Skip to main content

Challenges in the Analysis of the Local Piezoelectric Response

  • Chapter
Nanoscale Characterisation of Ferroelectric Materials

Part of the book series: NanoScience and Technology ((NANO))

Abstract

The piezoresponse technique is based on the detection of local vibrations of a cantilever induced by a probing AC signal applied between the conductive tip of a scanning force microscope (SFM) and the bottom electrode of a ferroelectric sample. The cantilever vibrations are converted into an electrical signal by the position sensitive detector of the SFM and extracted from the global deflection signal using a standard lock-in technique. This electrical signal representing the cantilever vibrations is further referred to as the piezoresponse signal (PRS), for reasons that will be explained later.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Güthner P, Dransfeld K (1992) Local poling of ferroelectric polymers by scanning force microscopy. Appl. Phys. Lett. 61: 1137–1139

    Google Scholar 

  2. Birk H, Glatz-Reichenbach J, Jie L, Schreck E, Dransfeld K (1991) The local piezoelectric activity of thin polymer films observed by scanning tunneling microscopy. J. Vac. Sci. Technol. B 9 pt. 2: 1162–1165

    Article  Google Scholar 

  3. Franke K, Weihnacht M (1995) Evaluation of electrically polar substances by electric scanning force microscopy: 1. Measurement signals due to Maxwell stress. Ferroelectric Lett. 19: 25–33; Franke K (1995) Evaluation of electrically polar substances by electric scanning force microscopy: 2. Measurement signals due to electromechanical effects. Ferroelectric Lett. 19: 35–43

    Google Scholar 

  4. Lee K, Shin H, Moon WK, Jeon JU, Pak YE (1999) Detection mechanism of spontaneous polarization in ferroelectric thin films using electrostatic force microscopy. Jpn. J. Appl. Phys. 38 (Part 2, 3A): L264 — L266

    Article  ADS  Google Scholar 

  5. Hong S, Woo J, Shin H, Jeon JU, Pak YE, Colla EL, Setter N, Kim E, No K, (2001) Principle of ferroelectric domain imaging using atomic force microscope. J. Appl. Phys. 89: 1377–1386

    Google Scholar 

  6. Hong JW, Noh KH, Park SI, Kwun SI, Khim ZG (1998) Surface charge density and evolution of domain structure in triglycine sulfate determined by electrostatic-force microscopy. Phys. Rev. B 58: 5078–5084

    Google Scholar 

  7. Hong JW, Park SI, Khim ZG (1999) Measurement of hardness, surface potential, and charge distribution with dynamic contact mode electrostatic force microscope. Rev. Sci. Instrum. 70: 1735–1739

    Google Scholar 

  8. S. V. Kalinin, D. A. Bonnell (2002) Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces. Phys. Rev. B 65: 125408–11

    Google Scholar 

  9. S. V. Kalinin, D. A. Bonnell, (2003) This book, Chap. 1

    Google Scholar 

  10. Abplanalp M, Eng LM, Günter P (1998) Mapping the domain distribution at ferroelectric surfaces by scanning force microscopy. Appl. Phys. A-Mater 66: S231 — S234

    Article  ADS  Google Scholar 

  11. Matthias B, von Hippel A (1948) Domain Structure and Dielectric Response of Barium Titanate Single Crystals. Phys. Rev 73: 1378–1384

    Article  ADS  Google Scholar 

  12. Hooton JA, Merz WJ (1955) Etch Patterns and Ferroelectric Domains in BaTiO3 Single Crystals. Phys. Rev 98, 409–413

    Google Scholar 

  13. Eng LM, Abplanalp M, Günter P, Güntherodt H-J (1998) Nanoscale domain switching and 3-dimensional mapping of ferroelectric domains by scanning force microscopy. J. de Physique IV 8: 201–204

    Google Scholar 

  14. Christman JA, Woolcott RR Jr., Kingon AI, Nemanich RJ (1998) Piezoelectric measurements with atomic force microscopy. Appl. Phys. Lett. 73: 3851–3853

    Google Scholar 

  15. Ganpule CS, Stanishevsky A, Aggarwal S, Melngailis J, Williams E, Ramesh R, Joshi V, de Araujo CP (1999) Scaling of ferroelectric and piezoelectric properties in Pt/SrBi2Ta2O9/Pt thin films. Appl. Phys. Lett. 75: 3874–3876

    Google Scholar 

  16. W.G. Cady (1964) Piezoelectricity. Dover Publications Inc., New York

    Google Scholar 

  17. Sorge G, Beige H (1975) Determination of the piezocoefficients d m, from the frequency dependence of the dielectric permittivity. Experimentelle Technik der Physik 23: 489–493.

    Google Scholar 

  18. Beige H, Sorge G, Schmidt G, Glogarova M (1978) Resonance method for determining small piezoelectric constants. Experimentelle Technik der Physik 26: 297–302

    Google Scholar 

  19. D. Damjanovic (1998) Ferroelectric, dielectric and piezoelectric properties of ferro-electric thin films and ceramics. Rep. Prog. Phys. 61: 1267–1324

    Google Scholar 

  20. Harnagea C, Pignolet A, Alexe M, Hesse D, Gösele U (2000) Quantitative ferroelectric characterization of single submicron grains in Bi-layered perovskite thin films. Appl. Phys. A, Mater. Sci. Process. 70: 261–267

    Google Scholar 

  21. Kholkin AL, Colla EL, Tagantsev AK, Taylor DV, Setter N (1996) Fatigue of piezoelectric properties in Pb(Zr,Ti)O3 films Appl. Phys. Lett. 68: 2577–2579

    Google Scholar 

  22. Hidaka T, Maruyama T, Saitoh M, Mikoshiba N, Shimizu M, Shiosaki T, Wills LA, Hiskes R, Dicarolis SA, Amano J (1996) Formation and observation of 50 nm polarized domains in PbZrt_XTiXO3 thin film using scanning probe microscope. Appl. Phys. Lett. 68: 2358–2359

    Google Scholar 

  23. Zavala G, Fendler JH, Trolier-McKinstry S (1997) Characterization of ferroelectric lead zirconate titanate films by scanning force microscopy. J. Appl. Phys. 81: 74807491

    Google Scholar 

  24. Eng LM (1999) Nanoscale domain engineering and characterization of ferroelectric domains. Nanotechnology 10: 405–411

    Article  ADS  Google Scholar 

  25. Alemany C, Jimenez R, Revilla J, Mendiola J, and Calzada ML (1999). J. Phys. D, Appl. Phys. 32: L79 — L82

    Article  ADS  Google Scholar 

  26. Devonshire AF (1951) Theory of barium titanate — Part H. Philos. Mag. 42: 10651079. See also Devonshire AF (1949) Theory of barium titanate — Part I. Philos. Mag. 40: 1040–1063

    Google Scholar 

  27. Gruverman A, Tanaka M (2001) Polarization retention in SrBi2Ta2O9 thin films investigated at nanoscale. J. Appl. Phys. 89: 1836–1843

    Google Scholar 

  28. Nagarajan V, Stanishevsky A, Chen L, Zhao T, Liu B-T, Meingailis J, Roytburd AL, Ramesh R, Finder J, Yu Z, Droopad R, Eisenbeiser K (2002) Realizing intrinsic piezoresponse in epitaxial submicron lead zirconate titanate capacitors on Si. Appl. Phys. Lett. 81: 4215–4217

    Google Scholar 

  29. Nye JF (1985) Physical Properties of Crystals, Oxford University Press, Oxford

    Google Scholar 

  30. Du X, Belegundu U, Uchino K (1997) Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: theoretical expectation for thin films Jpn. J. Appl. Phys. 36, Part 1: 5580–5587

    Google Scholar 

  31. Harnagea C, Pignolet A, Alexe M, and Hesse D (2002) Piezoresponse scanning force microscopy: What quantitative information can we really get out of piezoresponse measurements on ferroelectric thin films Integr. Ferroelectrics 44, 113–126

    Google Scholar 

  32. Du X-H, Wang Q-M, Belegundu U, Bhalla A, Uchino K (1999) Crystal orientation dependence of piezoelectric properties of single crystal barium titanate. Mater. Lett. 40, 109–113

    Google Scholar 

  33. Sa Neto A, Cross LE (1982) Electro-mechanical behaviour of single domain single crystals of bismuth titanate (Bi4Ti3O12). J. Mater. Sci. 17: 1409–1412

    Google Scholar 

  34. They found a discrepancy between the calculated and measured d33, so the experimental value was used for the piezoelectric coefficient along the c-axis.

    Google Scholar 

  35. Amin A, Haun MJ, Badger B, McKinstry H, and Cross LE (1985) A phenomenological Gibbs function for the single cell region of the PbZrO3:PbTiO3 solid solution system. Ferroelectrics 65: 107–130

    Google Scholar 

  36. Park SE, Wada S, Cross LE, Shrout TR (1999) Crystallographically engineered BaTiO3 single crystals for high-performance piezoelectrics. J. Appl. Phys. 86: 2746–2750

    Google Scholar 

  37. For example, J.D. Jackson (1999) Classical Electrodynamics. Wiley, New York

    Google Scholar 

  38. Abplanalp M, Günter P (1998) Imaging of ferroelectric domains with sub micrometer resolution by scanning force microscopy. Proc. of 11`h IEEE-ISAF (Montreux, Aug. 24–27, 1998), IEEE Piscataway, NJ, Cat. No. 98CH36245: 423–426

    Google Scholar 

  39. Ganpule CS, Nagarajan V, Li H, Ogale AS, Steinhauer DE, Aggarwal S, Williams E, Ramesh R, De Wolf P (2000) Role of 90° domains in lead zirconate titanate thin films Appl. Phys. Lett. 77: 292–294

    Google Scholar 

  40. Ahn CH, Tybell T, Antognazza L, Char K, Hammond RH, Beasley MR, Fischer 0, Triscone J-M (1997) Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Tio,48)O3/SrRuO3 heterostructures. Science 276: 1100–1103

    Google Scholar 

  41. Franke K, Huelz H, Weihnacht M (1998) Stress-induced depolarization in PZT thin films, measured by means of electric force microscopy. Surf. Sci. 416: 59–67

    Google Scholar 

  42. Rabe U, Janser K, Arnold W (1996) Vibrations of free and surface-coupled atomic force microscope cantilevers: theory and experiment. Rev. Sci. Instrum. 67: 32813293

    Google Scholar 

  43. Rabe U, Amelio S, Kester E, Scherer V, Hirsekorn S, Arnold W (2000) Quantitative determination of contact stiffness using atomic force acoustic microscopy. Ultrasonics 38: 430–437

    Article  Google Scholar 

  44. Hamagea C, Alexe M, Hesse D, and Pignolet A (2002) Contact resonances in voltage-modulated force microscopy. Appl. Phys. Lett. 83: 338–340

    Google Scholar 

  45. Labardi M, Likodimos V, Allegrini M (2000) Force-microscopy contrast mechanisms in ferroelectric domain imaging. Phys. Rev. B 61: 14390–14398

    Google Scholar 

  46. Durkan C, Welland ME, Chu DP, Migliorato P (1999) Probing domains at the nano-meter scale in piezoelectric thin films. Phys. Rev. B 60: 16198–16204

    Google Scholar 

  47. Durkan C, Chu DP, Migliorato P, and Welland ME (2000) Investigations into local piezoelectric properties by atomic force microscopy. Appl. Phys. Lett. 76: 366–368

    Google Scholar 

  48. Harnagea C, Pignolet A, Alexe M, Satyalakshmi KM, Hesse D, Gösele U (1999) Nanoscale switching and domain structure in ferroelectric BaBi4Ti4O15. Jpn. J. Appl. Phys. 38: L1255 — L1257

    Google Scholar 

  49. Jaffe B, Cook WR, H. Jaffe (1971) Piezoelectric ceramics. Academic Press, London.

    Google Scholar 

  50. Dubois MA, Muralt P, Taylor DV, Hiboux St (1998) Which PZT thin films for piezoelectric microactuator applications, Integr. Ferroelectrics 22: 1055–1063

    Google Scholar 

  51. Gruverman A, Ikeda Y (1998) Characterization and control of domain structure in Sr2Bi2TaO9 thin films by scanning force microscopy. Jpn. J. Appl. Phys. 37: L939 — L941

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harnagea, C., Pignolet, A. (2004). Challenges in the Analysis of the Local Piezoelectric Response. In: Alexe, M., Gruverman, A. (eds) Nanoscale Characterisation of Ferroelectric Materials. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-08901-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-08901-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05844-8

  • Online ISBN: 978-3-662-08901-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics