Skip to main content

Disease Resistance

  • Chapter
Brassica

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 54))

Abstract

In the natural environment, plants have evolved mechanisms to perceive and respond effectively to a vast range of biotic stresses. A plant’s survival depends on efficient recognition of microbial and invertebrate pathogens and the timely activation of the local and systemic defence machinery. Unlike multicellular animals, plants lack a circulatory system for surveillance and destruction of foreign material. However, they possess a functionally equivalent recognition system of innate immunity in the form of a basal resistance machinery and a repertoire of various (more or less) pathogen-specific resistance genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aarts N, Metz M, Holub E, Staskawicz BJ, Daniels MJ, Parker JE (1998) Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc Natl Acad Sci USA 95: 10306–10311

    Article  PubMed  CAS  Google Scholar 

  • Agrios GN (ed) (1997) Plant pathology, 4th edn. Academic Press, San Diego

    Google Scholar 

  • Alvarez AM (2000) Black rot of crucifers. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases. Kluwer, Dordrecht, pp 21–76

    Chapter  Google Scholar 

  • Ansan-Melayah D, Balesdent MH, Delourme R, Pilet ML, Tangyu X, Renard M, Rouxel T (1998) Genes for race-specific resistance against blackleg disease in Brassica napus ( L. ). Plant Breed 117: 373–378

    Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signaling cascade in Arabidopsis innate immunity. Nature 28: 977–983

    Article  CAS  Google Scholar 

  • Attard A, Gout L, Gourgues M, Kühn M-L, Schmit J, Laroche S, Ansan-Melayah D, Billault A, Cattolico L, Balesdent M-H, Rouxel T (2002) Analysis of molecular markers genetically linked to the Leptosphaeria maculans avirulence gene AvrLm1 in field populations indicates a highly conserved event leading to virulence on Rlm1 genotypes. Mol Plant Microbe Interact 15: 672–682

    Article  PubMed  CAS  Google Scholar 

  • Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JDG, Parker JE (2002) Regulatory role of SGT1 in early R gene-mediated plant defences. Science 295: 2077–2080

    Article  PubMed  CAS  Google Scholar 

  • Aviv DH, Rustérucci C, Holt BF III, Dietrich RA, Parker JE, Dangle JL (2002) Runaway cell death, but not basal disease resistance, in lsd is SA- and NIM1/NPR1-dependent. Plant J 29: 381–391

    Google Scholar 

  • Balesdent MH, Attard A, Ansan-Melayah D, Deourme R, Renard M, Rouxel T (2001) Genetic control and host range of avirulence towards Brassica napus cvs. Quinta and Jet Neuf in Leptosphaeria maculans. Phytopathology 91: 70–76

    Article  PubMed  CAS  Google Scholar 

  • Balesdent MH, Attard A, Kühn ML, Rouxel T (2002) New avirulence genes in the phytopathogenic fungus Leptosphaeria maculans. Phytopathology 92: 1122–1133

    Article  PubMed  CAS  Google Scholar 

  • Ball AM, Ashby AM, Daniels MJ, Ingram DS, Johnstone K (199 1) Evidence for the requirement of extracellular protease in the pathogenic interaction of Pyrenopeziza brassicae with oilseed rape. Physiol Mol Plant Pathol 38: 147–161

    Google Scholar 

  • Becker HC, Löptien H, Röbbelen G (1999) Breeding: an overview. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 413–460

    Chapter  Google Scholar 

  • Benhamou N, Broglie K, Chet I, Broglie R (1993) Cytology of infection of 35S-bean chitinase transgenic canola plants by Rhizoctonia solani: cytochemical aspects of chitin breakdown in vivo. Plant J 4: 292–305

    Article  Google Scholar 

  • Biezen EA, Freddie CT, Kahn K, Parker JE, Jones JDG (2002) Arabidopsis RPP4 is a member of the RPP5 multigene family of TIR-NB-LRR genes and confers downy mildew resistance through multiple signaling components. Plant J 29: 439–451

    Article  PubMed  Google Scholar 

  • Bittner-Eddy P, Crute IR, Holub EB, Beynon JL (2000) RPP13 is a simple locus in Arabidopsis for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica. Plant J 21: 177–188

    Google Scholar 

  • Bock CH, Thrall PH, Brubaker CL, Burdon JJ (2002) Detection of genetic variation in Alternaria brassicicola using AFLP fingerprinting. Mycol Res 106: 428–434

    Article  CAS  Google Scholar 

  • Bohman S, Wang M, Dixelius C (2002) Expression of Arabidopsis thaliana encoded Leptosphaeria maculans resistance in Brassica napus genomic background. Theor Appl Genet 105:498– 504

    Google Scholar 

  • Bohman S, Staal J, Thomma B, Wang M, Dixelius C (2004) Characterisation of an Arabidopsis– Leptosphaeria maculans pathosystem: resistance partially requires camalexin biosynthesis and is independent of salicylic acid, ethylene and jasmonic acid signalling. Plant J 87: 9–20

    Article  CAS  Google Scholar 

  • Boland GJ, Hall R (1994) Index of plant hosts of Sclerotinia sclerotiorum. Can J Plant Pathol 16: 93–108

    Article  Google Scholar 

  • Botella MA, Parker JE, Frost LN, Bittner-Eddy PD, Beynn JL, Daniels MJ, Holub EB, Jones JDG (1998) Three genes of the Arabidopsis RPP1 complex resistance locus recognize distinct Peronospora parasitica avirulence determinants. Plant Cell 10: 1847–1860

    PubMed  CAS  Google Scholar 

  • Brodmann D, Schuller A, Ludwig-Müller J, Aeschbacher RA, Wiemken A, Boller T, Wingler A (2002) Inductin of trehalase in Arabidopsis plants infected with the trehalose-producing pathogen Plasmodiophora brassicae. Mol Plant Microbe Interact 15: 693–700

    Article  PubMed  CAS  Google Scholar 

  • Broekaert WF, Terras FRG, Cammue BPA (2000) Induced and preformed antimicrobial proteins. In: Slusarenko AJ, Fraser RSS, van Loon LC (eds) Mechanisms of resistance to plant diseases, Kluwer, Dordrecht, pp 371–478

    Chapter  Google Scholar 

  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197

    Article  PubMed  CAS  Google Scholar 

  • Buczacki ST, Toxopeus H, Mattusch P, Johnston TD, Dixon GR, Hobolt LA (1975) Study of physiological specialization in Plasmodiophora brassicae: proposals for attempted rationalization through an international approach. Trans Br Mycol Soc 65: 295–303

    Article  Google Scholar 

  • Buell CR, Somerville SC (1995) Expression of defence-related and putative signaling genes during tolerant and susceptible interactions of Arabidopsis with Xanthomonas campestris pv. campestris. Mol Plant Microbe Interact 8: 435–443

    Article  CAS  Google Scholar 

  • Cao H, Gazebrook J, Clark JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57–64

    Article  PubMed  CAS  Google Scholar 

  • Cavell AD, Lydiate DA, Parkin IAP, Dean C, Trick M (1998) Colinearity between a 30- centimorgan segment of Arabidopsis thaliana chromosome 4 has six collinear homologues within the Brassica napus genome. Genome 41: 62–69

    PubMed  CAS  Google Scholar 

  • Century KS, Holub EB, Staskawicz BJ (1995) NDR1, a locus of Arabidopsis thaliana that is required for disease resistance to both a bacterial and a fungal pathogen. Proc Natl Acad Sci USA 92: 6597–6601

    Google Scholar 

  • Chen C-Y, Howlett BJ (1996) Rapid necrosis of guard cells is associated with the arrest of fungal growth in leaves of Indian mustard (Brassica juncea) inoculated with avirulent isolates of Leptosphaeria maculans. Physiol Mol Plant Pathol 48: 73–81

    Article  Google Scholar 

  • Cooke DE, Forster JW, Jenkins PD, Gareth-Jones D, Lewis DM (1998) Analysis of intraspecific and interspecific variation in the genus Alternaria by the use of RAPD-PCR. Ann Appl Biol 132: 197–209

    Article  Google Scholar 

  • Coutrice GRM, Ingram DS (1987) Isolation of auxotrophic mutants of the hemibiotrophic ascomycete pathogen of Brassicas, Pyrenopeziza brassicae. Trans Brit Mycol Soc 89: 301–306

    Article  Google Scholar 

  • Cozijnsen AJ, Popa K, Rolls BD, Purwantara A, Howlett BJ (2000) Genome analysis of the plant pathogenic fungus (Leptosphaeria maculans): mapping mating type and host specificity loci. Mol Plant Pathol 1: 293–302

    Article  PubMed  CAS  Google Scholar 

  • Cuzick A (2001) Genetic characterisation of four genes in Arabidopsis required for a nonsalicylic-dependent source of downy mildew resistance. PhD Thesis, Imperial College of Biotechnology, Science and Medicine at Wye, University of London, UK

    Google Scholar 

  • da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR, Quaggio RB, Monteiro-Vitorello CB, Van Sluys MA, Almeida NF, Alves LM, do Amaral AM, Bertolini MC, Camargo LE, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina LP, Cicarelli RM, Coutinho LL, Cursino-Santos JR, El-Dorry H, Faria JB, Ferreira AJ, Ferreira RC, Ferro MI, Formighieri EF, Franco MC, Greggio CC, Gruber A, Katsuyama AM, Kishi LT, Leite RP, Lemos EG, Lemos MV, Locali EC, Machado MA, Madeira AM, Martinez-Rossi NM, Martins EC, Meidanis J, Mench CF, Miyaki CY, Moon DH, Moreira LM, Novo MT, Okura VK, Oliveira MC, Oliveira VR, Pereira HA, Rossi A, Sena JA, Silva C, de Souza RF, Spinola LA, Takita MA, Tamura RE, Teixeira EC, Tezza RI, Trindade dos Santos M, Truffi D, Tsai SM, White FF, Setubal JC, Kitajima JP (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417: 459–463

    Article  PubMed  Google Scholar 

  • Dangl JL, Jones DG (2001) Plant pathogens and integrated defence responses to infection. Nature 411: 826–833

    Article  PubMed  CAS  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266: 1247–1250

    Article  PubMed  CAS  Google Scholar 

  • Dickman MB, Mitra A (1992) Arabidopsis thaliana as a model for studying Sclerotinia sclerotiorum pathogenesis. Physiol Mol Plant Pathol 41: 255–263

    Google Scholar 

  • Diderichsen E, Wagenblatt B, Schallehn V, Deppe U, Sacristán MD (1995) Transfer of clubroot resistance from resynthesised Brassica napus into oilseed rape–identification of race specific interactions with Plasmodiophora brassicae. Acta Hortic 407: 423–429

    Google Scholar 

  • Diwan N, Fluhr R, Eshed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98: 315–319

    Article  CAS  Google Scholar 

  • Dixelius C (1994) Presence of the pathogenesis-related proteins 2, Q and S in stressed B. napus and B. nigra plantlets. Physiol Mol Plant Pathol 44: 1–8

    Article  CAS  Google Scholar 

  • Dixelius C, Wahlberg S (1999) Resistance to Leptosphaeria maculans is conserved in a specific region of the Brassica B genome. Theor Appl Genet 99: 368–372

    Article  Google Scholar 

  • Fahleson J, Butterworth LA, Dixelius C (2000) AFLP and RFLP analyses as tools to characterise different Verticillium isolates. Proc 12th Crucifer Genetics Workshop, 5–9 Sept 2000, HRI, Wellesbourne, UK

    Google Scholar 

  • Fahleson J, Lagercrantz U, Hu Q, Steventon LA, Dixelius C (2003) Estimation of genetic variation among Verticillium isolates using AFLP analysis. Eur J Plant Pathol 109: 361–371

    Article  CAS  Google Scholar 

  • Figdore SS, Ferreira ME, Slocum MK, Williams PH (1993) Association of RFLP markers with trait loci affecting clubroot resistance and morphological characters in Brassica oleracea. Euphytica 69: 33–44

    Article  CAS  Google Scholar 

  • Fristensky B, Balcerzak M, He D-F, Zhang P (1999) Expressed sequence tags from the defence response of Brassica napus to Leptosphaeria maculans. Mol Plant Path Online http://www.bspp.org.uk/mppol/1999/0301FRISTENSKY

    Google Scholar 

  • Fuchs H, Sacristán MD (1996) Identification of a gene in Arabidopsis thaliana controlling resistance to clubroot (Plasmodiophora brassicacae) and characterisation of the resistance response. Mol Plant Microbe Interact 9: 91–97

    Article  CAS  Google Scholar 

  • Glazebrook J (2001) Genes controlling expression of defence responses in Arabidopsis–2001 status. Curr Opin Plant Biol 4: 301–308

    Article  PubMed  CAS  Google Scholar 

  • Godoy G, Steadman JR, Dickman MB, Dam R (1990) Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris. Physiol Mol Plant Pathol 37: 179–191

    Article  CAS  Google Scholar 

  • Grandclement C, Thomas G (1996) Detection and analysis of QTLs based on RAPD markers for polygenic resistance to Plasmodiophora brassicacae in Brassica oleracea. Theor Appl Genet 93: 86–90

    Article  Google Scholar 

  • Grant MR, McDowell JM, Sharpe AG, Zabala MdT, Lydiate DJ, Dangl JL (1998) Independent deletions of a pathogen-resistance gene in Brassica and Arabidopsis. Proc Natl Acad Sci USA 95: 15843–15848

    Article  PubMed  CAS  Google Scholar 

  • Grison R, Grexes-Besset B, Schneider M, Lucante N, Olsen L, Leguay JJ, Toppan A (1996) Field tolerance to fungal pathogens of B. napus constitutively expressing a chimeric chitinase gene. Nat Biotechnol 14: 643–646

    Article  PubMed  CAS  Google Scholar 

  • Gupta S, Sharma TR, Chib HS (1995) Evaluation of wild allies of Brassica under natural conditions. Cruciferae Newsl 17: 10–11

    Google Scholar 

  • Gustafsson M, Fält AS (1985) Genetic studies of resistance to clubroot in Brassica napus. Ann Appl Biol 108: 409–415

    Article  Google Scholar 

  • Hammond KE, Lewis BG (1986) Ultrastructural studies of the limitation of lesions caused by Leptosphaeria maculans in stems of Brassica napus var. oleifera. Physiol Mol Plant Pathol 28: 251–265.

    Article  Google Scholar 

  • Happstadius I, Ljunggren A, Kristiansson B, Dixelius C (2003) Identification of Brassica oleracea germplasm with resistance to Verticillium wilt. Plant Breed 122: 30–34

    Article  Google Scholar 

  • Hennin C, Höfte M, Diedrichsen E (2001) Functional expression of Cf9 and Avr9 genes in Brassica napus induces enhanced resistance to Leptosphaeria maculans. Mol Plant Microbe Interact 14: 1075–1085

    Article  PubMed  CAS  Google Scholar 

  • Hennin C, Diederichsen E, Höfte M (2002) Resistance to fungal pathogens triggered by the Cf9-Avr9 response in tomato and oilseed rape in the absence of hypersensitive cell death. Mol Plant Pathol 3: 31–41

    Article  PubMed  CAS  Google Scholar 

  • Holtorf S, Ludwig-Müller J, Apel K, Bohlmann H (1998) High-level expression of a viscotoxin in Arabidopsis thaliana gives enhanced resistance against Plasmodiophora brassicae. Plant Mol Biol 36: 673–680

    Article  PubMed  CAS  Google Scholar 

  • Holub EB (2001) The arms race is ancient history in Arabidopsis, the wildflower. Nat Rev Genet 2: 516–527

    Article  PubMed  CAS  Google Scholar 

  • Holub EB, Brose E, Tör M, Clay C, Crute IR, Beynon J (1995) Phenotypic and genotypic variation in the interaction between Arabidopsis thaliana and Albugo candida. Mol Plant Microbe Interact 8: 916–928

    Article  PubMed  CAS  Google Scholar 

  • Howard RJ, Garland JA, Seaman WL (1994) Diseases and pests of vegetable crops in Canada. Can Phytopath Soc Ent Soc Can Ottowa, Ontario, 554 pp

    Google Scholar 

  • Howlett B, Idnurm A, Soledade-Pedras M (2001) Leptosphaeria maculans, the causal agent of blackleg disease of Brassicas. Fungal Genet Biol 33: 1–14

    Google Scholar 

  • Hu Q, Andersen SB, Dixelius C, Hansen LN (2002) Production of fertile intergeneric somatic hybrids between Brassica napus and Sinapis arvensis for the enrichment of the rapeseed gene pool. Plant Cell Rep 21: 147–152

    Article  CAS  Google Scholar 

  • Humpherson-Jones FM (1992) Epidemiology and control of dark leaf spot of Brassicas. In: Chelkowski J, Visconit A (eds) Alternaria-biology, plant diseases and metabolites. Topics in secondary metabolism, vol III. Elsevier, Amsterdam, pp 267–288

    Google Scholar 

  • Jones JD (2001) Putting knowledge of plant disease resistance genes to work. Curr Opin Plant Biol 4: 281–287

    Article  PubMed  CAS  Google Scholar 

  • Karapapa VK, Bainbridge BW, Heale JB (1997) Morphological and molecular characterization of Verticillium longisporum comb Nov, pathogenic to oilseed rape. Mycol Res 101:1281– 1294

    Google Scholar 

  • Kato A, Suzuki M, Kuwahara A, Ooe H, Higano-Inaba K, Komeda Y (1999) Isolation and analysis of cDNA within a 300kb Arabidopsis thaliana genomic region located around the 100 map unit of chromosome 1. Gene 239: 309–316

    Article  PubMed  CAS  Google Scholar 

  • Kawchuk LM, Hachey J, Lunch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prüfer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98: 6511–6515

    Article  PubMed  CAS  Google Scholar 

  • Kesarwani M, Azam M, Natarajan K, Mehta A, Datta A (2000) Oxalate decarboxylase from Collybia velutipes. J Biol Chem 275: 7230–7238

    Article  PubMed  CAS  Google Scholar 

  • Koch E, Cox R, Williams PH (1991) Infection of Arabidopsis thaliana by Plasmodiophora brassicacae. J Phytopathol 132: 99–104

    Article  Google Scholar 

  • Kohli Y, Kohn KM (1998) Random association among alleles in clonal populations of Sclerotinia sclerotiorum. Fungal Genet Biol 23: 139–149

    Article  PubMed  CAS  Google Scholar 

  • Kohn LM (1995) The clonal dynamic in wild and agricultural plant-pathogen populations. Can J Bot 73 (Suppl 1): S1231–1240

    Article  Google Scholar 

  • Kole C, Williams PH, Rimmer SR, Osborn TC (2002) Linkage mapping of genes controlling resistance to white rust (Albugo condida) in Brassica rapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome 45: 22–27

    Article  PubMed  CAS  Google Scholar 

  • Krüger W (1989) Untersuchungen zur Verbreitung von Verticillium dahliae Kleb. und anderen Krankheiten und Schaderregerm bei Raps in der Bundesrepublik Deutschland. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes 41: 49–56

    Google Scholar 

  • Landry BS, Hubert N, Crete R, Chiang M, Lincoln SE, Etoh T (1992) A genetic map for Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae. Genome 35: 409–420

    Article  CAS  Google Scholar 

  • Lamkadmi Z, Esnault MA, Normand ME (1996) Characterization of a 23 kDa polypeptide induced by Phoma lingam in Brassica napus leaves. Plant Physiol Biochem 34: 589–598

    CAS  Google Scholar 

  • Linnasalmi A, Toivianen A (1991) Occurrence of clubroot and Plasmodiophora brassicae Wor. races in Finland. J Agric Sci Finland 63: 415–434

    Google Scholar 

  • Lummerzheim M, De Oliveira D, Castresana C, Miguens FC, Louzada E, Roby D, Van Montagu M, Timmerman B (1993) Identification of compatible and incompatible interactions between Arabidopsis thaliana and Xanthomonas campestris pv. campestris and characterization of the hypersensitive response. Mol Plant Microbe Interact 5: 532–544

    Article  Google Scholar 

  • Maddock SE, Ingram DS (1981) Studies of survival and longevity of the light leaf spot pathogen of brassicas, Pyrenopeziza brassicae. Trans Br Mycol Soc 77: 153–159

    Article  Google Scholar 

  • Majer D (1997) Genetic variation in Pyrenopeziza brassicae, and its interaction with its host, Brassica napus ssp. Oleifera. PhD Thesis, University of East Anglia, Norwich, UK

    Google Scholar 

  • Margo P, Margiano P, Di Lenna P (1984) Oxalic acid production and its role in pathogenesis of Sclerotinia sclerotiorum. FEMS Microbiol Lett 24: 9–12

    Article  Google Scholar 

  • Mayer AM, Harel E (1979) Polyphenol oxidases in plants. Phytochemistry 18: 193–215

    Article  CAS  Google Scholar 

  • McDowell JM, Dhandaydham M, Long TA, Aarts MGM, Goff S, Holulb EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8locus of Arabidopsis. Plant Cell 10: 1861–1874

    PubMed  CAS  Google Scholar 

  • McDowell JM, Cuziack A, Can C, Beynon J, Dangl JL, Holub EB (2000) Downy mildew (Peronospora parasitica) resistance genes in Arabidopsis vary in functional requirements for NDR1, EDS1, NPR1 and salicylic acid accumulation. Plant J 22: 523–530

    Article  PubMed  CAS  Google Scholar 

  • Mithen RF, Migrath R (1992) A contribution to the life history of Plasmodiophora brassicae: secondary plasmodia development in root galls of Arabidopsis thaliana. Mycol Res 96:877– 885

    Google Scholar 

  • Möller M, Harling R (1996) Randomly amplified polymorphic DNA (RAPD) profiling of Plasmodiophora brassicae. Lett Appl Microbiol 22: 70–75

    Article  Google Scholar 

  • Müller J, Boller T, Wiemken A (1995) Trehalose and trehalase in plants: recent developments. Plant Sci 112: 1–9

    Article  Google Scholar 

  • Muskett PR, Kahn K, Austin MJ, Moisan LJ, Sadanandom A, Shirasu K, Jones JDG, Parker JE (2002) Arabidopsis RAR1 exerts rate-limiting control of R gene-mediated defences against multiple pathogens. Plant Cell 14: 979–992

    Article  PubMed  CAS  Google Scholar 

  • Narashimhulu SB, Kirti PB, Bhat SR, Prakash S, Chopra VL (1994) Intergeneric protoplast fusion between Brassic carinata and Camelina sativa. Plant Cell Rep 13: 657–660

    Google Scholar 

  • Papastamati K, Welham SJ, Fitt BDL, Gladders P (2001) Modelling the progress of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) in relation to leaf wetness and temperature. Plant Pathol 50: 154–164

    Article  Google Scholar 

  • Parker JE, Barber CE, Fan MJ, Daniels MJ (1993a) Interaction of Xanthomonas campestris with Arabidopsis thaliana: characterization of a gene from X. c. pv. raphani that confers avirulence to most A. thaliana accessions. Mol Plant Microbe Interact 6: 216–224

    Article  PubMed  CAS  Google Scholar 

  • Parker JE, Szabò V, Staskawicz BJ, Lister C, Dean C, Daniels MJ, Jones JDG (1993b) Phenotypic characterization and molecular mapping of the Arabidopsis thaliana locus, RPP5, determining disease resistance to Peronospora parasitica. Plant J 4: 821–831

    Article  CAS  Google Scholar 

  • Parker JE, Holub EB, Frost LN, Falk A, Gunn ND, Daniels MJ (1996) Characterization of eds1, a mutation in Arabidopsis suppressing resistance to Peronospora parasitica specified by several different RPP genes. Plant Cell 8: 2033–2046

    PubMed  CAS  Google Scholar 

  • Parker JE, Coleman MJ, Szabò V, Frost LN, Schmidt R, van der Biezen EA, Moores T, Dean C, Daniels MJ, Jones JDG (1997) The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the Toll and interleukin-1 receptors with N and L6. Plant Cell 9: 879–894

    Article  PubMed  CAS  Google Scholar 

  • Pedras MS, Zaharia IL, Gai Y, Zhou Y, Ward DE (2001) In planta sequential hydroxylation and glycosylation of a fungal phytotoxin: avoiding cell death and overcoming the fungal invader. Proc Natl Acad Sci USA 98: 747–752

    Article  PubMed  CAS  Google Scholar 

  • Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defense gene in Arabidopsis. Plant Cell 10: 2103–2113

    PubMed  CAS  Google Scholar 

  • Phillips DV, Carbone I, Gold SE, Kohn LM (2002) Phylogeography and genotype-symptom associations in early and late season infections of canola by Sclerotinia sclerotiorum. Phytopathology 92: 785–793

    Article  PubMed  CAS  Google Scholar 

  • Price A, Palme JD, Al-Shehbaz IA (1994) Systemic relationships of Arabidopsis: a molecular and morphological perspective. In: Meyerowitz EM, Somerville CR (eds) Arabidopsis. Cold Spring Harbor Lab Press, Cold Spring Harbor, New York, pp 7–19

    Google Scholar 

  • Puzio PS, Lausen J, Heinen P, Grundler FM (2000) Promoter analysis of pyk20, a gene from Arabidopsis thaliana. Plant Sci 157: 245–255

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran K, Stromberg KD, Cary JWC, Cleveland TE (2001) Broad-spectrum antimicrobial activity in vitro of the synthetic peptide D4E1. J Agric Food Chem 49: 2799–2803

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen U, Giese H, Mikkelsen JD (1992) Induction and purification of chitinase in Brassica napus L. ssp. oleifera infected with Phoma lingam. Planta 187: 328–334

    Article  CAS  Google Scholar 

  • Rimmer SR, Buchwalds L (1995) Diseases. In: Kimber D, McGregor DI (eds) Brassica oilseeds: production and utilization. CAB International, Wallingford, pp 111–140

    Google Scholar 

  • Rimmer SR, van der Berg CGJ (1992) Resistance of oilseed Brassica spp. to blackleg caused by Leptosphaeria maculans. Can J Plant Pathol 14: 56–66

    Article  Google Scholar 

  • Rimmer SR, Mathur S, Wu CR (2000) Virulence of isolates of Albugo candida from western Canada to Brassica species. Can J Plant Pathol 22: 229–235

    Article  Google Scholar 

  • Roussel S, Nicole M, Lopez F, Ricci P, Geige J-P, Renard M, Brun H (1999) Leptosphaeria maculans and cryptogein induce similar vascular responses in tissues undergoing the hypersensitive reaction in Brassica napus. Plant Sci 144: 17–28

    Google Scholar 

  • Ryals J, Weymann K, Lawton K, Freidrich L, Ellis D, Steiner H-Y, Johnson J, Delaney TP, Jesse T, Vos P, Uknes S (1997) The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor IxB. Plant Cell 9: 425–439

    PubMed  CAS  Google Scholar 

  • Sacristan MD, Gerdemann M (1986) Different behaviour of Brassica juncea and B. carinata as sources of Phoma lingam resistance in experiments of interspecific transfer to B. napus. Z Pflanzenzüchtg 97: 304–314

    Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defence responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97: 11655–11660

    Article  PubMed  CAS  Google Scholar 

  • Schnathorst WC (1981) Life cycle and epidemiology of Verticillium. In: Mace ME, Bell AA, Bechman CH (eds) Fungal wilt diseases of plants. Academic Press, London, pp 81–111

    Google Scholar 

  • Séguin-Swartz G, Chen CY, Gugel RK (2000) Blackleg resistance: where and how? Blackleg News 6: 9–12

    Google Scholar 

  • Shah DM, Rommens CMT, Beachy RN (1995) Resistance to diseases and insects in transgenic plants: progress and applications to agriculture. Trends Biotechnol 13: 362–368

    Article  CAS  Google Scholar 

  • Shauser L, Roussis A, Stiller J, Stougaard J (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402: 191–195

    Article  CAS  Google Scholar 

  • Shivanna KR, Sawhney VK (1993) Pollen selection for Alternaria resistance in oilseed Brassicas: responses of pollen grains and leaves to a toxin of A. brassicae. Theor Appl Genet 86: 339–344

    Article  CAS  Google Scholar 

  • Sigareva MA, Earle ED (1999) Camalexin induction in intertribal somatic hybrids between Camelina sativa and rapid-cycling Brassica oleracea. Theor Appl Genet 98: 164–170

    Article  CAS  Google Scholar 

  • Sinapidou E (2000) Genetic and molecular dissection of the RPP2 locus of the Arabidopsis thaliana accession Columbia that confers resistance to the Peronospora parasitica isolate Cala2. PhD thesis, Imperial College of Biotechnology, Science and Medicine at Wye, University of London, UK

    Google Scholar 

  • Singh KB, Foley RC, Onate-Sánchez L (2002) Transcription factors in plant defence and stress responses. Curr Opin Plant Biol 5: 430–436

    Article  PubMed  CAS  Google Scholar 

  • Sjödin C, Glimelius K (1988) Screening for resistance to blackleg, Phoma lingam (Tode ex Fr.) Desm. within Brassicaceae. J Phytopathol 123: 322–332

    Article  Google Scholar 

  • Stark C (1961) Das Auftreten der Verticillium-Tracheomykosen in Hamburger Gartenbaukulturen. Gartenbauwissenschaft 26: 493–528

    Google Scholar 

  • Steventon LA, Fahleson J, Hu Q, Dixelius C (2002a) Identification of the causal agent of Verticillium wilt of winter oilseed rape in Sweden as V. longisporum. Mycol Res 106: 570–578

    Article  CAS  Google Scholar 

  • Steventon LA, Happstadius I, Okori P, Dixelius C (2002b) A rapid technique for the assessment of Verticillium wilt on Brassica napus. Plant Dis 86: 854–858

    Article  Google Scholar 

  • Svensson C, Lerenius C (1987) An investigation on the effect of Verticillium wilt (Verticillium dahliae Kleb.) on oilseed rape. Int Org Biol Cont Bull 10: 30–34

    Google Scholar 

  • Su H, Fitt BDL, Welham SJ, Sansford CE, Sutherland KG (1998) Effects of light leaf spot (Pyrenopeziza brassicae) on yield of winter oilseed rape (Brassica napus). Ann Appl Biol 132: 371–386

    Article  Google Scholar 

  • Tewari JP (1993) Biochemical basis of resistance to Alternaria brassicae in crucifers. In: Lodha ML, Mehta SL, Ramagopal S, Srivastava GP (eds) Advances in plant biotechnology and biochemistry. Indian Soc Agric Biochem, Kanpur, pp 33–38

    Google Scholar 

  • Tewari JP, Mithen RF (1999) Diseases. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 375–411

    Chapter  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796–815

    Article  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IAMA, Mauch-Mani B, Vogelsang R, Cammue BPA, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defence-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci USA 95: 15107–15111

    Article  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19: 163–171

    Article  PubMed  CAS  Google Scholar 

  • Thompson C, Dunwell JM, Johnstone CE, Lay V, Ray J, Schmidt M, Watson H, Nisbet G (1993) Degradation of oxalic acid by transgenic canola plants expressing oxalate oxidase. In: Proc 8th Crucifer Genetics Workshop, Saskatoon, Canada

    Google Scholar 

  • Tierens KF, Thomma BP, Bari RP, Garmier M, Eggermont K, Brouower M, Penninckx IA, Broekaert WF, Cammue BP (2002) Esa1, an Arabidopsis mutant with enhanced susceptibility to a range of nectrotrophic fungal pathogens, shows a distorted induction of defence responses by reactive oxygen generating compounds. Plant J 29: 131–140

    Google Scholar 

  • Tiffin P, Hahn MW (2002) Coding sequence divergence between two closely related plant species: Arabidopsis thaliana and Brassica rapa ssp. pekinensis. J Mol Evol 54: 746–753

    Article  PubMed  CAS  Google Scholar 

  • Ton J, Van Pelt JA, van Loon LC, Pieterse CM (2002) Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol Plant Microbe Interact 15: 27–34

    Article  PubMed  CAS  Google Scholar 

  • Varet A, Parker J, Tornero P, Nass N, Nurnberger T, Dangl JL, Scheel D, Lee J (2002) NHL25 and NHL3, two NDR1/HIN1-like genes in Arabidopsis thaliana with potential role(s) in plant defence. Mol Plant Microbe Interact 15: 608–616

    Google Scholar 

  • Verma PR, Saharan GS (1994) Monograph on alternaria diseases of crucifers, Saskatoon Research Centre Technical Bulletin 1994–6E, Agric Agri-Food Canada, Saskatoon, 162 pp

    Google Scholar 

  • Wang Y, Fristensky B (2001) Transgenic canola lines expressing pea defence gene DDR206 have resistance to aggressive blackleg isolates and to Rhizoctonia solani. Mol Breed 8: 263–271

    Article  CAS  Google Scholar 

  • Wang Y, Nowak G, Culley D, Hadwiger LA, Fristensky B (1999) Constitutive expression of pea defence gene DRR206 confers resistance to blackleg (Leptosphaeria maculans) disease in transgenic canola (Brassica napus). Mol Plant Microbe Interact 12: 410–418

    Article  CAS  Google Scholar 

  • Williams PH (1966) A system for the determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopathology 56: 624–626

    Google Scholar 

  • Wit F (1964) Inheritance of reaction to clubroot in turnips. Hortic Res 5: 47–49

    Google Scholar 

  • Wretblad S (2002) Defence responses in Brassica nigra and B. napus to the fungal pathogen Leptosphaeria maculans. PhD Thesis, Swedish University of Agricultural Sciences, Agraria 316, Sweden

    Google Scholar 

  • Wretblad S, Bohman S, Dixelius C (2003) The Lm1 gene of Brassica nigra confers resistance to the blackleg fungus Leptosphaeria maculans. Mol Plant Microbe Interact 16: 477–484

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Shortt BJ, Lawrence EB, Levine EB, Fitzsimmons KC, Shah DM (1995) Disease resistance conferred by expression of a gene encoding H2O2-generating glucose oxidase in transgenic potato plants. Plant Cell 7: 1357–1368

    PubMed  CAS  Google Scholar 

  • Zeise K, Tiedemann A (2002) Host specialization among vegetative compatibility groups of Verticillium dahliae in relation to Verticillium longisporum. J Phytopathol 150: 112–119

    Article  Google Scholar 

  • Zielenski D, Sadowski C (1995) A preliminary study on Verticillium dahliae Kleb.in winter oilseed rape in Poland. In: Murphy D (ed) Proc 9th Int Rapeseed Conf Cambridge, 4–7 July 1995, GCIRC, Cambridge, pp 649–651

    Google Scholar 

  • Ziolkowski PA, Sadowski J (2002) FISH-mapping of rDNAs and Arabidopsis BACs on pachytene complements of selected Brassicas. Genome 45: 189–197

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dixelius, C., Bohman, S., Wretblad, S. (2004). Disease Resistance. In: Pua, EC., Douglas, C.J. (eds) Brassica. Biotechnology in Agriculture and Forestry, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-06164-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-06164-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05783-0

  • Online ISBN: 978-3-662-06164-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics