Skip to main content

Mechanisms of Action of EMFs on Biological Systems

  • Chapter
Biological Effects of Electromagnetic Fields

Abstract

Originally, all effects of weak EMF on living organisms were attributed to the increase of the heat in the tissue, which in turn can cause considerable harm to the affected organism. Electromagnetic fields however, affect the internal communication of neural cells. The electric communication pulses are of the order of 1.5 MV/m. The potential difference between the inside and outside of the cell membrane corresponds to an electric field of 50 MV/m. [1–2]. With this type of shielding, weak external fields should not affect intercell communications but they do. This phenomenon has nonetheless therapeutic effects and it is applied to people with multiple sclerosis, Parkinson’s etc. Due to the nonlinear behavior, however, of this membrane, it is possible to create “windows” for the external EMF at certain intensity levels and cause movement in and out of calcium and potassium ions. Melatonin, which is a hormone excreted by the epiphysis, a gland that is at the rear side of the cerebrum, is used to regulate the biological “clock” and support the immune system. External EMF can reduce the production of melatonin with correspondingly negative or harmful effects in humans. In other words, external man-made EMF can “fool” cells by presenting them with recognizable controlling signals that may lead to harmful reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Creasey, W.A., Goldberg, R.B., EMF Health Report, Vol. 9, No. 2, March/April 2001, Information Ventures Inc., Philadelphia PA, USA

    Google Scholar 

  2. Lioliousis, K. Th. Biological Effects of Electromagnetic Fields, Diavlos Books, 1997.

    Google Scholar 

  3. Presman, A.S., (1977), “Electromagnetic Fields and Life”, edited by F.A.Brown, Plenum Press.

    Google Scholar 

  4. Goodman, E.M., Greenebaum, B. and Marron, M.T., (1995), “Effects of Electromagnetic Fields on Mollecules and Cells”, International Rev. Cytol. 158, 279–338.

    Google Scholar 

  5. Dubrov A.P., “The Geomagnetic Field and Life”, (1978), Plenum Press, New York.

    Google Scholar 

  6. Francis G., (1960): “Ionization Phenomena in Gases”, Butterworths Scientific Publications, London.

    MATH  Google Scholar 

  7. Moulder, J.E., Erdreich, L.S., Malyapa, R.S., Merritt, J., Pickard, W.F and Vijayalaxmi, (1999): “Cell Phones and Cancer. What is the Evidence for a Connection?”, Radiation Research, 151, 513–531.

    Google Scholar 

  8. Borgens R.B., (1988): “Stimulation of Neuronal Regeneration and Development by Steady Electrical Fields”, Advances in Neurology, 47; Functional Recovery in Neurological Disease, S.G.Waxman, ed., Raven Press, New York.

    Google Scholar 

  9. Nuccitelli, R., (1988), “Ionic currents in morphogenesis”, Experientia44, 657–666.

    Google Scholar 

  10. McCaig, C.D. and Zhao, M. (1997), “Physiological electric fields modify cell behaviour”, Bioessays 19 (9), 819–826.

    Google Scholar 

  11. Panagopoulos D. J., Messini, N., Karabarbounis, A., Philippetis, A. L., and Margaritis, L.H., (2000), “A mechanism for action of oscillating electric fields on cells”, Biochem. Biophys. Res. Commun., 272, 634–640.

    Google Scholar 

  12. Creasey W.A. and Goldberg R.B., (2001): “A new twist on an old mechanism for EMF bioeffects?”, EMF Health Report, 9, 2.

    Google Scholar 

  13. Valberg P.A., Kavet R and Rafferty C.N., (1997): “Can Low-Level 50/60 Hz Electric and Magnetic Fields Cause Biological Effects?”, Radiation Research 148, 2–21.

    Google Scholar 

  14. Balcavage W.X., Alvager T., Swez J., Goff C.W., Fox M.T., Abdullyava S., King M.W., (1996): “A Mechanism for Action of Extremely Low Frequency Electromagnetic Fields on Biological Systems”, Biochemical and Biophysical Research Communications, 222, 374–378.

    Google Scholar 

  15. Honig B.H., Hubbell W.L., Flewelling R.F., (1986): “Electrostatic Interactions in Membranes and Proteins”, Ann.Rev.Biophys.Biophys.Chem., 15, 163–193.

    Google Scholar 

  16. Baker, P.F., Hodgkin, A.L., Shaw, T.L., (1962), “The effects of changes in internal ionic concentration on the electrical properties of perfused giant axons”, J.Physiol. 164, 355–374.

    Google Scholar 

  17. Hille, B., (1992). “Ionic Channels of Excitable Membranes”, 2nd ed. Sunderland, MA: Sinauer.

    Google Scholar 

  18. Hodgkin, A.L. and Huxley, A.F., (1952), J.Physiol., Lond, 117, 500–544.

    Google Scholar 

  19. Alberts B., Bray D., Lewis J., Raff M., Roberts K., Watson J.D.: “Molecular Biology of the Cell”, (1994) Garland Publishing, Inc., N.Y., USA.

    Google Scholar 

  20. Berridge M.J.and Galione A., (1988), “Cytosolic calcium oscillators”,FASEB J. 2, 3074–3082.

    Google Scholar 

  21. Berridge M.J., (1988), “Inositol triphosphate-induced membrane potential oscillations in Xenopus oocytes”, Journal of Physiology, 403, 589–599.

    Google Scholar 

  22. Ueda S., Oiki S. and Okada Y., (1986): “Oscillations of cytoplasmic concentrations of Cat’ and K* in fused L cells”, J.Membrane Biol., 91, 65–72.

    Google Scholar 

  23. Gray P.T.A., (1988), “Oscillations of free cytosolic calcium evoked by cholinergic and catecholaminergic agonists in rat parotid acinar cells”, Journal of Physiology, 406, 35–53.

    Google Scholar 

  24. Tsunoda Y., (1990), “Cytosolic free calcium spiking affected by intracellular pH change”, Exp. Cell Res., 188 (2), 294–301.

    Google Scholar 

  25. Furuya K., Enomoto K., Yamagishi S., (1993), “Spontaneous calcium oscillations and mechanically and chemically induced calcium responses in mammary epithelial cells”, Pflugers Arch, 422 (4), 295–304.

    Google Scholar 

  26. Leuchtag HR, (1994): “Long-range interactions, voltage sensitivity and ion conduction in S4 segments of Excitable channels”, Biophysical Journal, 66, 217224.

    Google Scholar 

  27. Miller C, (2000): “An overview of the potassium channel family”,Genome Biology, 1(4).

    Google Scholar 

  28. Noda M., Ikeda T., Kayano T., Suzuki H., Takeshima H., Kurasaki M., Takahashi H. and Numa S., (1986), “Existence of distinct sodium channel messenger RNAs in rat brain”, Nature 320, 188–192.

    Google Scholar 

  29. Stuhmer W, Conti F, Suzuki H, Wang X, Noda M, Yahagi N, Kubo H. and Numa S, (1989), “Structural parts involved in activation and inactivation of the sodium channel”, Nature 339, 597–603.

    Google Scholar 

  30. Papazian D.M., Timpe L.C., Jan Y.N., Jan Y.N.and Jan L.Y., (1991), “Alteration of voltage-dependence of Shaker potassium channel by mutations in the S4 sequence”, Nature 349, 305–310.

    Google Scholar 

  31. Tytgat J., Nakazawa K., Gross A., Hess P., (1993), “Pursuing the Voltage Sensor of a Voltage-gated Mammalian Potassium Channel”, J. Biol. Chem. 268,.32, 23777–23779.

    Google Scholar 

  32. Tanabe T., Takeshima H., Mikami A., Flockerzi V., Takahashi H., Kangawa K., Kojima M., Matsuo H., Hirose T. and Numa S., (1987), “Primary structure of the receptor for calcium channel blockers from skeletal muscle”, Nature 328, 313–318.

    Google Scholar 

  33. Tempel B.L., Papazian D.M., Schwarz T.L., Jan Y.N., Jan L.Y., (1987), “Sequence of a Probable Potassium Channel Component Encoded at Shaker Locus of Drosophila”, Science 237, 770–775.

    Google Scholar 

  34. Liman E.R., Hess P., Weaver F., Koren G., (1991): “Voltage-sensing residues in the S4 region of a mammalian K’ channel”, Nature 353, 752–756.

    Google Scholar 

  35. Bezanilla F., White M.M. and Taylor R.E., (1982): “Gating currents associated with potassium channel activation”, Nature 296, 657–659.

    Google Scholar 

  36. Adair R.K., (1991): “Biological effects on the cellular level of electric field pulses”, Health Physics, 61, 3, 395–399.

    Google Scholar 

  37. Palmer L.G., (1986), in “New Insights into Cell and Membrane Transport Processes”, (G.Poste and S.T.Crooke, Eds.), p. 331, Plenum Press, New York

    Google Scholar 

  38. Stryer L.: “Biochemistry”, 4th ed., (1996), W.H.Freeman and Co, N.Y., U.S.A.

    Google Scholar 

  39. Chiabrera A., Bianco B., Moggia E. and Tommasi T., (1994), Interaction mechanism between electromagnetic fields and ion absorption: endogenous forces and collision frequency, Bioelectrochemistry and Bioenergetics, 35, 33–37.

    Google Scholar 

  40. Russell D.N. and Webb S.J., (1981), Metabolic response of Danaus archippus and Saccharomyces cerevisiae to weak oscillatory magnetic fields, Int. J. Biometeorol., 25, 257–262.

    Google Scholar 

  41. Goodman R, Bumann J, Wei L-X and Henderson A.S, (1992), Exposure of human cells to electromagnetic fields: Effect of time and field strenth on transcript levels, Electro-Magnetobiol., 11, 19

    Google Scholar 

  42. Cook M.R., Graham C., Cohen H., and Gerkovich M.M., (1992), A replication study of human exposure to 60 Hz fields: Effects on neurobehavior measures, Bioelectromagnetics(N. Y.), 13, 261–286–28.

    Google Scholar 

  43. Foster,K.R., Schwan,H.P., (1996): “Dielectric permittivity and electrical conductivity of biological materials”. In: Polk,C. and Postow,E., eds.“CRC handbook of biological effects of electromagnetic fields”, pp. 27–96, Boca Raton, FL, CRC Press.

    Google Scholar 

  44. Wertheimer N., Leeper E., (1979): “Electrical Wiring Configurations and Childhood Cancer”, Am.J.Epidemiol., 109.

    Google Scholar 

  45. Savitz,D.A., Wachtel,H., Barnes,F, John,E.M. and Tvrdik,J.G., (1988): “Case-control study of childhood cancer and exposure to 60Hz magnetic fields”. Am. J. Epidemiol., 128, 21–38

    Google Scholar 

  46. Coleman M.P.et. al., (1989): “Leukemia and residence near Electricity Transmission equipment: A case - control study”, Br.J.Cancer, 60.

    Google Scholar 

  47. Feychting M., Ahlbom A., (1993): “Magnetic Fields and Cancer in children residing near Swedish High - Voltage Power Lines”, Am.J.Epidemiol., 138.

    Google Scholar 

  48. Feychting M.. Ahlbom A., (1994): “Magnetic Fields, Leukemia and Central Nervous System Tumors in Swedish adults residing near High - Voltage Power Lines”, Epidemiology 5.

    Google Scholar 

  49. Pilla A.A., (1993), State of the art in electromagnetic therapeutics, In: Electricity and Magnetism in Biology and Medicine, Blank M. (ed.), San Francisco Press Inc., 17–22.

    Google Scholar 

  50. Otter M.W., McLeod K.J. and Rubin C.T., (1988), Effects of electromagnetic fields in experimental fracture repair, Clin. Orthopaed. Rel. Res. 355S, 90–104.

    Google Scholar 

  51. Bawin,S.M., Adey, W.R., Sabbot,I.M., (1978), “Ionic factors in release of 45Ca 2+ from chick cerebral tissue by electromagnetic fields”. Proc.Natl.Acad.Sci., U.S.A., 75, 6314–6318.

    Google Scholar 

  52. Dutta S.K., Subramaniam A., Ghosh B., Parshad R., (1984). “Microwave radiation - induced calcium ion efflux from human neuroblastoma cells in culture”. Bioelectromagnetics, ( N.Y. ), 5, 71–78.

    Google Scholar 

  53. Blackman C.F., Benane S.G., Elder J.A., House D.E., Lampe J.A. and Faulk J.M., (1980). “Induction of calcium–ion efflux from brain tissue by radiofrequency radiation: Effect of sample number and modulation frequency on the power–density window”. Bioelectromagnetics, (N.Y.), 1, 35–43.

    Google Scholar 

  54. Kwee S and Raskmark P, (1998): “Changes in cell proliferation due to environmental non-ionizing radiation 2. Microwave radiation”, Bioelectrochemistry and Bioenergetics, 44, 251–255.

    Google Scholar 

  55. Velizarov S, Raskmark P, Kwee S, (1999): “The effects of radiofrequency fields on cell proliferation are non-thermal”, Bioelectrochemistry and Bioenergetics, 48, 177–180.

    Google Scholar 

  56. Lin-Liu S. and Adey W.R. (1982), Low frequency amplitude modulated microwave fields change calcium efflux rates from synaptosomes, Bioelectromagnetics, 3, 309–322.

    Google Scholar 

  57. Penafiel L.M., Litovitz T., Krause D., Desta A., Mullins J.M., (1997), Role of Modulation on the effects of microwaves on ornithine decarboxylase activity in L929 cells, Bioelectromagnetics, 18, 132–141.

    Google Scholar 

  58. Sullivan M.J., Sharma R.V., Wachtel R.E., Chapleau M.W., Waite L.J., Bhalla R.C., Abboud F.M., (1997): “Non-voltage-gated Ca+2 influx through mechanosensitive ion channels in aortic baroreceptor neurons”, Circ. Res., 80 (6), pp. 861–867.

    Google Scholar 

  59. Neher E., Sakmann B., (1992): “The patch clamp technique”, Scientific American 266 (3), 28–35.

    Google Scholar 

  60. Yasuda I - Piezoelectric activity of bone - J. Japanese Orthop. Surg. Soc. 1954; 28: 267.

    Google Scholar 

  61. Fukada, E and Yasuda, I () On the piezoelectric effect of bone. J. Phys. Soc. Japan 1957: 12: 121–128.

    Google Scholar 

  62. Becker RO - The bioelectric factors in amphibian-limb regeneration - J Bone Joint Surg. 1961; 43A: 643.

    Google Scholar 

  63. Bassett CAL - Biological significance of piezoelectricity - Calc. Tiss. Res. 1968; 1: 252.

    Google Scholar 

  64. Brighton CT - The treatment of non-unions with electricity - J. Bone Joint Surg. 1981; 63A: 8.

    Google Scholar 

  65. Friedenberg ZB, Harlow MC, and Brighton CT - Healing of non-union of the medial malleolus by means of direct current - J. Trauma 1971; 11: 8831.

    Google Scholar 

  66. Basset CAL, Pilla AA, and Pawluk R–A non-surgical salvage of surgically-resistant pseudoarthroses and non-unions by pulsing electromagnetic fields–Clin Orthop, 1977; 124: 117–131.

    Google Scholar 

  67. Mooney, V. (1990) A randomized double blind prospective study of the efficacy of pulsed electromagnetic fields for interbody lumbar fusions. Spine 15, 708715.

    Google Scholar 

  68. Goodwin, C.B., Brighton, C.T., Guyer, R.D., Johnson, J.R., Light, K.I., and Yuan, H.A. (1999) A double blind study of capacitively coupled electrical stimulation as an adjunct to lumbar spinal fusions. Spine 24, 1349–1357.

    Google Scholar 

  69. Zdeblick, T.D. (1993) A prospective, randomized study of lumbar fusion: preliminary results. Spine 18, 983–991.

    Google Scholar 

  70. Linovitz, R.J., Ryaby, J.T., Magee, F.P., Faden, J.S., Ponder, R., and Muenz, L.R. (2000) Combined magnetic fields accelerate primary spine fusion: a double-blind, randomized, placebo controlled study. Proc. Am. Acad. Orthop. Surg. 67, 376.

    Google Scholar 

  71. Aaron, R.K., Lennox, D., Bunce, G.E., and Ebert, T. (1989) The conservative treatment of osteonecrosis of the femoral head. A comparison of core decompression and pulsing electromagnetic fields. Clin. Orthopaed. Rel. Res. 249, 209–218.

    Google Scholar 

  72. Steinberg, M.E., Brighton, C.T., Corces, A., Hayken, G.D., Steinberg, D.R., Strafford, B., Tooze, S.E., and Fallon, M. (1989) Osteonecrosis of the femoral head. Results of core decompression and grafting with and without electrical stimulation. Clin. Orthopaed. Rel. Res. 249, 199–208.

    Google Scholar 

  73. Binder, A., Parr, G., Hazelman, B., and Fitton-Jackson, S. (1984) Pulsed electromagnetic field therapy of persistent rotator cuff tendinitis: a double blind controlled assessment. Lancet 1 (8379), 695–697.

    Google Scholar 

  74. Zizik T.M., Hoffman, K.C., Holt, P.A., Hungerford, D.S., O’Dell, J.R., Jacobs, M.A., Lewis, G.C., Deal, L.C., Caldwell, J.R., Cholewczyinski, J.G., and Free, S.M. (1995) The treatment of osteoarthritis of the knee with pulsed electrical stimulation. J. Rheumat. 22, 1757–1761.

    Google Scholar 

  75. Ginsberg, A.J. Ultrashort radiowaves as a therapeutic agent, 1934. Med Record 140: 651–653.

    Google Scholar 

  76. Salzberg, C.A., S.A. Cooper, P. Perez, M.G. Viehbeck and D.W. Byrne, 1995. The effects of non-thermal pulsed electromagnetic energy on wound healing of pressure ulcers in spinal cord-injured patients: a randomized, double-blind study. Ostomy Wound Management 41: 42–51.

    Google Scholar 

  77. Kloth LC, Berman JE, Sutton CH, Jeutter DC, Pilla AA, Epner ME: 1999. Effect of Pulsed Radio Frequency Stimulation on Wound Healing: A Double-Blind Pilot Clinical Study, in “Electricity and Magnetism in Biology and Medicine”, Bersani F, ed, Plenum, New York, pp. 875–878.

    Google Scholar 

  78. Pilla, A.A., D.E. Martin A.M. Schuett et al., 1996. Effect of pulsed radiofrequency therapy on edema from grades I and II ankle sprains: a placebo controlled, randomized, multi-site, double-blind clinical study. J. Athl. Train. S31: 53.

    Google Scholar 

  79. Pennington GM, Danley DL, Sumko MH, et al., 1993. Pulsed, non-thermal, high frequency electromagnetic energy ( Diapulse) in the treatment of grade I and grade II ankle sprains. Military Med. 158: 101–104.

    Google Scholar 

  80. Foley-Nolan, D., C. Barry, R.J. Coughlan, P. O’Connor and D. Roden, 1990. Pulsed high frequency (27MHz) electromagnetic therapy for persistent neck pain: a double blind placebo-controlled study of 20 patients. Orthopedics 13: 445–451.

    Google Scholar 

  81. Foley-Nolan, D., K. Moore, M. Codd et al., 1992. Low energy high frequency pulsed electromagnetic therapy for acute whiplash injuries: a double blind randomized controlled study. Scan. J. Rehab. Med. 24: 51–59.

    Google Scholar 

  82. Valbona, C., Hazlewood, C.F., Jurida, G., 1997. Response of pain to static magnetic fields in post-polio patients: A double-blind pilot study. Arch. Phys. Med. Rehabil., 78: 1200.

    Google Scholar 

  83. Man, D., Man B., Plosker H., 1999. The influence of permanent magnetic field therapy on wound healing in suction lipectomy patients: A double-blind study. Plastic and Reconstructive Surgery, 104: 2261–2296.

    Google Scholar 

  84. Colbert A.P., Markov M.S., Banerij M., Pilla A.A., 1999. Magnetic mattress mad use in patients with fibromyalgia: A randomized double-blind pilot study. J Back Musculoskeletal Rehab, 13: 19–31.

    Google Scholar 

  85. Alfano A.P., Taylor A.G., Foresman P.A., Dunk! P.R., McConnell G.G., Conway M.R., Gillies G.T., 2001. Static Magnetic Fields for Treatment of Fibromyalgia: A Randomized Controlled Trial. J Alternative Comp Med, 7: 53–64.

    Google Scholar 

  86. Weintraub, M.I., 1999. Magnetic bio-stimulation in painful diabetic peripheral neuropathy: a novel intervention — a randomized double-placebo crossover study. Am J Pain Manag, 9: 8–17.

    Google Scholar 

  87. Pilla AA–Electrochemical information and energy transfer in vivo–Proc. 7th IECEC, Washington, D.C., American Chemical Society, 1972; 761–64.

    Google Scholar 

  88. Pilla AA - Electrochemical information transfer at living cell membrane - Ann. N.Y. Acad. Sci. 1974; 238: 149.

    Google Scholar 

  89. Pilla AA, Kaufman JJ and Ryaby JT–Electrochemical kinetics at the cell membrane:A physicochemical link for electromagnetic bioeffects–in Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems, M. Blank and E. Findl (eds.) Plenum Press, NY, 1987; 39–62.

    Google Scholar 

  90. Chiabrera A, Grattarola M, Viviani R, and Braccini C - Modelling of the perturbation induced by low-frequency electromagnetic fields on the membrane receptors of stimulated human lymphocytes - Studia Biophysica 1982; 90: 7781.

    Google Scholar 

  91. Chiabrera A, Grattarola M, and Viviani R–Interaction between electromagnetic fields and cells: microelectrophoretic effect of ligands and surface receptors–Bioelectromagnetics 1984; 5: 173–178.

    Google Scholar 

  92. McLeod BR, Liboff AR–Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation–Bioelectromagnetics 1986; 7: 177–189.

    Google Scholar 

  93. Lednev VV - Possible mechanism for the influence of weak magnetic fields on biological systems -Bioelectromagnetics 1991; 12: 71–75.

    Google Scholar 

  94. Pilla AA, Schmukler RE, Kaufman JJ and Rein G–Electromagnetic modulation of biological processes:consideration of cell-waveform interaction–in Interactions between Electromagnetic Fields and Cells, A Chiabrera, C Nicolini and HP Schwan (eds.) Plenum Press, NY, 1985; 423–436.

    Google Scholar 

  95. Pilla AA, Kaufman JJ and Ryaby JT–Electrochemical kinetics at the cell membrane: A physicochemical link for electromagnetic bioeffects–in Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems, M. Blank and E. Findl (eds.) Plenum Press, NY, 1987; 39–62.

    Google Scholar 

  96. Pilla A.A., Muehsam D.J., Markov M.S. 1997. A dynamical systems/Larmor precession model for weak magnetic field bioeffects: Ion-binding and orientation of bound water molecules. Bioelectrochemistry and Bioenergetics 43: 239–249.

    Google Scholar 

  97. Pilla, A.A. D.J. Muehsam, M.S. Markov and B.F. Sisken,1999. EMF signals and ion/ligand binding kinetics: Prediction of bioeffective waveform parameters, 48: 27–34.

    Google Scholar 

  98. Pilla AA - State of the art in electromagnetic therapeutics - in Electricity and Magnetism in Biology and Medicine - M.Blank (ed.) - San Francisco Press Inc. (1993) 17–22.

    Google Scholar 

  99. Otter, M.W., McLeod, K.J., and Rubin, C.T. (1988) Effects of electromagnetic fields in experimental fracture repair. Clin. Orthopaed. Rel. Res. 355S, 90–104.

    Google Scholar 

  100. McLeod, B.R. and Liboff, A.R. (1987) Cyclotron resonance in cell membranes: the theory of the mechanism, in Mechanistic Approaches to Interactions of Electromagnetic Fields with Living Systems. ( Blank, M.J. and Findl, E., eds.), Plenum, New York, pp. 97–108.

    Google Scholar 

  101. Pilla AA, Sechaud P and McLeod BR - Electrochemical and electric current aspects of low frequency electromagnetic current induction in biological systems - J. Biol. Phys., 1983; 11: 51.

    Google Scholar 

  102. McLeod BR, Pilla AA, Sampsel MW - Electromagnetic fields induced by Helmholtz aiding coils inside saline-filled boundaries - Bioelectromagnetics 4(1983)357–370.

    Google Scholar 

  103. van Amelsfort AMJ - An analytical algorithm for solving inhomogeneous electromagnetic boundary-value problems for a set of coaxial circular cylinders, Ph.D. Thesis, Eindhoven University, The Netherlands, 1991.

    Google Scholar 

  104. Brighton CT, and Pollack SR–Treatment of recalcitrant non-union with a capacitively electric field -J. Bone Joint Surg 1985; 67A: 577–585.

    Google Scholar 

  105. Jackson, J.D. Classical Electrodynamics, J. Wiley, New York, 1975.

    Google Scholar 

  106. Markov MS, Pilla AA: Electromagnetic Field Stimulation of Soft Tissue: Pulsed Radio Frequency Treatment of Post-Operative Pain and Edema, Wounds 7 (1995) 143–151.

    Google Scholar 

  107. Pilla AA, Muehsam DJ, Markov MS: A Dynamical Systems/Larmor Precession Model for Weak Magnetic Field Bioeffects: Ion Binding and Orientation of Bound Water Molecules, Bioelectrochemistry and Bioenergetics, 43 (1997) 241–252.

    Google Scholar 

  108. Pilla AA, Muehsam DJ, Markov MS: A Larmor Precession/Dynamical System Model Allows pT-Range Magnetic Field Effects on Ion Binding in the Presence of Thermal Noise, in “Electricity and Magnetism in Biology and Medicine”, Bersani F, ed, Plenum, New York, 1999, pp. 395–399.

    Google Scholar 

  109. Boonstra J, Van der Sagg PT, Moolenarr WH, DeLaat SW–Rapid effects of nerve growth factor on Na+,K+-pump in rat pheochromocytoma cells–Exp. Cell Res. 1981; 131: 452–455.

    Google Scholar 

  110. Whifield JF, Boyton AL, MacManus JP, Rixon RH, Sikorska M, Tsong B, Walker RP, Smierenga SH–The roles of calcium and cyclic AMP in cell proliferation–Ann. NY Acad. Sci. 1981; 339: 216–240.

    Google Scholar 

  111. Chafoules JC, Bolton WE, Hidaka H, Boyd AE, and Means HR–Calmodulin involvement in regulation of cell-cycle progression–Cell 1982; 28: 41–50.

    Google Scholar 

  112. Boynton AL, Whitfield JF, Isaacs RJ, Trembley RG–Different extracellular calcium requirement for proliferation of nonneoplastic, preneoplastic and neoplastic mouse cells–Cancer Res., 1977; 37: 2657–2661.

    Google Scholar 

  113. Hazelton B, Tupper J–Calcium transport and exchange in mouse 3T3 and SV40–3T3 cells–J. Cell Biol., 1979; 81: 538–542.

    Google Scholar 

  114. Gemsa D, Seitz M, Kramer W, Grimm W, Till G, Resch K–lonophore A 23187 Raises cyclic AMP levels in macrophages by stimulation prostaglandin E formation–Exp. Cell Res., 1979; 118: 55–62.

    Google Scholar 

  115. Pilla AA: On the Possibility of an Electrochemical Trigger for Biological Growth and Repair Processes. Bioelectrochemistry and Bioenergetics, 3: 370–373, 1976.

    Google Scholar 

  116. Pilla AA, and Margules G: Dynamic Interfacial Electrochemical Phenomena at Living Cell Membranes: Application to the Toad Urinary Bladder Membrane System. J. Electrochem. Soc., 124: 1697–1706, 1977.

    Google Scholar 

  117. Pilla AA: Membrane Impedance as a Probe for Interfacial Electrochemical Control of Living Cell Function. Adv. in Chem. A.C.S., 188:339–359, 1980.

    Google Scholar 

  118. Margules G, Doty SB, and Pilla M: Impedance of Living Cell Membranes in the Presence of Chemical Tissue Fixative. Adv. in Chem., A.C.S., 188:461484, 1980.

    Google Scholar 

  119. Schmukler RE, Kaufman JJ, Maccaro PC, Ryaby JT, and Pilla M: Transient Impedance Measurements on Biological Membranes: Application to Red Blood Cells and Melanoma Cells. In “Electrical Double Layers in Biology”, Blank M, ed. Plenum Press, New York, pp. 201–210, 1986.

    Google Scholar 

  120. Chiabrera A, Bianco B, Caratozzolo F, Gianetti G, Grattarola M, Viviani R Electric and magnetic field effects on ligand binding to the cell membrane. In Interactions between Electromagnetic Fields and Cells Chiabrera A, Nicolini C, Schwan HP, (eds) New York, Plenum Press, 1985: 253.

    Google Scholar 

  121. Lyle DB, Wang X, Ayotte RD, Sheppard AR, Adey WR - Calcium Uptake by Leukemic and Normal T Lymphocytes Exposed to Low Frequency Magnetic Fields Bioelectromagnetics 1991; 12: 145.

    Google Scholar 

  122. Bawin SM, Kaczmarek LK, and Adey WR–Effects of modulated VHF fields on the central nervous system–Ann. NY Acad.Sci. 1975; 247: 74–91.

    Google Scholar 

  123. Blackman CF, Benane SG, Kinney LS, Joines WT, and House DE - Effects of ELF fields on calcium efflux from brain tissue in vitro - Radiat. Res. 1982; 92: 510.

    Google Scholar 

  124. Blackman CF, Benane SG, Rabinowitz JR, House DE, Joines WT - A role for the magnetic field in the radiation-induced efflux of Ca-ions from brain tissue in vitro -Bioelectromagnetics 1985; 6: 327.

    Google Scholar 

  125. Wei LX, Goodman R, Henderson AS - Changes in levels of c-myc and histone H2B following exposure of cells to low-frequency sinusoidal electromagnetic fields: evidence for a window effect -Bioelectromagnetics 1990; 11: 269.

    Google Scholar 

  126. Liboff AR - Cyclotron resonance in membrane transport, in: Interactions between in Interactions Between Electromagnetic Fields and Cells, A Chiabrera, C Nicolini, HP Schwan (eds)Plenum Press, New York 1985: 281.

    Google Scholar 

  127. Liboff AR, Smith SD, McLeod BR - Experimental evidence for ion cyclotron resonance mediation of membrane transport -In Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems M Blank and E Findl (eds), Plenum Press, NY 1987: 109.

    Google Scholar 

  128. Liboff AR, Smith SD, McLeod BR - Experimental evidence for ion cyclotron resonance mediation of membrane transport -In Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems M Blank and E Findl (eds), Plenum Press, NY 1987: 109.

    Google Scholar 

  129. Chiabrera A, Bianco B - The role of the magnetic field in the EM interaction with ligand binding -In Mechanistic Approaches to Interactions of Electric and Electromagnetic Fields with Living Systems M Blank and E Findl (eds), Plenum Press, NY 1987: 79.

    Google Scholar 

  130. Chiabrera A, Bianco B, Kaufman JJ - Resonant Phenomena - in: Interaction Mechanisms of Low Level Electromagnetic Fields in Living Systems-Stockholm: Royal Swedish Academy of Sciences, 1989: 256.

    Google Scholar 

  131. Muehsam DJ, Pilla AA: Weak Magnetic Field Modulation of Ion Dynamics in a Potential Well: Mechanistic and Thermal Noise Considerations, Bioelectrochemistry and Bioenergetics, 35 (1994) 71–79.

    Google Scholar 

  132. Muehsam DS, Pilla AA: Lorentz Approach to Static Magnetic Field Effects on Bound Ion Dynamics and Binding Kinetics: Thermal Noise Considerations, Bioelectromagnetics 17 (1996) 89–99.

    Google Scholar 

  133. Lyle DB, Wang X, Ayotte RD, Sheppard AR, Adey WR - Calcium Uptake by Leukemic and Normal T Lymphocytes Exposed to Low Frequency Magnetic Fields Bioelectromagnetics 1991; 12: 145.

    Google Scholar 

  134. Parkinson WC, Hanks CT–Search for cyclotron resonance in cells in vitro–Bioelectromagnetics 1989; 10: 129–145.

    Google Scholar 

  135. Halle B - On the cyclotron resonance mechanism for magnetic field effects on transmembrane ion conductivity - Bioelectromagnetics 1988; 14:381–385.

    Google Scholar 

  136. Lednev VV - Possible mechanism for the influence of weak magnetic fields on biological systems -Bioelectromagnetics 1991; 12: 71–75.

    Google Scholar 

  137. Shuvalova LA, Ostrovskaja MV, Sosunov EA, and Lednev W - Weak magnetic field influence of the speed of calmodulin dependent phosphorylation of myosin in solution - Dokladi Acad Nauk USSR 1991; 217: 227.

    Google Scholar 

  138. Markov MS, Ryaby JT, Kaufman JJ, and Pilla M–Extremely weak AC and DC magnetic field significantly affect myosin phosphorylation–in Charge and Field Effects in Biosystems-3, M.J.Allen, S.F.Cleary, A.E.Sowers, D.D.Shillady (eds.) Birkhauser, Boston 1992; 225–230.

    Google Scholar 

  139. Markov MS, Wang S, and Pilla AA–Effects of weak low frequency sinusoidal and DC magnetic fields on myosin phosphorylation in a cell-free preparation–Bioelectrochemistry and Bioenergetics 30 (1993) 119–125.

    Google Scholar 

  140. Markov MS, Pilla M–Ambient range sinusoidal and DC magnetic fields affect myosin phosphorylation in a cell-free preparation–in Electricity and Magnetism in Biology and medicine, M Blank (ed), San Francisco Press 1993: 323–327.

    Google Scholar 

  141. Markov MS, Pilla AA: Weak Static Magnetic Field Modulation of Myosin Phosphorylation in a Cell-Free Preparation: Calcium Dependence, Bioelectrochemistry and Bioenergetics, 43 (1997) 235–240.

    Google Scholar 

  142. Chiabrera M, Bianco B, Kaufman JJ, Pilla AA - Quantum analysis of ion binding kinetics in electromagnetic bioeffects - in Electromagnetics in Medicine and Biology, CT Brighton, SR Pollack (eds) San Francisco Press Inc. 1991: 27.

    Google Scholar 

  143. Foster, K.R. and Schwan, H.P. in C. Polk and E. Postow (eds.), Handbook of Biological Effects of Electromagnetic Fields, CRC Press, Boca Raton, Florida, 1986, p. 83.

    Google Scholar 

  144. Adair RK - Constraints on biological effects of weak extremely-low-frequency electromagnetic fields - Phys Rev A 1991; 43: 1038–1049.

    Google Scholar 

  145. S.B. Doty, Morphological evidence of gap junctions between bone cells - Calcif Tissue Int, 33 (1981) 509.

    Google Scholar 

  146. W. R. Loewenstein, Junctional intracellular communications: the cell-to-cell membrane channel Physiol Rev 61 (1981) 829–841.

    Google Scholar 

  147. S Caveney, Ann Rev Physiol, 47 (1985) 319–335.

    Google Scholar 

  148. K.J. McLeod, R.C. Lee, H.P. Ehrlich, Frequency dependence of electric field modulation of fibroblast protein synthesis Science 236 (1987) 1465.

    Google Scholar 

  149. J.D. Sheridan, and M.M. Atkinson, Cell Membranes: The electrochemical environment and cancer promotion - Ann Rev Physiol, 47 (1985) 337.

    Google Scholar 

  150. W.R. Adey, Cell Membranes: The electrochemical environment and cancer promotion Neurochem. Res. 13 (1988) 671.

    Google Scholar 

  151. W. H. Fletcher, W.W. Shiu, D.A. Haviland, C.F. Ware, W.R. Adey, Proc. Bioelectromagnetics Soc., 8th Annual Mtg., Madison, WI, 1986, p. 12.

    Google Scholar 

  152. G.L. Hu ’, H. Chiang, Q.L. Zeng, Y.D. Fu–ELF magnetic field inhibits gap junctional intercellular communication and induces hyperphosphorylation of connexin43 in NIH3T3 cells, Bioelectromagnetics, 2001; 22: 568–573.

    Google Scholar 

  153. Weaver JC, and Astumian RD–The response of living cels to very weak electric fields: The thermal noise limit–Science, 1990; 247: 459–462.

    Google Scholar 

  154. T.Y. Tsong, D. Liu, F. Chauvin, R.D. Astumian, Bioscience Rep. 9 (1989) 13.

    Google Scholar 

  155. H.V. Westerhoff, T.Y. Tsong, P.B. Chock, Y. Chen, R.D. Astumian, Proc. Natl. Acad. Sci. USA 83 (1989) 4734.

    Google Scholar 

  156. Pilla AA, Nasser PR, and Kaufman JJ–The sensitivity of cells and tissues to weak electromagnetic fields–in Charge and Field Effects in Biosystems-3, MJ Allen, SF Cleary, AE Sowers and DD Shillady (eds.), Birkhauser, Boston, 1992; 231–41.

    Google Scholar 

  157. Pilla AA, Nasser PR, and Kaufman JJ–On the sensitivity of cells and tissues to therapeutic and environmental EMF–Bioelectrochemistry and Bioenergetics 1993; 30: 161–169.

    Google Scholar 

  158. Pilla AA, Nasser PR, Kaufman JJ: Gap Junction Impedance, Tissue Dielectrics and Thermal Noise Limits for Electromagnetic Field Bioeffects, Bioelectrochemistry and Bioenergetics, 35 (1994) 63–69.

    Google Scholar 

  159. Muehsam DS, Pilla AA: The Sensitivity of Cells and Tissues to Exogenous Fields: Effects of Target System Initial State, Bioelectrochemistry and Bioenergetics, 48 (1999), 35–42.

    Google Scholar 

  160. Cooper MS - Gap Junctions Increase the Sensitivity of Tissue Cells to Exogenous Electric fields -J. Theoret. Biol. 1984; 111: 123.

    Google Scholar 

  161. Stevens CF - Inferences about membrane properties from electric noise measurements - Biophys J. 1972; 12: 1028–1047.

    Google Scholar 

  162. Kloth L.C. and M.C. Zisken, 1996. Diathermy and pulsed radio frequency radiation, in Michlovitz S., ed, Thermal agents in rehabilitation. F.A. Davis, Philadelphia, pp. 213–254.

    Google Scholar 

  163. Cox, J.A., 1988. Interactive properties of calmodulin. Biochemical Journal, 249: 621.

    Google Scholar 

  164. Angerbauer, G.J., 1989. Principles of DC and AC Circuits, 3rd Edition, Delmar Publishers, Albany, NY p. 490.

    Google Scholar 

  165. Sisken B.F., Kanje M., Lundborg G., Kurtz W., 1990. Pulsed electromagnetic fields stimulate nerve regeneration in vivo and in vitro. Restorative Neurology and Neuroscience, 1: 303–309.

    Google Scholar 

  166. Greenbaum B., Sutton C., Vadula M.S., Battocletti J.H., Swiontek T., DeKeyser J., Sisken B.F., 1996. Effects of pulsed magnetic fields on neunte outgrowth from chick embryos. Bioelectromagnetics, 17: 293–302.

    Google Scholar 

  167. Yamauchi T., Yoshimura Y., Nomura T., Fujii M., Sugiura H., 1998. Neurite outgrowth of neuroblastoma cells overexpressing alpha and beta isoforms of Ca2+/calmodulin-dependent protein kinase Il–effects of protein kinase inhibitors. Brain Res Brain Res Protoc 2: 250–258.

    Google Scholar 

  168. Pilla, A.A., M.A. Mont, P.R. Nasser, S.A. Khan, M. Figueiredo, J.J. Kaufman and R.S. Siffert, 1990. Non-invasive low intensity ultrasound accelerates bone healing in the rabbit. J. Orthopaedic Trauma, 4: 246–255.

    Google Scholar 

  169. Zhuang, H., Wang, W., Seldes, R.M., Tahernia, A.D., Fan, H., Brighton, C.T., 1997. Electrical Stimulation induces the level of TGF-betal mRNAin osteoblastic cells by a mechanism involving calcium/calmodulin pathway, Biochem Biophys Res Commun, 237: 225–229.

    Google Scholar 

  170. Ayrapetyan S.N., Grigorian K.V., Avanesian A.S., Stamboltsian K.V., 1994. Magnetic fields alter electrical properties of solutions and their physiological effects. Bioelectromagnetics, 15: 133–42.

    Google Scholar 

  171. Jones D.B., Ryaby, J.T., 1987. Low energy time varying electromagnetic field interactions with cellular control mechanisms. In: Blank M, Findl E, eds. Mechanistic approaches to interactions of electric and electromagnetic fields with living systems. Plenum Press, NY, pp. 389–97.

    Google Scholar 

  172. McDonald F., 1993. Effect of static magnetic fields on osteoblasts and fibroblasts in-vitro. Bioelectomagnetics, 14: 187–96.

    Google Scholar 

  173. Sisken, B.F., Midkiff, P., Markov, M.S., 1999. Static magnetic fields and nerve regeneration. Bioelectromagnetics Society, 21st Ann Meeting, Long Beach, June 20–24.

    Google Scholar 

  174. Blumenthal N.C., Ricci J., Breger L., Zychlinsky A., Solomon H., Chen G-G., Kuznetsov, D., Dorfman, R., 1997. Effects of low intensity AC and/or DC electromagnetic fields on cell attachment and induction of apoptosis. Bioelectromagnetics, 18: 264–272.

    Google Scholar 

  175. McLean M.J., Holcomb R.R., Wamil A.W., Pickett J.D., Cavapol A.V., 1995. Blockade of sensory neuron action potentials by a static magnetic field in the 10 mT range. Bioelectromagnetics, 16: 20–32.

    Google Scholar 

  176. Cavapol A.V., Wamil A.W., Holcomb R.R., McLean M.J., 1995. Measurement and analysis of static magnetic fields that block action potentials in cultured neurons. Bioelectromagnetics, 16: 197–206.

    Google Scholar 

  177. Ohkubo C and Xu S. 1997. Acute effects of static magnetic fields on cutaneous microcirculation in rabbits. In Vivo 11: 221–226.

    Google Scholar 

  178. Okano H, Gmitrov J, Ohkubo C. 1999. Biphasic effects of static magnetic fields on cutaneous microcirculation in rabbits. Bioelectromagnetics 20: 161–171.

    Google Scholar 

  179. Okano H, Ohkubo C. 2001. Modulatory effects of static magnetic fields on blood pressure in rabbits. Bioelectromagnetics 22: 408–418.

    Google Scholar 

  180. Weintraub, M.I., 1999. Magnetic bio-stimulation in painful diabetic peripheral neuropathy: a novel intervention–a randomized double-placebo crossover study. Am J Pain Manag, 9: 8–17.

    Google Scholar 

  181. Collacott E.A., Zimmerman J.T., White D.W., Rindone J.P., 2000. Bipolar permanent magnets for the treatment of low back pain: A pilot study. JAMA, 283: 1322–1325.

    Google Scholar 

  182. Markov M.M., Muehsam D.L., Pilla A.A., 1998. Permanent magnetic fields: Dosimetry and bioeffects. Bioelectromagnetics Society, 20th Ann Meeting, St. Pete, FL, June 7–11.

    Google Scholar 

  183. Zhadin, M.N. and Fesenko, E.E. Ion cyclotron resonance in biomolecules, 1990. Biomedical Sciences 1: 245.

    Google Scholar 

  184. Edmonds, D.T. Larmor precession as a mechanism for the detection of static and alternating magnetic fields, 1993. Bioelectrochemistry and Bioenergetics 30: 3.

    Google Scholar 

  185. Conway B.E., 1981. Ionic hydration in chemistry and biophysics, Elsevier, NY, p. 663.

    Google Scholar 

  186. Otting G., Wuthrich K., 1988. Studies of protein hydration in aqueous solution by direct NMR observation of individual protein-bound water molecules. J Am Chem Soc, 111: 1871.

    Google Scholar 

  187. Busch, K.W. et. al., 1986. Studies of a water treatment device that uses magnetic fields. Corrosion - NACE, 42: 211.

    Google Scholar 

  188. Yoon, J. and Lund, D., 1994. Magnetic treatment of milk and surface treatment of plate heat exchangers: Effects on milk fouling. Journal of Food Science, 5: 964.

    Google Scholar 

  189. Berton, R. et. al., 1993. Effect of ELF electromagnetic exposure on precipitation of barium oxalate, Bioelectrochemistry and Bioenergetics, 30: 13.

    Google Scholar 

  190. Beruto, D. and Giordani, M., 1993. Calcite and Aragonite formation from aqueous Calcium Hydrogencarbonate solutions: Effects of induced electromagnetic field on the activity of CaCO3 precursers, J. Chem. Soc. Faraday Trans., 89: 2457.

    Google Scholar 

  191. Lundager Madsen, H.E., 1995. Influence of magnetic field on the precipitation of some inorganic salts, J. Crystal Growth, 152: 94.

    Google Scholar 

  192. Klassen V.I. and Zonov’ev, Y.Z., 1967. Influence of magnetic treatment of water on suspension stability, Translated from Kolloidnyi Zhurnal, 29: 758.

    Google Scholar 

  193. Higashitani, K. et. al., 1992. Effects of magnetic fields effects on stability of nonmagnetic ultrafine colloidal particles, J Colloid Interface Sci, 152: 125.

    Google Scholar 

  194. Higashitani, K. et. al., 1995. Magnetic effects on zeta potential and diffusivity of nonmagnetic colloidal particles, J Colloid Interface Sci, 172: 383.

    Google Scholar 

  195. Chibowski, E. et. al., 1990. Residual variations in the zeta potential of TiO2 (anatase) suspensions as a result of exposure to radiofrequency electric fields, J Colloid Interface Sci, 139: 43.

    Google Scholar 

  196. Chibowski, E. et. al., 1994. Changes in zeta potential and surface free energy of Calcium Carbonate due to exposure to radiofrequency field, A: Physicochemical and Engineering Aspects, 92: 79.

    Google Scholar 

  197. Holysz, L. and Chibowski, E., 1994. Surface free energy components of Calcium Carbonate and their changes due to radiofrequency electric field treatment. J Colloid Interface Sci, 164: 245.

    Google Scholar 

  198. Higashitani, K. et. al., 1993. Effects of a magnetic field on the formation of CaCO3 particles. J Colloid Interface Sci, 156: 90.

    Google Scholar 

  199. Usatenko, S.T. et. al., 1977. Effect of magnetic fields on the rotational infrared spectra of water. Colloid Journal, 39: 903.

    Google Scholar 

  200. Fesenko, E. and Gluvstein, A. 1995. Changes in the state of water induced by radiofrequency electromagnetic fields, FEBS Letters 367: 53.

    Google Scholar 

  201. Lin I.J. and Yotvat, J., 1990. Exposure of irrigation and drinking water to a magnetic field with controlled power and direction. J Magnetism Magnetic Mat, 83: 525.

    Google Scholar 

  202. Garg, T.K. et. al., 1995. Effect of magnetically restructured water on the Liver of a Catfish. Electro-and Magnetobiology, 14: 107.

    Google Scholar 

  203. Pandey, S. et. al., 1996. Effect of magnetically treated induced water structure on the oestrus cycles of albino female mice Mus Musculus. Electroand Magnetobiology, 15: 133.

    Google Scholar 

  204. Hamilton, C.A., Hewitt J.P, McLauchlan K.A. and Steiner U.E., 1988. High Resolution Studies of the Effects of Magnetic Fields on Chemical Reactions. Molecular Physics, 65: 423–438.

    Google Scholar 

  205. Steiner, U.E, and Ulrich, T., 1989. Magnetic effects in chemical kinetics, and related phenomena. Chem Rev., 51: 89.

    Google Scholar 

  206. McLauchlan, K.A., and Steiner, U.E., 1991. The spin-correlated radical pair has a reaction intermediate. Molec. Phys., 241: 73.

    Google Scholar 

  207. Canfield, JM, Belford, RL, Debrunner, PG and Schulten, K., 1994. A perturbation theory treatment of oscillating magnetic fields in the radical pair mechanism. Chemical Physics, 182: 118.

    Google Scholar 

  208. Adair R.K., 1999. Effects of very weak magnetic fields on radical pair formation. Bioelectromagnetics, 20: 255–263.

    Google Scholar 

  209. Eichwald C., Wallaczek J., 1996. Model for magnetic field effects on radical pair recombination in enzyme kinetics. Biophys J, 71: 623–631.

    Google Scholar 

  210. Bosch-Morell F, Roma J, Puertas FJ, Marin N, Diaz-Llopis M, Romero FJ, 1999. Efficacy of the antioxidant ebselen in experimental uveitis. Free Radicals in Biology and Medicine 27: 388–391.

    Google Scholar 

  211. Kusuhara H, Komatsu H, Sumichika H, Sugahara K, 1999. Reactive oxygen species are involved in the apoptosis induced by nonsteroidal anti-inflammatory drugs in cultured gastric cells. Eur J Pharmacol 383: 331–7.

    Google Scholar 

  212. Niess AM, Dickhuth HH, Northoff H, Fehrenbach E., 1999. Free radicals and oxidative stress in exercise: immunological aspects. Exerc Immunol Rev 1999; 5: 22–56.

    Google Scholar 

  213. Stojadinovic A, Smallridge R, Nath J, Ding X, Shea-Donohue T., 1999. Anti-inflammatory effects of U74389F in a rat model of intestinal ischemia/reperfusion injury. Crit Care Med, 27: 764–70.

    Google Scholar 

  214. Natarajan E., Grissom C.B., 1996. The origin of magnetic field dependent recombination in alkylcobalamin radical pairs. Photochem Photobiol, 64: 286–295.

    Google Scholar 

  215. Adey, W. R. (1981). Tissue interactions with non-ionizing electromagnetic fields. Physiol. Rev. 61: 435–514.

    Google Scholar 

  216. Adey, W. R. (1984). Nonlinear, nonequilibrium aspects of electromagnetic field interactions at cell surfaces. In Adey, W. R. and Lawrence, A. F. (eds) Nonlinear Electrodynamics in Biological Systems, Plenum Press, New York, pp 3–22.

    Google Scholar 

  217. Bawin, S. M., Kazmarek, L. K., and Adey, W. R. (1975). Effects of modulated VHF fields on the central nervous system. Ann. New York Acad, Sci. 247: 7481.

    Google Scholar 

  218. Bawin, S. M., and Adey, W. R. (1976). Sensitivity of calcium binding in cerebral tissue to weak environmental fields oscillating at low frequency. Proc Natl Acad Sci USA 73: 1999–2003.

    Google Scholar 

  219. Belova, N. A., and Lednev, V. V. (2000a). Activation and inhibition of gravitropic response in plants by weak combined magnetic fields. Biophysics 45: 1069–1074.

    Google Scholar 

  220. Belova, N. A., and Lednev, V. V. (2000b). Dependence of gravitropic response in the segments of flax stems on the frequency and amplitude of weak combined magnetic fields. Biophysics 45: 1075–1078.

    Google Scholar 

  221. Bennett, W. R., Jr. (1994). Cancer and power lines. Physics Today 47: 23–29.

    Google Scholar 

  222. Berden, M., Zrimec, A., and Jerman, I. (2001). New biological detection system for weak ELF magnetic fields and testing of the parametric resonance model (Lednev 1991). Electro-and Magneto-Biology 20: 27–41.

    Google Scholar 

  223. Blackman, C. F., Benane, S. G., Rabinowitz, J. R., House, D.E., and Joines, W. T. (1985). A role for the magnetic field in the radiation-induced efflux of calcium ions from brain tissue in vitro. Bioelectromagnetics 6: 327–337 (1985).

    Google Scholar 

  224. Blackman, C. F., Blanchard, J. P., Benane, S. G., and House, D. E. (1994). Empirical test of an ion parametric resonance model for magnetic field interactions with PC-12 cells. Bioelectromagnetics 15: 239–250.

    Google Scholar 

  225. Blanchard, J. P., Blackman, C. F., Benane, S. G., and House, D. E. (1997). IPR response of PC-12 cells exposed to magnetic fields tuned for calcium ions.. The Annual Review of Research on Biological Effects of Electric and Magnetic Fields from the Generation, Delivery and use of Electricity. Paper A5, p. 4, San Diego, CA. W/L Associates, Ltd. Frederick,.MD.

    Google Scholar 

  226. Blanchard, J. P., and Blackman, C. F. (1994). Clarification and amplification of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15: 217–238.

    Google Scholar 

  227. Blackman, C. F., Blanchard, J. P., Benane, S. G., and House, D. E. (1999). Experimental determination of hydrogen bandwidth for the Ion Parametric Resonance model. Bioelectromagnetics 20: 5–12.

    Google Scholar 

  228. Bruckner-Lea, C., Durney, C. H., Janata, J., Rappaport, C., and Kaminski, M. (1992). Calcium binding to metallochromic dyes and calmodulin in the presence of combined, AC-DC magnetic fields. Bioelectromagnetics 13: 147–162.

    Google Scholar 

  229. Byus, C. V., Lundak, R. L., Fletcher, R. M., and Adey, W. R. (1984). Altered protein kinase activity following exposure of cultured human lymphocytes to modulated microwave fields. Biolectromagnetics 5: 341–351.

    Google Scholar 

  230. Chemeris, N. K., and Safronova, V. G. (1993). Weak low-frequency magnetic field initiates frequency-dependent fluctuations of period of Daphnia magna’s heart beatings. Biophysics 38: 511–519.

    Google Scholar 

  231. Clarkson, N., Davies, M. S., and Dixey, R. (1999). Diatom motility and low-frequency electromagnetic fields-a new technique in the search for independent replication of results. Bioelectromagnetics 20: 94–100.

    Google Scholar 

  232. Coulton, L. A., and Barker, A. T. (1993). Magnetic fields and intracellular calcium: effects on lymphocytes exposed to conditions for `cyclotron resonance’. Phys. Med. Bio 38: 347–360.

    Google Scholar 

  233. Davies, M. S. (1996). Effects of 60 Hz electromagnetic fields on early growth in three plant species and a replication of previous results. Bioelectromagnetics 17: 154–161.

    Google Scholar 

  234. Diebert, M. C., McLeod, B. R., Smith, S. D., and Liboff, A, R. (1994). Ion resonance electromagnetic field stimulation of fracture healing in rabbits with a fibular ostectomy. J. of Orthopedic Research 12: 878–885.

    Google Scholar 

  235. Derjugina, O. N., Pisachenko, T. M., and Zhadin, M.N. (1996). Combined action of alternating and static magnetic fields on behavior of rats in the “Open field” test. Biophysics 41: 762–764.

    Google Scholar 

  236. Durney, C. H., Kaminski, M., Anderson, A. A., Bruckner-Lea, C., and Rappaport, C. (1992). Investigation of AC-DC magnetic field effects in planar phospholipid layers. Bioelectromagnetics 13: 19–33.

    Google Scholar 

  237. Fitzsimmons, R. J., Strong, D. D., Mohan, S., and Baylink, D. J. (1992). Lowamplitude, low-frequency electric field-stimulated bone cell proliferation may in part be mediated by increased IGF-II release. J. of Cellular Physiology 150: 84–89.

    Google Scholar 

  238. Fitzsimmons, R. J., Baylink, D. J., Ryaby, J. T., and Magee, F. (1993). EMFstimulated bone cell proliferation. In Blank, M., (Ed.) Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco.

    Google Scholar 

  239. Fitzsimmons, R. J., Ryaby, J. T., Magee, F. P., and Baylink, D. J. (1994). Combined magnetic fields increased net calcium flux in bone cells. Calcified Tissue International 55: 376–380.

    Google Scholar 

  240. Fitzsimmons, R. J., Ryaby, J. T., Mohan, S., Magee, F. P., and Baylink, D. J. (1995 a). Combined magnetic fields increase insulin-like growth factor-II in Te-85 human osteosarcoma bone cell cultures. Endocrinology 136: 31003106.

    Google Scholar 

  241. Fitzsimmons, R. J., Ryaby, J. T., Magee, F. P, and Baylink, D. J. (1995 b). IGF-II receptor number is increased in TE-85 osteosarcoma cells by combined magnetic fields. J. of Bone and Mineral Research 10: 812–819.

    Google Scholar 

  242. Galt, S., Sandblom, J., Hamnerius, Y., Hojevic, P., Saalman, E., and Norden, B. (1993). Experimental search for combined AC and DC magnetic field effects on ion channels. Bioelectromagnetics 14: 315–327.

    Google Scholar 

  243. Hille, B. (1992). Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA. 2cd ed., p. 278.

    Google Scholar 

  244. Hobbie, R. K. (1988) Intermediate Physics for Medicine and Biology, 2cd edition, p. 195, John Wiley & Sons, New York.

    Google Scholar 

  245. Hojevic, P., Sandblom, J., Galt, S., and Hamnerius, Y. (1995). Ca2+ ion transport through patch-clamped cells exposed to magnetic fields. Bioelectromagnetics 16: 33–40.

    Google Scholar 

  246. Horton, P., Ryaby, J. T., Magee, F. P., and Weinstein, A. M. (1993). Stimulation of specific neuronal differentiation proteins in PC-12 cells by combined AC/DC magnetic fields. In Blank, M., (Ed.) Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco. pp. 619–622.

    Google Scholar 

  247. Jackson, J. D. (1967). Classical Electrodynamics, p. 436. John Wiley & Sons, New York.

    Google Scholar 

  248. Jenrow, K. A., Smith, C. H., and Liboff, A.R. (1995). Weak extremely-lowfrequency magnetic fields and regeneration in the planarian Dugesia tigrina. Bioelectromagnetics 16: 106–112.

    Google Scholar 

  249. Jenrow, K. A., Smith, C. H., and Liboff, A. R. (1996). Weak extremely-lowfrequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina. Bioelectromagnetics 17: 467–474.

    Google Scholar 

  250. Lednev, V. V. (1991). Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics 12: 71–75.

    Google Scholar 

  251. Lerchl. A., Reiter, R. J., Nonaka, K. O., and Stokken, K.-A. (1991). Evidence that extremely low frequency ca2+-cyclotron resonance depresses pineal melatonin synthesis in vitro. Neuroscience Let. 124: 213–215.

    Google Scholar 

  252. Liboff, A. R. (1985). Geomagnetic cyclotron resonance in membrane transport. J. Biol Physics 13: 99–102.

    Google Scholar 

  253. Liboff, A. R., Rozek, R. J., Sherman, M. L., McLeod, B. R., and Smith, S.D. (1987) 45Ca2+ resonance in human lymphocytes. J. of Bioelectricity 6, 13–22.

    Google Scholar 

  254. Liboff, A. R., and McLeod, B. R. (1988). Kinetics of channelized membrane ions in magnetic fields. Bioelectromagnetics 9: 39–51.

    Google Scholar 

  255. Liboff, A. R., and Parkinson, W. C. (1991). Search for ion-cyclotron resonance in an Na+ transport system. Bioelectromagnetics 12: 77–83.

    Google Scholar 

  256. Liboff, A. R. (1992). The `cyclotron resonance’ hypothesis: experimental evidence and theoretical constraints. In Norden, B, and Ramel, C., (Editors) Interaction of Low-Level Electromagnetic Fields in Living Systems, Oxford University Press, New York, pp. 130–147.

    Google Scholar 

  257. Liboff, A. R., Jenrow, K. A., and McLeod, B. R. (1993). ELF-induced proliferation at 511 mG in HSB-2 cell culture as a function of 60 Hz field intensity. In Blank, M., (Ed.) Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco, pp 623–627.

    Google Scholar 

  258. Liboff, A. R. (1997). Electric-field ion cyclotron resonance. Bioelectromagnetics 18: 85–87.

    Google Scholar 

  259. Liboff, A. R., and Jenrow, K. A. (2000). New model for the avian magnetic compass. Bioelectromagnetics 21: 555–565.

    Google Scholar 

  260. Liburdy, R. P., and Yost, M.G. (1993). Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. In Blank. M., (Ed.) Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco, pp. 331–334.

    Google Scholar 

  261. Lindstrom, E., Lindstrom, P., Berglund, A., Lundgren, E., and Mild, K. H. (1995) Intracellular calcium oscillations in a T-cell line after exposure to extremely-low-frequency magnetic fields with variable frequencies and flux densities. Bioelectromagnetics 16: 41–47.

    Google Scholar 

  262. Lovely, R. H., Creim, J. A., Miller, D. L., and Anderson, (1993). L. E. Behavior of rats in a radial arm maze during exposure to magnetic fields: evidence for effect of magnesium ion resonance. 15th annual meeting, Bioelectromagnetics Society, Los Angeles, Abstract E-I-6.

    Google Scholar 

  263. Lyle, D. B., Schecter, P., Adey, W. R., and Lundak, R. L. (1983). Suppression of T-lymphocyte cytotoxicity following exposure to sinusoidally amplitude-modulated fields. Bioelectromagnetics 4: 281–292.

    Google Scholar 

  264. Lyle, D.B., Wang, X., Ayotte, R. D., Sheppard, A. R., and W. R. Adey (1991). Calcium uptake by leukemic and normal T-lymphocytes exposed to low frequency magnetic fields. Bioelectromagnetics 12: 145–156

    Google Scholar 

  265. Lyskov, Y. B., Chernysev, M. V., Mikhailov, V. O., Kozlov, A. P., Makarova, T. M., Vasilyeva, Y. V., Druzin, M. Y., Sokolov, G. V., and Vishnevskii, A. M. (1996). The effect of a magnetic field with the frequency of 50 Hz on behavior in rats depends on the value of the constant magnetic field. Biophysics 41: 881–886.

    Google Scholar 

  266. McLeod, B. R. and Liboff, A. R., (1986). Dynamic characteristics of membrane ions in multifield configurations of low-frequency electromagnetic radiation. Bioelectromagnetics 7: 177–189.

    Google Scholar 

  267. McLeod, B. R., Smith, S. D., Cooksey, K, E., and Liboff, A. R. (1987a). Ion cyclotron resonance frequencies enhance Cat.–dependent motility in diatoms. J. of Bioelectricity 6, 1–12 (1987).

    Google Scholar 

  268. McLeod, B. R., Smith, S. D., and Liboff, A. R. (1987b). Calcium and potassium cyclotron resonance curves and harmonics in diatoms. J.of Bioelectricity 6: 153–168.

    Google Scholar 

  269. Novikoff, V. V., and Zhadin, M. N. (1994). Combined action of weak constant and variable low-frequency magnetic fields on ionic currents in aqueous solutions of amino acids. Biophysics 39: 41–45.

    Google Scholar 

  270. Parkinson, W. C., and Hanks, C. T. (1989). Search for cyclotron resonance in cells in vitro. Bioelectromagnetics 10: 129–145.

    Google Scholar 

  271. Parkinson, W. C., and Sulik, G. L. (1992) Diatom response to extremely low frequency magnetic fields. Radiation Research 130: 319–330.

    Google Scholar 

  272. Prasad, A.V., Miller, M.W., Cox, C., Carstensen, E.L., Hops, H., and Brayman, A. A. (1994). A test of the influence of cyclotron resonance exposures on diatom motility. Health Physics 66: 305–312.

    Google Scholar 

  273. Prato, F. S., Carson, J. F. L., Ossenkopp, K.-P., and Kavaliers, M. (1995). Possible mechanisms by which extremely low frequency magnetic fields affect opioid function. FASEB J. 9: 807–814.

    Google Scholar 

  274. Prato, F. S., Kavaliers, M., Cullen, A.P., and Thomas, A. W. (1997). Light-dependent and -independent behavioral effects of extremely low frequency magnetic fields. Bioelectromagnetics 18: 284–291.

    Google Scholar 

  275. Prato, F. S., Kavaliers, M., and Thomas, A. W. (2000). Extremely low frequency magnnetic fields can either increase or decrease analgesia in the land snail depending on field and light conditions. Bioelectromagnetics 21: 287–301.

    Google Scholar 

  276. Reese, J. A., Frazier, M. E., Morris, J. E., Buschbom, R. L., and Miller, D. L. (1991). Evaluation of changes in diatom motility after exposure to 16-Hz electromagnetic fields. Bioelectromagnetics 12: 21–25.

    Google Scholar 

  277. Regling, C., Brueckner, C., Liboff, A. R., and Kimura, J. H. (2002) Evidence for ICR magnetic field effects on cartilage and bone development in embryonic chick bone explants. (abstract) Orthopedic Research Society, 48th annual meeting, Dallas, Feb. 10–13, 2002.

    Google Scholar 

  278. Reinhold, K. A., and Pollack, S. R. (1997). Serum plays a critical role in modulating [Ca2*]c of primary cell culture bone cells exposed to weak ion-resonance magnetic fields. Bioelectromagnetics 18: 203–214.

    Google Scholar 

  279. Rochev, Y. A., Narimanov, A. A., Sosunov, E. A., Koxlov, A. N., and Lednev, V.V. (1990). Effects of weak magnetic field on the rate of cell proliferation in culture. Studia Biophysica 135: 93–98.

    Google Scholar 

  280. Ross, S. M., (1990) Combined DC and ELF magnetic fields can alter cell proliferation. Bioelectromagnetics 11: 27–36.

    Google Scholar 

  281. Rozek, R. J., Sherman, M. L., Liboff, A.R., McLeod, B. R., and Smith, S.D. (1987). Nifedipine is an antagonist to cyclotron resonance enhancement of 45Ca incorporation in human lymphocytes.Cell Calcium 8: 413–427.

    Google Scholar 

  282. Ryaby, J. T., Grande, D. A., Magee, F. P, and Weinstein, A. M. (1993a). The effects of combined AC/DC magnetic fields on resting articular cartilage metabolism. In Blank, M., (Ed.) Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco.

    Google Scholar 

  283. Ryaby, J. T., Magee, F. P., Weinstein, A. M., Fitzsimmons, R. J., and Baylink, D. J. (1993b). Prevention of experimental osteopenia by use of combined AC/DC magnetic fields. In Blank, M., (Ed.) Electricity and Magnetism in Biology and Medicine. San Francisco Press, San Francisco.

    Google Scholar 

  284. Saalman, E., Galt, S., Hamnerius, Y., and Norden, B. (1992). Diatom motility: Replication study in search of cyclotron resonance effects. In: Norden, B. and Ramel, C., (editors). Interaction Mechanisms of Low-Level Electromagnetic Fields in Living Systems. Oxford University Press, Oxford, pp. 280–292.

    Google Scholar 

  285. Shuvalova, L. A., Ovstrovskaja, M. V., Sosunov, E. A., and Lednev, V. V. (1991). Effect of weak magnetic field in the parametric resonance mode on the rate of calmodulin-dependent phosphorylation of myosin in the solution. Doklady Akademii Nauk SSSR (Reports of the Academy of Science of the USSR; in Russian) 317: 227–230.

    Google Scholar 

  286. Smith, S. D., McLeod, B. R., Liboff, A.R., and Cooksey, K. (1987) Calcium cyclotron resonance and diatom motility. Bioelectromagnetics 8: 215–227.

    Google Scholar 

  287. Smith, S. D., Liboff, A. R., and McLeod, B. R. (1991) Effects of resonant magnetic fields on chick femoral development in vitro. J. Bioelectricity 10: 8199.

    Google Scholar 

  288. Smith, S. D., Liboff, A. R., McLeod, B. R., and Barr, E. J, (1992). Effects of ion resonance tuned magnetic fields on N-18 neuroblastoma cells. In: Allen, M. J., Cleary, A. F., Sowers, A. E., and Shillady, D. D. (editors) Charge and Field Effects in Biosystems-3. Birkhauser, Boston, pp. 263–271.

    Google Scholar 

  289. Smith, S. D., McLeod, B. R., and Liboff, A.R. (1993) Effects of CR-tuned 60 Hz magnetic fields on sprouting and early growth of Raphanus sativus. Bioelectrochemistry and Bioenergetics 32: 67–76.

    Google Scholar 

  290. Smith, S.D., McLeod, B. R., and Liboff, A. R. (1995). Testing the ion cyclotron resonance theory of electromagnetic field interaction with odd and even harmonic tuning for cations. Bioelectrochemistry and Bioenergetics 38: 161167.

    Google Scholar 

  291. Smith, S. D., Liboff, A. R., and McLeod, B. R. (2000). Potassium ion cyclotron resonance magnetic fields stimulate germination. Proceedings of the Millennium International Workshop on Biological Effects of Electromagnetic Fields. Heraclion, Crete, Greece. pp. 347–351

    Google Scholar 

  292. Stern, S., Laties, V. G., Nguyen, Q. A., and Cox, C. (1996). Exposure to combined static and 60 Hz magnetic fields: Failure to replicate a reported behavioral effect. Bioelectromagnetics 17: 279–292.

    Google Scholar 

  293. Tiras, K. P., Srebnitskaya, L.K., II’jasova, A. A., and Lednev, V. V. (1996). The influence of weak combined magnetic fields on the rate of regeneration in planarians Dugesia tigrina. Biophysics 41: 826–831.

    Google Scholar 

  294. Tofani, S., Ferrara, A., Anglesio, L., and Gilli, G. (1995). Evidence for genotoxic effects of resonant ELF magnetic fields. Bioelectrochemistry and Bioenergetics 36: 9–13.

    Google Scholar 

  295. Tohtz, S.W.,(1996). The influence of ultraweak magnetic fields on growth and differentiation using the ICR hypothesis: an experimental study on radish seedlings and a theoretical discussion on relevant aspects of electrophysiology of cartilage, bone, and other connective tissues. Ph.D. dissertation. Medical faculty of Humboldt University, Berlin. (in German).

    Google Scholar 

  296. Trillo, M. A., Ubeda, A., Blanchard, J. P., House, D. E., and Blackman, C. F. (1996). Magnetic fields at resonant conditions for the hydrogen ion can affect neunte outgrowth in PC-12 cells. Bioelectromagnetics 17: 10–20.

    Google Scholar 

  297. Weaver, J. C., and Astumian, R. D. (1990). The response of living cells to very weak electric fields: The thermal noise limit. Science 247: 459–462.

    Google Scholar 

  298. Yost, M. G., and Liburdy, R. P. (1992). Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. FEBS Letts 296: 117–122.

    Google Scholar 

  299. Zhadin, M. N., Novikoff, V. V., Barnes, F. S., and Pergola, M. F. (1998). Combined action of static and alternating magnetic fields on ionic current in aqueous glutamic acid solution. Bioelectromagnetics 19: 41–45.

    Google Scholar 

  300. Zhadin, M. N., Deryugina, O. N., and Pisachenko, T. M. (1999) Influence of combined DC and AC magnetic fields on rat behavior. Bioelectromagnetics 20: 378–386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris J. Panagopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Panagopoulos, D.J., Margaritis, L.H., Pilla, A.A., Liboff, A.R. (2003). Mechanisms of Action of EMFs on Biological Systems. In: Stavroulakis, P. (eds) Biological Effects of Electromagnetic Fields. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06079-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06079-7_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07697-8

  • Online ISBN: 978-3-662-06079-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics