) Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol 50:103–115

    PubMed  CAS  Google Scholar 

  • Margelis S, D’Souza C, Small AJ, Hynes MJ, Adams TH, Davis MA (2001) Role of glutamine synthetase in nitrogen metabolite repression in Aspergillus nidulans. J Bacteriol 183:5826–5833

    Article  PubMed  CAS  Google Scholar 

  • Marinin A-M, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Microbiol 17:4282–4293

    Google Scholar 

  • Martinelli SD (1976) Conidiation of Aspergillus nidulans in submerged culture. Trans Br Mycol Soc 67:121–128

    Article  Google Scholar 

  • Marx F, Haas H, Reindl M, Stoffler G, Lottspeich F, Redl B (1995) Cloning, structural organization and regulation of expression of the Penicillium chrysogenum paf gene encoding an abundantly secreted protein with antifungal activity. Genel67:167–171

    Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in fungi. Microbiol Mol Biol Rev 61:17–32

    PubMed  CAS  Google Scholar 

  • Menne S, Walz M, Kuck U (1994) Expression studies with the bi-directional pcbAB-pcbC promoter region from Acremonium chrysogenum using reporter gene fusions. Appl Microbiol Biotechnol 42:57–66

    Article  PubMed  CAS  Google Scholar 

  • Merika M, Orkin SH (1995) DNA-binding specificity of GATA family transcription factors. Mol Cell Biol 13: 3999–4010

    Google Scholar 

  • Meyer V, Wedde M, Stahl U (2002) Transcriptional regulation of the antifungal protein in Aspergillus giganteus. Mol Gen Genet 266:747–757

    Article  CAS  Google Scholar 

  • Morozov IY, Martinez MG, Jones MG, Caddick MX (2000) A defined sequence within the 3’ UTR of the areA transcript is sufficient to mediate nitrogen metabolite signalling via accelerated deadenylation. Mol Microbiol 37:1248–1257

    Article  PubMed  CAS  Google Scholar 

  • Morozov IY, Galbis-Martinez M, Jones MG, Caddick MX (2001) Characterisation of nitrogen metabolite signalling in Aspergillus via the regulated degradation of areA mRNA. Mol Microbiol 42:269–277

    Article  PubMed  CAS  Google Scholar 

  • Muro-Pastor MI, Gonzalez R, Strauss J, Narendja F, Scazzocchio C (1999) The GATA factor AreA is essential for chromatin remodelling in a eukaryotic bidirectional promoter EMBO J 18:1584–1597

    Article  PubMed  CAS  Google Scholar 

  • Murray LE, Rowley N, Dawes IW, Johnston GC, Singer RA (1998) A yeast glutamine tRNA signals nitrogen status for regulation of dimorphic growth and sporulation. Proc Natl Acad Sci USA 95:8619–8624

    Article  PubMed  CAS  Google Scholar 

  • Narendja F, Goller SP, Wolschek M, Strauss J (2002) Nitrate and the GATA factor AreA are necessary for in vivo binding of NirA, the pathway-specific transcription activator of Aspergillus nidulans. Mol Microbiol 44: 573–583

    Article  PubMed  CAS  Google Scholar 

  • Oestreicher N, Scazzocchio C (1995) A single amino acid change in a pathway-specific transcription factor results in differing degrees of constitutivity, hyper-inducibility and derepression of several structural genes. J Mol Biol 249:693–699

    Article  PubMed  CAS  Google Scholar 

  • Okamoto PM, Fu Y-H, Marzluf GA (1991) Nit-3, the structural gene of nitrate reductase in Neurospora crassa: nucleotide sequence and regulation of mRNA synthesis and turnover. Mol Gen Genet 227:213–223

    Article  PubMed  CAS  Google Scholar 

  • Orkin SH (1992) GATA-binding transcription factors in hematopoietic cells. Blood 80:575–581

    PubMed  CAS  Google Scholar 

  • Pan H, Feng B, Marzluf GA (1997) Two distinct protein-protein interactions between the NIT2 and NMR regulatory proteins are required to establish nitrogen metabolite repression in Neurospora crassa. Mol Microbiol 26:721–729

    Article  PubMed  CAS  Google Scholar 

  • Pan X, Haraxhima T, Heitman J (2000) Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae. Curr Opp Microbiol 3:567–572

    Article  CAS  Google Scholar 

  • Perez-Garcia A, Snoeijers SS, Joosten MHAJ, Goosen T, de Wit PJGM (2001) Expression of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is regulated by the global nitrogen response factor NRF1. Mol Plant Microbe In 14:316–325

    Article  CAS  Google Scholar 

  • Peters DG, Caddick MX (1994) Direct analysis of native and chimeric GATA specific DNA binding proteins from Aspergillus nidulans. Nucleic Acids Res 22:5164–5172

    Article  PubMed  CAS  Google Scholar 

  • Platt A, Langdon T, Arst HN Jr, Kirk D, Tollervey D, Mates Sanchez JM, Caddick MX (1996) Nitrogen metabolite signalling involves the C-terminus and the GATA domain of the Aspergillus transcription factor AREA and the 3′ untranslated region of its mRNA. EMBO J 15:2791–2801

    PubMed  CAS  Google Scholar 

  • Polley SD, Caddick MX (1996) Molecular characterisation of meaB, a novel gene affecting nitrogen metabolite repression in Aspergillus nidulans. FEBS Lett 388:200–205

    Article  PubMed  CAS  Google Scholar 

  • Premakumar R, Sorger GJ, Gooden D (1980) Physical characterization of a Neurospora crassa mutant with impaired regulation of nitrate reductase. J Bacteriol 144:542–551

    PubMed  CAS  Google Scholar 

  • Punt PJ, Struss J, Smit R, Kinghorn JR, van den Dondel CA, Scassocchio C (1995) The intergenic region between the divergently transcribed niiA and niaD genes of Aspergillus nidulans contains multiple NirA-binding sites which act bidirectionally. Mol Cell Biol 15: 5688–5699

    PubMed  CAS  Google Scholar 

  • Quesada A, Galvan A, Schnell RA, Lefebvre PA, Fernandez E (1993) 5 nitrate assimilation-related loci are clustered in Chlamydomonas-reinhardtii. Mol Gen Genet 240:387–394

    Google Scholar 

  • Ravagnagi A, Gorfinkeil L, Dallinas G, Landgon T, Adjadj E, Demais S, Gorton D, Arst HN Jr, Scazzocchio C (1997) Subtle hydrophobic interactions between the seventh residue of the zinc finger loop and the first base of an HGATAR sequence determine promoter-specific recognition by the Aspergillus nidulans GATA factor AreA. EMBO J 16:3974–3986

    Article  Google Scholar 

  • Reinert WR, Marzluf GA (1975) Genetic and metabolic control of the purine catabolic enzymes of Neurospora crassa. Mol Gen Genet 139:39–55

    Article  PubMed  CAS  Google Scholar 

  • Ribard C, Scazzocchio C, Oestreicher N (2001) The oxpA5 mutation of Aspergillus nidulans is an allele of adB, the gene encoding adenylosuccinate synthetase. Mol Gen Genet 266:701–710

    Article  CAS  Google Scholar 

  • Scazzocchio C (1994a) The purine degradation pathway, genetics, biochemistry and regulation. Prog Ind Microbiol 29:221–258

    PubMed  CAS  Google Scholar 

  • Scazzocchio C (1994b) The proline utilisation pathway, history and beyond. Prog Ind Microbiol 29:259–278

    PubMed  CAS  Google Scholar 

  • Screen S, Bailey A, Charnley K, Cooper R, Clarkson J (1998) Isolation of a nitrogen response regulator gene (nrrl) from Metarhizium anisopliae Gene 221:17–24

    Article  PubMed  CAS  Google Scholar 

  • Shafer PM, Arst HN (1984) An asparaginase of Aspergillus nidulans is subject to oxygen repression in addition to nitrogen metabolite repression. Mol Gen Genet 198:139–145

    Article  Google Scholar 

  • Small AJ, Hynes MJ, Davis MA (1999) The TamA protein fused to a DNA-binding domain can recruit AreA, the major nitrogen regulatory protein, to activate gene expression in Aspergillus nidulans. Genetics 153:95–105

    PubMed  CAS  Google Scholar 

  • Small AJ, Todd RB, Zanker MC, Delimitrou S, Hynes MJ, Davis MA (2001) Functional analysis of TamA, a coactivator of nitrogen-regulated gene expression in Aspergillus nidulans. Mol Genet Genom 265:636–646

    Article  CAS  Google Scholar 

  • Snoeijers SS, Perez-Garcia A, Joosten MHAJ, de Wit PJGM (2000) the effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogens. Eur J Plant Pathol 106:493–506

    Article  CAS  Google Scholar 

  • Sophianopoulou V, Suarez T, Diallinas G, Scazzocchio C (1993) Operator derepressed mutations in the proline utilisation gene cluster of Aspergillus nidulans. Mol Gen Genet 236:209–213

    Article  PubMed  CAS  Google Scholar 

  • Springael J-Y, André B (1998) Nitrogen-regulated ubiquitination of the Gapl permease of Saccharomyces cere-visiae. Mol Biol Cell 9:1253–1263

    PubMed  CAS  Google Scholar 

  • Stammers DK, Ren J, Leslie K, Nichols CE, Lamb HK, Cocklin S, Dodds A, Hawkins AR (2001) The structure of the negative transcriptional regulator NmrA reveals a structural superfamily which includes the short-chain dehydrogenase/reductases EMBO J 20: 6619–6626

    Article  PubMed  CAS  Google Scholar 

  • Stankovich M, Platt A, Caddick MX, Langdon T, Shaffer PM, Arst HN Jr (1993) C-terminal truncation of the transcriptional activator encoded by areA in Aspergillus nidulans results in both loss-of-function and gain-of-function phenotypes. Mol Microbiol 7:81–87

    Article  PubMed  CAS  Google Scholar 

  • Starich M, Wikstrom M, Arst HN, Clore GM, Gronenborn AM (1998a) The solution structure of a fungal AREA protein-DNA complex: an alternative binding mode for the basic carboxyl tail of GATA factors. J Mol Biol 277:605–620

    Article  PubMed  CAS  Google Scholar 

  • Starich M, Wikstrom M, Schumacher S, Arst HN, Gronenborn AM, Clore GM (1998b) The solution structure of the Leu22?Val Mutant AREA DNA binding domain complexed with TGATAG core element defines a role for hydrophobic packing in the determination of specificity. J Mol Biol 277:621–634

    Article  PubMed  CAS  Google Scholar 

  • Strauss J, Muro-Pastor MI, Scazzocchio C (1998) The regulator of nitrate assimilation in ascomycetes is a dimer which binds a nonrepeated, asymmetrical sequence. Mol Cell Biol 18:1339–1348

    PubMed  CAS  Google Scholar 

  • Suarez T, de Queiroz MV, Oestreicher N, Scazzocchio C (1995) The sequence and binding specificity of UaY, the specific regulator of the purine utilization pathway in Aspergillus nidulans, suggest an evolutionary relationship with the PPR1 protein of Saccharomyces cerevisiae. EMBO J 14:1453–1467

    PubMed  CAS  Google Scholar 

  • Svensson EC, Tufts RL, Polk CE, Leiden JM (1999) Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc Nat Acad Sci USA 96:956–961

    Article  PubMed  CAS  Google Scholar 

  • Swaminathan K, Flynn P, Reece RJ, Marmorstein R (1997) Crystal structure of PUT3-DNA complex reveals a novel mechanism for DNA recognition by a protein containing a Zn2Cys6 binuclear cluster. Nat Struct Biol 4:751–759

    Article  PubMed  CAS  Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPGl, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    PubMed  CAS  Google Scholar 

  • Tao Y, Marzluf GA (1998) Analysis of a distal cluster of binding elements and other unusual features of the promoter of the highly regulated nit-3 gene of Neurospora crassa. Biochemistry 37:11136–11142

    Article  PubMed  CAS  Google Scholar 

  • Tao Y, Marzluf GA (1999) The NIT2 nitrogen regulatory protein of Neurospora: expression and stability of nit-2 mRNA and protein. Curr Genet 36:153–158

    Article  PubMed  CAS  Google Scholar 

  • Tazebay UH, Sophianopoulou V, Cubero B, Scazzocchio C, Diallinas G (1995) Post-transcriptional control and kinetic characterization of proline transport in germinating conidiospores of Aspergillus nidulans. FEMS Microbiol Lett 132:27–37

    Article  PubMed  CAS  Google Scholar 

  • Tazebay UH, Sophianopoulou V, Scazzocchio C, Diallinas G (1997) The gene encoding the major proline transporter of Aspergillus nidulans is up-regulated during conidiospore germination and in response to proline induction and amino acid starvation. Mol Microbiol 24:105–117

    Article  PubMed  CAS  Google Scholar 

  • Todd RB, Andrianopoulos A (1997) Evolution of a fungal regulatory gene family: the Zn(II)2Cys6 binuclear cluster DNA binding motif. Fungal Genet Biol 21: 388–405

    Article  PubMed  CAS  Google Scholar 

  • Tollervey DW, Arst HN Jr (1981) Mutations to constitutiv-ity and derepression are separate and separable in a regulatory gene of Aspergillus nidulans. Curr Genet 4:63–68

    Article  CAS  Google Scholar 

  • Tollervey DW, Arst HN (1982) Domain-wide, locus-specific suppression of nitrogen metabolite repressed mutations in Aspergillus nidulans. Curr Genet 6:79–85

    Article  Google Scholar 

  • Tomsett AB, Dunn-Coleman NS, Garrett RH (1981) The regulation of nitrate assimilation in Neurospora crassa: the isolation and genetic analysis of nmr-1 mutants. Mol Gen Genet 182:229–233

    Article  PubMed  CAS  Google Scholar 

  • Tsang AP, Visvader JE, Turner CA, Fujiwara Y, Yu C, Weiss MJ, Crossley M, Orkin SH (1997) FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109–119

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Homann V, Feng B, Marzluf GA (1999) Isolation, characterization and disruption of the areA nitrogen regulatory gene of Gibberella fujikuroi. Mol Gen Genet 261:106–114

    Article  PubMed  CAS  Google Scholar 

  • Unkles SE, Heck IS, Appleyard MVCL, Kinghorn JR (1999) Eukaryotic molybdopterin synthase. Biochemical and molecular studies of Aspergillus nidulans cnxG and cnxH mutants. J Biol Chem 274:19286–19293

    Article  PubMed  CAS  Google Scholar 

  • Unkles SE, Zhou D, Siddiqi MY, Kinghorn JR, Glass ADM (2001) Apparent genetic redundancy facilitates ecological plasticity for nitrate transport. EMBO J 20: 6246–6255

    Article  PubMed  CAS  Google Scholar 

  • Van den Ackerveken GFJM, Dunn RM, Cozijnsen A J, Vossen JPMJ, Vandenbroek HWJ, Dewit PJGM (1994) Nitrogen limitation induces expression of the avirulence gene avr9 in the tomato pathogen Cladosporium fulvum. Mol Gen Genet 243:277–285

    Article  PubMed  Google Scholar 

  • Visvader JE, Crossley M, Hill J, Orin SH, Adams JM (1995) The C-terminal zinc finger of GATA-1 or GATA-2 is sufficient to induce megakaryocytic differentiation of an early myeloid cell line. Mol Cell Biol 15:634–641

    PubMed  CAS  Google Scholar 

  • Voisard C, Wang J, McEvoy JL, Xu P, Leong SA (1993) Urbsl a gene regulating siderophore biosynthesis in Ustilago maydis, encodes a protein similar to the erythroid specific transcription factor GATA-1. Mol Cell Biol 13: 7091–7100

    PubMed  CAS  Google Scholar 

  • Wiame J-M, Grenson M, Arst HN (1985) Nitrogen catabolite repression in yeasts and filamentous fungi. Adv Microb Physiol 26:1–88

    Article  PubMed  CAS  Google Scholar 

  • Wilson RA, Arst HN Jr (1998) Mutational analysis of AREA, a transcriptional activator mediating nitrogen metabolite repression in Aspergillus nidulans and a member of the “streetwise” GATA family of transcription factors. Microbiol Mol Biol Rev 62:586–596

    PubMed  CAS  Google Scholar 

  • Xiao X, Marzluf GA (1996) Identification of the native NIT2 major nitrogen regulatory protein in nuclear extracts of Neurospora crassa. Genetica 97:153–163

    Article  PubMed  CAS  Google Scholar 

  • Xiao X, Fu H, Marzluf GA (1995) The negative acting NMR regulatory protein of Neurospora crassa binds to and inhibits the DNA-binding activity of the positive-acting nitrogen regulatory protein NIT2. Biochemistry 34:8861–8868

    Article  PubMed  CAS  Google Scholar 

  • Yuan GF, Fu YH, Marzluf GA (1991) nit-4, a pathway-specific regulatory gene of Neurospora crassa, encodes a protein with a putative binuclear zinc DNA-binding domain. Mol Cell Biol 11:5735–5745

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caddick, M.X. (2004). Nitrogen Regulation in Mycelial Fungi. In: Brambl, R., Marzluf, G.A. (eds) Biochemistry and Molecular Biology. The Mycota, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06064-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06064-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07652-7

  • Online ISBN: 978-3-662-06064-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics