Skip to main content

Biomechanics of Invasive Hyphal Growth

  • Chapter
Biology of the Fungal Cell

Part of the book series: The Mycota ((MYCOTA,volume 8))

Abstract

The process of invasive hyphal growth allows fungi to acquire nutrients from diverse solid materials of biological and synthetic origin. It is a defining characteristic of the fungi and is at the root of their evolutionary origins (Bartnicki-Garcia 1987; Money 1999a). The essential cell biological processes that attend invasive growth are identical to those that operate during non-invasive hyphal extension. In both cases, polarized synthesis of new plasma membrane and cell wall advances the position of the hyphal tip, creating a cylindrical cell of increasing length. However, the mechanical challenges encountered by hyphae growing over surfaces and in broth culture are very different from those associated with invasive growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amir R, Steudle E, Levanon D, Hadar Y, Chet I (1995) Turgor changes in Morchella esculenta during translocation and sclerotial formation. Exp Mycol 19:129–136

    Article  Google Scholar 

  • Bartnicki-Garcia S (1987) The cell wall: a crucial structure in fungal evolution. In: Rayner ADM, Brasier CM, Moore D (eds) Evolutionary biology of the fungi. Cambridge Univ Press, Cambridge, pp 389–403

    Google Scholar 

  • Bechinger C, Giebel K-F, Schnell M, Leiderer P, Deising HB, Bastmeyer M (1999) Optical measurements of invasive forces exerted by appressoria of a plant pathogenic fungus. Science 285:1896–1899

    Article  PubMed  CAS  Google Scholar 

  • Brush L, Money NP (1999) Invasive hyphal growth in Wangiella dermatitidis is induced by stab inoculation and shows dependence upon melanin biosynthesis. Fungal Genet Biol 28:190–200

    Article  PubMed  CAS  Google Scholar 

  • Burton K, Taylor L (1997) Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 385:450–454

    Article  PubMed  CAS  Google Scholar 

  • Castle ES (1940) Discontinuous growth of single plant cells measured at short intervals, and the theory of intussusception. J Cell Comp Physiol 15:285–298

    Article  CAS  Google Scholar 

  • Davis DJ, Burlak C, Money NP (2000) Biochemical and biomechanical aspects of appressorial development in Magnaporthe grisea. In: Tharreau D, Lebrun MH, Talbot NJ, Notteghem JL (eds) Advances in rice blast research. Kluwer, Dordrecht, pp 248–256

    Google Scholar 

  • De Jong JC, McCormack BJ, Smirnoff N, Talbot NJ (1997) Glycerol generates turgor in rice blast. Nature 389:244–245

    Article  Google Scholar 

  • Gimeno CJ, Ljungdahl CA, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 68:1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Gupta GD, Heath IB (1997) Actin disruption by latrun-culin B causes turgor-related changes in tip growth of Saprolegnia ferax hyphae. Fungal Genet Biol 21: 64–75

    Article  PubMed  CAS  Google Scholar 

  • Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–189

    Article  PubMed  CAS  Google Scholar 

  • Heath IB, Steinberg G (1999) Mechanisms of hyphal tip growth: tube dwelling amebae revisited. Fungal Genet Biol 28:79–93

    Article  PubMed  CAS  Google Scholar 

  • Holland RJ, Williams KL, Khan A (1999) Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1:131–139

    Article  Google Scholar 

  • Horré R, de Hoog GS (1999) Primary cerebral infections by melanized fungi: a review. In: de Hoog GS (ed) Studies in mycology 43. Ecology and evolution of black yeasts and their relatives. CBS, Baarn, The Netherlands, pp 176–193

    Google Scholar 

  • Howard RJ (1997) Breaching the outer barriers — cuticle and cell wall penetration. In: Carroll G, Tudzynski P (eds) The Mycota, vol 5, part A. Plant relationships. Springer, Berlin Heidelberg New York, pp 43–60

    Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Natl Acad Sci USA 88:11281–11284

    Article  PubMed  CAS  Google Scholar 

  • Hube B, Sanglard D, Odds FC, Hess D, Monod M, Schafer W, Brown AJP, Gow NAR (1997) Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence. Infect Immun 65:3529–3538

    PubMed  CAS  Google Scholar 

  • Johns S, Davis CM, Money NP (1999) Pulses in turgor pressure and water potential: resolving the mechanics of hyphal growth. Microbiol Res 154:225–231

    Article  Google Scholar 

  • Jongmans AG, van Breemen N, Lundström U, van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R,Melkerud P-A, Olsson M (1997) Rock-eating fungi. Nature 389:682–683

    Article  CAS  Google Scholar 

  • Kaminskyj SGW, Heath IB (1996) Studies on Saprolegnia ferax suggest the general importance of the cytoplasm in determining hyphal morphology. Mycologia 88: 20–37

    Article  Google Scholar 

  • Knogge W (1996) Fungal infection of plants. Plant Cell 8:1711–1722

    PubMed  CAS  Google Scholar 

  • Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275

    Article  PubMed  CAS  Google Scholar 

  • López-Franco R, Bartnicki-Garcia S, Bracker CE (1994) Pulsed growth of fungal hyphal tips. Proc Natl Acad Sci USA 91:12228–12232

    Article  PubMed  Google Scholar 

  • Mendgen K, Deising H (1993) Infection structures of fungal plant pathogens — a cytological and physiological evaluation. New Phytol 124:193–213

    Article  Google Scholar 

  • Mitchell AP (1998) Dimorphism and virulence in Candida albicans. Curr Opin Microbiol 1:687–692

    Article  PubMed  CAS  Google Scholar 

  • Money NP (1990) Measurement of hyphal turgor. Exp Mycol 14:416–425

    Article  Google Scholar 

  • Money NP (1995) Turgor pressure and the mechanics of fungal penetration. Can J Bot 73 [Suppl 1]: S96–S102

    Article  Google Scholar 

  • Money NP (1997a) Wishful thinking of turgor revisited: the mechanics of fungal growth. Fungal Genet Biol 21:173–187

    Article  Google Scholar 

  • Money NP (1997b) Mechanism linking cellular pigmentation and pathogenicity in rice blast disease: a commentary. Fungal Genet Biol 22:151–152

    Article  PubMed  CAS  Google Scholar 

  • Money NP (1998) Mechanics of invasive fungal growth and the significance of turgor in plant infection. In: Kohmoto K Yoder OC (eds) Molecular genetics of host-specific toxins in plant disease. Kluwer, Dordrecht, pp 261–271

    Chapter  Google Scholar 

  • Money NP (1999a) On the origin and functions of hyphal walls and turgor pressure. Mycol Res 103:1360

    Article  Google Scholar 

  • Money NP (1999b) Fungus punches its way in. Nature 401:332–333

    Article  PubMed  CAS  Google Scholar 

  • Money NP (1999c) To perforate a leaf of grass. Fungal Genet Biol 28:146–147

    Article  PubMed  CAS  Google Scholar 

  • Money NP, Harold FM (1992) Extension growth in the water mold Achlya: interplay of turgor and wall strength. Proc Natl Acad Sci USA 89:4245–4249

    Article  PubMed  CAS  Google Scholar 

  • Money NP, Harold FM (1993) Two water molds can grow in the absence of measurable turgor pressure. Planta 190:426–430

    Article  Google Scholar 

  • Money NP, Hill T (1997) Correlation between endoglu-canase secretion and cell wall strength in oomycete fungi: implications for growth and morphogenesis. Mycologia 89:777–785

    Article  CAS  Google Scholar 

  • Money NP, Howard RJ (1996) Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genet Biol 20:217–227

    Article  Google Scholar 

  • Ortega JKE (1990) Governing equations for plant cell growth. Physiol Plant 79:116–121

    Article  Google Scholar 

  • Pierson E, Miller DD, Callaham DA, van Aken J, Hackett G, Kepler PK (1996) Tip-localized calcium entry fluctuates during pollen tube growth. Dev Biol 174: 160–173

    Article  PubMed  CAS  Google Scholar 

  • Pryce-Jones E, Carver T, Gurr S (1999) The roles of cellulase enzymes and mechanical force in host penetration by Erysiphe graminis f. sp. hordei. Physiol Mol Plant Pathol 55:175–182

    Article  CAS  Google Scholar 

  • Sanglard D, Hube B, Monod M, Odds FC, Gow NAR (1997) A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65:3539–3546

    PubMed  CAS  Google Scholar 

  • Scott-Craig JS, Apel-Birkhold PC, Görlach JM, Nikolskaya A, Pitkin JW, Ransom RF, Sposato P, Ahn J-H, Tonukari NJ, Wegener S, Walton JD (1998) Cell wall degrading enzymes in HST-producing fungal pathogens. In: Kohmoto K, Yoder OC (eds) Molecular genetics of host-specific toxins in plant disease. Kluwer, Dordrecht, pp 245–252

    Chapter  Google Scholar 

  • Sterfiinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestone. Geomorphol J 14:219–230

    Google Scholar 

  • Terhune BT, Bojko RJ, Hoch HC (1993) Deformation of stomatal guard cell lips and microfabricated artificial topographies during appressorium formation by Uromyces. Exp Mycol 17:70–78

    Article  Google Scholar 

  • Usami S, Wung S-L, Skierczynski BA, Skalak R, Chien S (1992) Locomotion forces generated by a polymorphonuclear leukocyte. Biophys J 63:1663–1666

    Article  PubMed  CAS  Google Scholar 

  • van Wetter M-A, Schuren FHJ, Wessels JGH (1996) Targeted mutation of the Sc3 hydrophobin gene of Schizophyllum commune affects formation of aerial hyphae. FEMS Microbiol Lett 140:265–270

    Article  Google Scholar 

  • Vogel S (1988) Life’s devices. The physical world of animals and plants. Princeton Univ Press, Princeton, NJ

    Google Scholar 

  • Walton JD (1994) Deconstructing the cell wall. Plant Physiol 104:1113–1118

    PubMed  CAS  Google Scholar 

  • Wösten HAB, van Wetter M-A, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH (1999a) How a fungus escapes the water to grow into the air. Curr Biol 9:85–88

    Article  PubMed  Google Scholar 

  • Wösten HAB, Richter M, Willey JM (1999b) Structural proteins involved in emergence of microbial aerial hyphae. Fungal Genet Biol 27:153–160

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Money, N.P. (2001). Biomechanics of Invasive Hyphal Growth. In: Howard, R.J., Gow, N.A.R. (eds) Biology of the Fungal Cell. The Mycota, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06101-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06101-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-06103-9

  • Online ISBN: 978-3-662-06101-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics