Skip to main content
  • 64 Accesses

Zusammenfassung

In der Intensivmedizin ist heute aufwendiges, auch invasives Monitoring für die überwachung der Hämodynamik geradezu selbstverständlich geworden. Für die überwachung und Kontrolle der Lungenfunktion sind jedoch selbst unter einer Beatmungstherapie aufwendigere Verfahren bislang noch keineswegs üblich. Dabei bietet sich eine Reihe von (meist sogar nichtinvasiven) Verfahren an, die aufschlußreiche diagnostische Parameter zur überwachung liefern. Die modernen, computergesteuerten Respiratoren ermöglichen bzw. unterstützen diese Verfahren. Dieser Beitrag soll einige der wichtigen Verfahren zur Messung der Atemmechanik in der Intensivmedizin im Zusammenhang mit der apparativen Beatmung vorstellen. Dabei werden sowohl Methoden zur erweiterten überwachung als auch Verfahren für speziellere wissenschaftliche Fragestellungen beschrieben. Vollständigkeit wird nicht angestrebt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aubier M (1987) Role of respiratory muscles in weaning. In: Vincent JL (ed) Update in intensive care and emergency medicine, vol 3. Update 1987. Springer, Berlin Heidelberg New York Tokyo, pp 240–249

    Google Scholar 

  2. Bates JHT, Rossi A, Milic-Emili J (1985) Analysis of the behavior of the respiratory system with constant inspiratory flow. J Appl Physiol 58:1840–1848

    CAS  PubMed  Google Scholar 

  3. Baydur A, Behrakis PK, Zin WA, Jaeger M, Milic-Emili J (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126: 788–791

    CAS  PubMed  Google Scholar 

  4. Benito S, Mancebo J (1988) Thoraco-pulmonary pressure/volume relationship during mechanical ventilation. In: Vincent JL (ed) Update in intensive care and emergency medicine, vol 5. Update 1988. Springer, Berlin Heidelberg New York Tokyo, pp 744–752

    Google Scholar 

  5. Benito S, Lemaire F, Mankikian B, Harf A (1985) Total respiratory compliance as a function of lung volume in patients with mechanical ventilation. Intensive Care Med 11: 76–79

    CAS  PubMed  Google Scholar 

  6. Brochard L, Harf A, Lorino H, Lemaire F (1989) Inspiratory pressure support prevents diaphragmatic fatigue during weaning from mechanical ventilation. Am Rev Respir Dis 139:513–521

    Article  CAS  PubMed  Google Scholar 

  7. Brunner JX, Wolff G (1988) Pulmonary function indices in critical care patients. Springer, Berlin Heidelberg New York Tokyo

    Book  Google Scholar 

  8. Brunner JX, Langenstein H, Wolff G (1983) Die Unmöglichkeit der direkten Fluß-messung für Lungenfunktionsuntersuchungen. Fehleranalyse und Kompensation. Schweiz Med Wochenschr 113:1130–1133

    CAS  PubMed  Google Scholar 

  9. Brunner JX, Langenstein H, Wolff G (1985) A simple method for estimating compliance. Crit Care Med 13:675–678

    Article  CAS  PubMed  Google Scholar 

  10. Burchardi H (1992) Lungenmechanik. In: Versprille A (Hrsg) Monitoring. Anaes-thesiologie und Intensivmedizin, Bd 224. Springer, Berlin, Heidelberg New York Tokyo, pp 93–108

    Google Scholar 

  11. Chapman FW, Dziuban S W, Newell JC (1989) Patient-ventilator partitioning of the work of breathing during weaning. Ann Biomed Engin 17:279–287

    Article  CAS  Google Scholar 

  12. Cohn MA, Rao ASV, Broudy M, Birch S, Watson H, Atkins N, Davis B, Stoot FD, Sackner MA (1982) The respiratory inductive plethysmography: a new non invasive monitor of respiration. Bull Eur Physiopath Resp 18:643–658

    CAS  Google Scholar 

  13. Collett PW, Perry C, Engel LA (1985) Pressure-time product, flow, and oxygen cost of resistive breathing in humans. J Appl Physiol 58:1263–1272

    Article  CAS  PubMed  Google Scholar 

  14. Criée CP (1988) Analysis of inspiratory mouth pressures. Prax Klin Pneumo l42:820–826

    Google Scholar 

  15. DallAva-Santucci J, Armanganidis A, Brunet F, Dhainaut JF, Chelucci GL, Monsallier JF, Lockhart A (1988) Causes of error of respiratory pressure volume curves in paralyzed subjects. J Appl Physiol 64:42–49

    CAS  Google Scholar 

  16. Demedts M, Clement J, Stanescu DC, Van De Woestijne KP (1975) Inflection point on transpulmonary pressure-volume curves and closing volume. J Appl Physiol 38:228–235

    CAS  PubMed  Google Scholar 

  17. Drummond GB, Wright ADG (1983) Inaccuracy of oesophageal pressure for pleural pressure estimation in supine anaesthetized subjects. Br J Anaesth 55:585–593

    Article  CAS  PubMed  Google Scholar 

  18. Dureuil B, Aubier M (1988) Assessment of diaphragmatic function in the intensive care unit. Intensive Care Med 14:83–85

    Article  CAS  PubMed  Google Scholar 

  19. East TD, Wortelboer PJM et al. (1990) Automated sulfur hexafluoride washout functional residual capacity measurement system for any mode of mechanical ventilation as well as spontaneous respiration. Crit Care Med 18:84–91

    Article  CAS  PubMed  Google Scholar 

  20. Eissa NT, Ranieri VM, Corbeil C, Chassé M, Robatto FM, Braidy J, Milic-Emili J (1991) Analysis of behavior of the respiratory system in ARDS patients: Effects of flow, volume, and time. J Appl Physiol 70:2716–2729

    Google Scholar 

  21. Falke KJ, Samodelov LF (1986) Inspiratory work of breathing with CPAP-systems. In: Vincent JL (ed) Update in intensive care and emergency medicine, vol 1. Springer, Berlin Heidelberg New York Tokyo, pp 96–100

    Google Scholar 

  22. Fiastro JF, Habib MP, Shon BY, Campbell SC (1988) Comparison of standard weaning parameters and the mechanical work of breathing in mechanically ventilated patients. Chest 94:232–238

    Article  CAS  PubMed  Google Scholar 

  23. Fleury B, Murciano D, Tálamo D, Aubier M, Pariente R, Milic-Emili J (1985) Work of breathing in patients with chronic obstructive pulmonary disease in acute respiratory failure. Am Rev Respir Dis 131:822–827

    CAS  PubMed  Google Scholar 

  24. Gattinoni L, Mascheroni D, Basilico E, Foti G, Pesenti A, Avalli L (1987) Volume/pressure curve of total respiratory system in paralysed patients: artefacts and correction factors. Intensive Care Med 13:19–25

    Article  CAS  PubMed  Google Scholar 

  25. Gattinoni L, Pesenti A et al. (1984) The role of total static lung compliance in the management of severe ARDS unresponsive to conventional treatment. Intensive Care Med 10:121–126

    Article  CAS  PubMed  Google Scholar 

  26. Gottfried SB, Rossi A, Higgs BD, Calverley PMA, Zocchi L, Bozic C, Milic-Emili J (1985) Non-invasive determination of respiratory system mechanics during mechanical ventilation for acute respiratory failure. Am Rev Respir Dis 131:414–420

    CAS  PubMed  Google Scholar 

  27. Gross D, Grassino A, Ross WRD, Machklem PT (1979) Electromyogram pattern of diaphragmatic fatigue. J Appl Physiol 46:1–7

    CAS  PubMed  Google Scholar 

  28. Guttmann L, Eberhard L, Fabry B, Bertschmann W, Wolff G (1993) Continuous calculation of intratracheal pressure in tracheally intubated patients. Anesthesiology 79: 503–513

    Article  CAS  PubMed  Google Scholar 

  29. Herrera M, Blasco J, Venegas J, Barba R, Doblas A, Marquez E (1985) Mouth occlusion pressure (pO. l) in acute respiratoryfailure. Intensive Care Med 11:134–139

    Article  CAS  PubMed  Google Scholar 

  30. Higgs BD, Behrakis PK, Bevan DR, Milic-Emili J (1983) Measurement of pleural pressure with esophageal balloon in anesthetized humans. Anesthesiology 59:340–343

    Article  CAS  PubMed  Google Scholar 

  31. Hoffman RA, Ershowsky P, Krieger BP (1989) Determination of auto-PEEP during spontaneous and controlled ventilation by monitoring changes in end-expiratory thoracis gas volume. Chest 3:613–616

    Article  Google Scholar 

  32. Holle RHO, Schoene RB, Pavlin E J (1984) Effect of respiratory muscle weakness on pO.l induced by partial curarization. J Appl Physiol 57:1150–1157

    CAS  PubMed  Google Scholar 

  33. Holzapfel L, Robert D, Perrin F, Blanc PL, Palmier B, Guerin C (1983) Static pressure-volume curves and effects of positive end-expiratory pressure on gas exchange in adult respiratory distress syndrome. Crit Care Med 11:591–597

    Article  CAS  PubMed  Google Scholar 

  34. Huygen PE, Gültuna I, Ince C, Zwart A, Bogaard JM, Feenstra BW, Bruining HA (1993) A new ventilation inhomogeeity index from multiple breath indicator gas washout tests in mechanically ventilated patients. Crit Care Med 21:1149–1158

    Article  CAS  PubMed  Google Scholar 

  35. Hylkema BS, Barkmeijer-Degenhart P, van der Mark TW, Peset R, Sluiter HJ (1983) Central venous versus esophageal pressure changes for calculation of lung compliance during mechanical ventilation. Crit Care Med 11:271–275

    Article  CAS  PubMed  Google Scholar 

  36. Hylkema BS, Barkmeijer-Degenhart P, Grevink RG, van der Mark TW, Peset R, Sluiter HJ (1985) Lung mechanical profiles in acute respiratoryfailure: Diagnostic and prognostic value of compliance at different tidal volumes. Crit Care Med 13:637–640

    Article  CAS  PubMed  Google Scholar 

  37. Ingram RH, O’Cain C, Fridy WW (1974) Simultaneous quasi static lung pressure volume curves and „closing volume“ measurements. J Appl Physiol 36:135–141

    PubMed  Google Scholar 

  38. Jalowayski AA, Dawson A (1982) The measurement of lung volume: the multiple breath nitrogen method. In: Clausen JL (ed) Pulmonary function testing, guidelines and controversies. Acad Press, London New York, pp 115–126

    Google Scholar 

  39. Jardin F, Genevray B, Brun-Ney D, Bourdarias JP (1985) Influence of lung and chest wall compliances on transmission of airway pressure to the pleural space in critically ill patients. Chest 88:653–658

    Article  CAS  PubMed  Google Scholar 

  40. Konno K, Mead J (1967) Measurement of the separate volume change of rib cage and abdomen during breathing. J Appl Physiol 22:407–422

    CAS  PubMed  Google Scholar 

  41. Kox WJ, Mills CJ, Hale T (1991) Correction of pneumotachograph signal for changes in viscosity during nitrogen washout. Clin Phys Physiol Meas 12: 359–365

    Article  CAS  PubMed  Google Scholar 

  42. Lemaire F, Harf A, Simmonneau G, Matamis D, Rivara D, Atlan G (1981) Echanges gaseux, courbe statique pression-volume et ventilation en pression positive de fin d’exspiration. Ann Anesth Franc 22:435–441

    CAS  Google Scholar 

  43. Mancebo J, Calaf N, Benito S (1985) Pulmonary compliance measurement in acute respiratoryfailure. Crit Care Med 13: 589–591

    Article  CAS  PubMed  Google Scholar 

  44. Mankikian B, Lemaire F, Benito S, Brun-Buisson C, Harf A, Maillot JP (1983) A new device for measurement of pulmonary pressure-volume curves in patients on mechanical ventilation. Crit Care Med 11:897–901

    Article  CAS  PubMed  Google Scholar 

  45. Marini JJ, Ravenscraft SA (1992) Mean airway pressure: Physiologic determinants and clinical importance — Part 1: Physiologic determinants and measurements. Crit Care Med 20:1461–1472

    Article  CAS  PubMed  Google Scholar 

  46. Marini JJ, Ravenscraft SA (1992) Mean airway pressure: Physiologic determinants and clinical importance — part 2: Clinical implications. Crit Care Med 20:1604–1616

    Article  CAS  PubMed  Google Scholar 

  47. Marini JJ, Capps JS, Culver BH (1985) The inspiratory work of breathing during assisted mechanical ventilation. Chest 87:612–618

    Article  CAS  PubMed  Google Scholar 

  48. Marini JJ, Rodriguez RM, Lamb V (1986) The inspiratory workload of patient-initiated mechanical ventilation. Am Rev Respir Dis 134:902–909

    CAS  PubMed  Google Scholar 

  49. Marini JJ, Smith TC, Lamb V (1988) External work output and force generation during synchronized intermittent mechanical ventilation. Am Rev Respir Dis 138:1169–1179

    Article  CAS  PubMed  Google Scholar 

  50. Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86: 58–66

    Article  CAS  PubMed  Google Scholar 

  51. Milic-Emili J, Rossi A (1989) Respiratory mechanics in ICU patients. In: Stanley TH, Sperry RJ (eds) Anesthesia and the lung. Kluwer, Dordrecht, pp 253–260

    Google Scholar 

  52. Neergaard K von, Wirz K (1927) Die Messung der Strömungswiderstände in den Atemwegen des Menschen, insbesondere bei Asthma und Emphysem. Z Klin Med 105: 51–82

    Google Scholar 

  53. Pepe PE, Marini JJ (1982) Occult positive end-expiratory pressure in mechanically ventilated patients with airflow obstruction. Am Rev Respir Dis 126:166–170

    CAS  PubMed  Google Scholar 

  54. Pourriat JL, Lamberto C, Hoang PH, Fournier JL, Vesseur B (1986) Diaphragmatic fatigue and breathing pattern during weaning from mechanical ventilation in COPD patients. Chest 90:703–707

    Article  CAS  PubMed  Google Scholar 

  55. Rossi A, Gottfried SB, Higgs BD, Zocchi L, Grassino A, Milic-Emili J (1985) Respiratory mechanics in mechanically ventilated patients with respiratoryfailure. J Appl Physiol 58: 1849–1858

    CAS  PubMed  Google Scholar 

  56. Rossi A, Gottfried B, Zocchi L et al. (1985) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation. The effect of intrinsic positive end-expiratory pressure. Am Rev Respir Dis 131: 672–677

    CAS  PubMed  Google Scholar 

  57. Sassoon CSH, Te TT, Mahutte CK, Light RW (1987) Airway occlusion pressure. An important indicator for successful weaning in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis 135:107–113

    CAS  PubMed  Google Scholar 

  58. Sassoon CSH, Mahutte CK, Te TT, Simmons DH, Light RW (1988) Work of breathing and airway occlusion pressure during assist-mode mechanical ventilation. Chest 93:571–576

    Article  CAS  PubMed  Google Scholar 

  59. Smith TC, Marini JJ (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol 65:1488–1499

    CAS  PubMed  Google Scholar 

  60. Stokke T, Hensel I, Burchardi H (1981) Eine einfache Methode für die Bestimmung der funktionellen Residualkapazität während der Beatmung. Anaesthesist 30:124–130

    CAS  PubMed  Google Scholar 

  61. Sullivan M, Paliotta J, Saklad M (1976) Endotracheal tube as a factor in measurement of respiratory mechanics. J Appl Physiol 41:590–592

    CAS  PubMed  Google Scholar 

  62. Sydow M, Burchardi H, Zinserling J, Ische H, Crozier TA, Weyland W (1991) Improved determination of static compliance by automated single volume steps in ventilated patients. Intensive Care Med 17:108–114

    Article  CAS  PubMed  Google Scholar 

  63. Sydow M, Burchardi H, Zinserling J, Crozier TA, Denecke T, Zielmann S (1993) Intrinsic PEEP determined by static pressure-volume curves. Application of a novel automated occlusion method. Intensive Care Med 19:166–171

    Article  CAS  PubMed  Google Scholar 

  64. Whitelaw WA, Derenne JP, Milic-Emili J (1975) Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol 23:181–199

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burchardi, H., Sydow, M. (1995). Atemmechanik beim beatmeten Patienten. In: List, W.F., Metzler, H., Pasch, T. (eds) Monitoring in Anästhesie und Intensivmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08840-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08840-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-08841-8

  • Online ISBN: 978-3-662-08840-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics