Skip to main content

Abstract

The importance of temperature is very often not fully recognized, the reason probably being that our life is restricted to an extremely narrow range of temperatures. This can be realized if we look at the temperatures existing in nature or accessible in laboratories (Fig.1.1). These temperatures range from about 109 K, the temperature at the centre of the hottest stars and necessary to form or destroy atomic nuclei, to about 10−5 K, the lowest temperatures accessible today in the laboratory in condensed matter physics experiments. This lower limit means that we have been able to refrigerate matter to within about 10 µK of absolute zero (0K = −273.15° C).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Kittel: Introduction to Solid State Physics, 6th edn. ( Wiley, New York 1986 )

    Google Scholar 

  2. N.W. Ashcroft, N.D. Mermin: Solid State Physics ( Saunders, Philadelphia, PA 1976 )

    Google Scholar 

  3. J.M. Ziman: Electrons and Phonons ( Clarendon, Oxford 1972 )

    Google Scholar 

  4. H. Ibach, H. Lath: Solid-State Physics, an Introduction to Theory and Experiment (Springer, Berlin, Heidelberg 1991 )

    Google Scholar 

  5. P.V.E. McClintock, D.J. Meredith, J.K. Wigmore: Matter at Low Temperatures ( Blackie, London 1984 )

    Google Scholar 

  6. G.K. White: Experimental Techniques in Low Temperature Physics, 3rd edn. ( Clarendon, Oxford 1979 )

    Google Scholar 

  7. A.C. Rose-Innes: Low Temperature Laboratory Techniques (English Univ. Press, London 1973 )

    Google Scholar 

  8. O.V. Lounasmaa: Experimental Principles and Methods Below 1 K ( Academic, London 1974 )

    Google Scholar 

  9. D.S. Betts: Refrigeration and Thermometry Below One Kelvin (Sussex Univ. Press, Brighton 1976 )

    Google Scholar 

  10. D.S. Betts: An Introduction to Millikelvin Technology (Cambridge Univ. Press, Cambridge 1989 )

    Google Scholar 

  11. R.C. Richardson, E.N. Smith: Experimental Techniques in Condensed Matter Physics at Low Temperatures ( Addison-Wesley, Redwood City, CA 1988 )

    Google Scholar 

  12. D.R. Tilley, J. Tilley: Superfluidity and Superconductivity, 3rd edn. ( Hilger, Bristol 1990 )

    Google Scholar 

  13. R.P. Giffard, R.A. Webb, J.C. Wheatley: J. Low Temp. Phys. 6, 533 (1972)

    Article  ADS  Google Scholar 

  14. A. Barone, G. Paterno: Physics and Applications of the Josephson Effect ( Wiley, New York 1982 )

    Book  Google Scholar 

  15. H. Koch, H. Lübbig: SQUID’91, Springer Proc. Phys. (Springer, Berlin, Heidelberg 1992 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pobell, F. (1992). Introduction. In: Matter and Methods at Low Temperatures. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08578-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08578-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08580-6

  • Online ISBN: 978-3-662-08578-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics