Skip to main content

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 35))

  • 447 Accesses

Abstract

Photoionization is a collision process where a quantum of electromagnetic energy is absorbed by an atom and one or several atomic electrons are ejected into the continuum. In the independent electron approximation, at most practical photon energies, the electromagnetic field can only couple to a single electron. Changing the quantum state of the second or further electrons can only take place via many-electron correlation. Here, this correlation is understood broadly as the ability of atomic electrons to change, without any external field or interaction, a well-defined set of individual quantum numbers. Uncorrelated electrons in the ground state are labeled by the principle, angular, and magnetic quantum numbers n, l, m, respectively. The ground-state correlation make these quantum numbers only approximate. For instance, the 1s2 pair of electrons in the ground—state helium atom can find itself, with a finite probability, in the 2s2, 2p2 and higher excited states. In an atomic continuum, an uncorrelated electron is labeled by its energy E and momentum k. However, due to elastic or inelastic scattering on other atomic electrons, one or both of these quantum numbers can change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Bray, I.E. McCarthy, J. Wigley, and A.T. Stelbovics: J. Phys. B 26, L831 (1993)

    ADS  Google Scholar 

  2. A.S. Kheifets and I. Bray: Phys. Rev. A 54, R995 (1996)

    ADS  Google Scholar 

  3. A. S. Kheifets and I. Bray: Phys. Rev. A 57, 2590 (1998)

    ADS  Google Scholar 

  4. A.S. Kheifets and I. Bray: J. Phys. B 31, L447 (1998)

    ADS  Google Scholar 

  5. A.S. Kheifets and I. Bray: Phys. Rev. A 58, 4501 (1998)

    ADS  Google Scholar 

  6. A.S. Kheifets and I. Bray: Phys. Rev. Lett. 81, 4588 (1998)

    Article  ADS  Google Scholar 

  7. A.S. Kheifets and I. Bray: Phys. Rev. A 65, 2710 (2002)

    ADS  Google Scholar 

  8. A.S. Kheifets et al.: J. Phys. B 32, 5047 (1999)

    ADS  Google Scholar 

  9. A.S. Kheifets: J. Phys. B 34, L247 (2001)

    ADS  Google Scholar 

  10. M.Y. Amusia, in Atomic Photoeffect, ed. by K.T. Taylor (Plenum Press, New York 1990)

    Google Scholar 

  11. I. Bray: Phys. Rev. A 49, 1066 (1994)

    ADS  Google Scholar 

  12. A.S. Kheifets, A. Ipatov, M. Arifin, an DI. Bray: Phys. Rev. A 62, 2724 (2000)

    ADS  Google Scholar 

  13. A.S. Kheifets and I. Bray: Phys. Rev. A 58, 4501 (1998)

    ADS  Google Scholar 

  14. R. Wehlitz et al.: J. Phys. B 30, L51 (1997)

    ADS  Google Scholar 

  15. R. Dörner et al.: Phys. Rev. Lett. 76, 2654 (1996)

    Article  ADS  Google Scholar 

  16. I. Bray and A.T. Stelbovics: Phys. Rev. Lett. 70, 746 (1993)

    Article  ADS  Google Scholar 

  17. A.S. Kheifets and DI. Bray: J. Phys. B 31, L447 (1998)

    ADS  Google Scholar 

  18. D.A. Varshalovich, A.N. Moskalev, and V.K. Khersonskii: Quantum Theory of Angular Momentum (World Scientific, Singapore 1988)

    Google Scholar 

  19. O. Schwarzkopf and V. Schmidt: J. Phys. B 28, 2847 (1995)

    ADS  Google Scholar 

  20. O. Schwarzkopf and V. Schmidt: J. Phys. B 29, 1877 (1996)

    ADS  Google Scholar 

  21. O. Schwarzkopf, B. Krassig, and V. Schmidt: J. Phys. (Paris) 3, 169 (1993)

    Google Scholar 

  22. V. Mergel et al.: Phys. Rev. Lett. 80, 5301 (1998)

    Article  ADS  Google Scholar 

  23. M. Achler et al.: J. Phys. B 34, 965 (2001)

    ADS  Google Scholar 

  24. A.S. Kheifets and I. Bray: Phys. Rev. A 62, 65402 (2000)

    ADS  Google Scholar 

  25. A.S. Kheifets and I. Bray: Phys. Rev. Lett. 81, 4588 (1998)

    Article  ADS  Google Scholar 

  26. J. Berakdar and H. Klar: Phys. Rev. Lett. 69, 1175 (1992)

    Article  ADS  Google Scholar 

  27. J. Berakdar, H. Klar, A. Huetz, and P. Selles: J. Phys. B 26, 1463 (1993)

    ADS  Google Scholar 

  28. A. Kono and S. Hattori: Phys. Rev. A 29, 2981 (1984)

    ADS  Google Scholar 

  29. L. Malegat, P. Selles, and A. Huetz: J. Phys. B 30, 251 (1997)

    ADS  Google Scholar 

  30. A.K. Kazansky and V.N. Ostrovsky: J. Phys. B 26, 2231 (1993)

    ADS  Google Scholar 

  31. J.M. Rost: Phys. Rev. A 53, R640 (1996)

    ADS  Google Scholar 

  32. J.M. Feagin: J. Phys. B 29, L551 (1996)

    ADS  Google Scholar 

  33. A.S. Kheifets and I. Bray: Phys. Rev. A 62, 5402 (2000)

    Google Scholar 

  34. S. Cvejanović and T. Reddish: J. Phys. B 33, 4691 (2000)

    ADS  Google Scholar 

  35. S. Cvejanović et al.: J. Phys. B 33, 265 (2000)

    ADS  Google Scholar 

  36. A.S. Kheifets and I. Bray: Phys. Rev. A 65, 2708 (2002)

    ADS  Google Scholar 

  37. R. Wehlitz and S.B. Whitfield: J. Phys. B 34, L719 (2001)

    ADS  Google Scholar 

  38. R. Wehlitz et al.: Phys. Rev. Lett. 81, 1813 (1998)

    Article  ADS  Google Scholar 

  39. A. Lahmam-Bennani et al.: J. Phys. B 34, 3073 (2001)

    ADS  Google Scholar 

  40. A.S. Kheifets, I. Bray, J. Berakdar, and C.D. Cappello: J. Phys. B 35, L15 (2002)

    ADS  Google Scholar 

  41. C. Dawson et al.: J. Phys. B 34, L525 (2001)

    ADS  Google Scholar 

  42. P. Bolognesi et al.: J. Phys. B 34, 3193 (2001)

    ADS  Google Scholar 

  43. P.J. Marchalant, C.T. Whelan, and H.R.J. Walters: J. Phys. B 31, 1141 (1998)

    ADS  Google Scholar 

  44. Y. Fang and K. Bartschat: J. Phys. B 34, L19 (2001)

    ADS  Google Scholar 

  45. A. Franz and P.L. Altick: J. Phys. B 28, 4639 (1995)

    ADS  Google Scholar 

  46. A. Lahmam-Bennani and A. Duguet: in Correlations, Polarization and Ionization in Atomic Systems, ed. by D. Madison and M. Schulz (AIP Press, New York 2002) pp. 96–101

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kheifets, A.S. (2003). Close-Coupling Approach to Multiple—Atomic Ionization. In: Ullrich, J., Shevelko, V. (eds) Many-Particle Quantum Dynamics in Atomic and Molecular Fragmentation. Springer Series on Atomic, Optical, and Plasma Physics, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08492-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08492-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05626-0

  • Online ISBN: 978-3-662-08492-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics