Skip to main content

Genetic Transformation in Pinus elliottii Engelm. (Slash Pine)

  • Chapter
Plant Protoplasts and Genetic Engineering VII

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 38))

  • 233 Accesses

Abstract

Slash pine (Pinus elliottii Engelm.) is one of the hard yellow pines indigenous to the southeastern United States (Lohrey and Kossuth 1990). It is one of the two southern pines used for naval stores, and is one of the most frequently planted timber species in North America (Lohrey and Kossuth 1990). It is favoured by many forest managers because of its fast growth and excellent utility for pulp, lumber, and poles (Sheffield et al. 1983). It has the smallest native range of the four southern pines and grows naturally from South Carolina south to central Florida and west to Louisiana. It has been established by planting as far north as Tennessee and as far west as eastern Texas, where it now seeds naturally (Lohrey and Kossuth 1990). In the three decades prior to 1980, the P. elliottii ecosystem increased by 22% and peaked in the late 1970s and early 1980s (Sheffield et al. 1983). Today, the rate of planting outside the natural range has slowed compared to the 1950 to 1970 period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Armaleo D, Ye GN, Klein TM, Shark KB, Sanford JC, Johnston SA (1990) Biolistic nuclear transformation of Saccharomyces cerevisiae and other fungi. Curr Genet 17: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Barber B (1993) Annual survival report: Seedling survival for fiscal year 1992 plantings in east Texas. Texas For Sery 49, Texas A & M Univ Syst, College Station, Texas

    Google Scholar 

  • Becwar MR, Noland TL, Wann SR (1987) Somatic embryo development and plant regeneration from embryogenic Norway spruce callus. Tappi J 70: 155–160

    CAS  Google Scholar 

  • Becwar MR, Wann SR, Johnson MA, Verhagen SA, Feier RP, Nagmani R (1988) Development and characterization of in vitro embryogenic systems in conifers. In: Ahuja MR (ed) Somatic cell genetics of woody plants. Kluwer, Dordrecht, pp 1–18

    Chapter  Google Scholar 

  • Becwar MR, Nagmani R, Wann SR (1990) Initiation of embryogenic cultures and somatic embryo development in loblolly pine (Pinus taeda). Can J For Res 20: 810–817

    Article  Google Scholar 

  • Blakeslee GM (1983) Major diseases affecting slash pine. In: Stone EL (ed) The managed slash pine ecosystem. School For Res Cons, Univ Florida, Gainesville, pp 257–272

    Google Scholar 

  • Cairney J, Chang S, Dias D, Funkhouser EA, Newton RJ (1993) cDNA cloning of water deficit-inducible genes from loblolly pine. In: Proc 22nd South. For Tree Imp Conf, Atlanta, Georgia, June 14–17, pp 357–369

    Google Scholar 

  • Chang S, Sen S, McKinley CR, Aimers-Halliday J, Newton RJ (1991) Clonal propagation of Virginia pine (Pinus virginiana Mill) by organogenesis. Plant Cell Rep 10: 131–134

    Article  CAS  Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and polymer activity following transfer to protoplasts by electroporation. Plant Mol Biol 18: 675–689

    Article  PubMed  CAS  Google Scholar 

  • Dong N (1993) Somatic embryogenesis and gene transfer in slash pine and other conifers. PhD Dissertation, Texas A & M Univ, College Station, Texas 96 pp

    Google Scholar 

  • Duchesne LC, Charest PJ (1991a) Effect of promoter sequence on transient expression of the Bglucuronidase gene in embryogenic calli of Larix x eurolepis and Picea mariana following microprojection. Can J Bot 70: 175–180

    Article  Google Scholar 

  • Duchesne LC, Charest PJ (1991b) Transient expression of B-glucuronidase gene in embryogenic callus of Picea mariana following microprojection. Plant Cell Rep 10: 191–194

    Article  CAS  Google Scholar 

  • Ellis DD, McCabe D, Russell D, Martinell B, McCown BH (1991) Expression of inducible angiosperm promoters in a gymnosperm, Picea glauca (white spruce). Plant Mol Biol 17: 19–27

    Article  PubMed  CAS  Google Scholar 

  • Ellis DD, McCabe DE, McInnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffia KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Bio/Technology 11: 84–89

    Article  CAS  Google Scholar 

  • Finer JJ, Kriebel HB, Becwar MR (1989) Initiation of embryogenic callus and suspension culture of eastern white pine (Pinus strobus L.). Plant Cell Rep 8: 203–206

    Article  Google Scholar 

  • Funkhouser EA, Cairney J, Chang S, Dias DL, Newton RJ (1993) Cellular and molecular responses to water deficit stress in woody plants. In: Pessarakli M (ed) Handbook of crop stress. Marcell Dekker, New York, pp 321–345

    Google Scholar 

  • Gamble PE, Mullet JE (1986) Inhibition of carotenoid accumulation and abscisic acid biosynthesis in fluridone-treated dark-grown barley. Eur J Biochem 160: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Goupil P, Hatzopoulos P, Franz G, Hempel FD, You R, Sung ZR (1992) Transcriptional regulation of a seed-specific carrot gene, Dc8. Plant Mol Biol 18: 1049–1063

    Article  PubMed  CAS  Google Scholar 

  • Guiltinian MJ, Marcotte WR, Quatrano RS (1990) A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250: 267–270

    Article  Google Scholar 

  • Gupta PK, Durzan DJ (1986) Somatic polyembryogenesis from callus of mature sugar pine embryos. Bio/Technology 4: 643–645

    Article  Google Scholar 

  • Gupta PK, Durzan DJ (1987) Biotechnology of somatic polyembryogenesis and plantlet regeneration in loblolly pine. Bio/Technology 5: 147–151

    Article  Google Scholar 

  • Hakman I, von Arnold S (1985) Plantlet regeneration through somatic embryogenesis in Picea abies (Norway spruce). J Plant Physiol 121: 149–158

    Article  CAS  Google Scholar 

  • Hatzopoulos P, Fong F, Sung ZR (1990) Abscisic acid regulation of Dc8, a carrot embryonic gene. Plant Physiol 94: 690–695

    Article  PubMed  CAS  Google Scholar 

  • Heiser W (1992) Optimization of biolistic transformation using the helium-driven PDS-1000/He system. US/EG Bull 1688, BIO/RAD

    Google Scholar 

  • Jain SM, Dong N, Newton RJ (1989) Somatic embryogenesis in slash pine (Pinus elliottii) from immature embryos cultured in vitro. Plant Sci 65: 233–241

    Article  Google Scholar 

  • Jefferson RA (1987) Assaying for chimeric genes in plants; the GUS gene fusion system. Plant Mol Biol Rptr 5: 387–405

    Article  CAS  Google Scholar 

  • Klein TM, Fromm M, Weissinger A, Tomes D, Schaff S, Sletten M, Sanford JC (1988) Transfer of foreign genes into intact maize cells with high-velocity microprojectiles. Proc Natl Acad Sci USA 85: 4305–4309

    Article  PubMed  CAS  Google Scholar 

  • Lainé E, David A (1990) Somatic embryogenesis in immature embryos and protoplasts of Pinus caribaea. Plant Sci 69: 215–224

    Article  Google Scholar 

  • Lesney MS (1991) Slash pine (Pinus elliottii Engelm.). In: Bajaj YPS (ed) Biotechnology in agri- culture and forestry, vol 16. Trees III. Springer, Berlin Heidelberg New York, pp 288–303

    Google Scholar 

  • Lohrey RE, Kossuth SV (1990) Pinus elliottii Engelm. slash pine. In: Burns RM, Honkala BH (eds) Silvics of North America, vol 1. Conifers FS-USDA, Washington DC, Agric Handb. 654, pp 338–347

    Google Scholar 

  • Loopstra C, Stomp A-M, Sederoff RR (1990) Agrobacterium-mediated DNA transfer in sugar pine. Plant Mol Biol 15: 1–9

    Google Scholar 

  • Marcotte WR, Russel SH, Quatrano RS (1989) Abscisic acid-responsive sequences from Em gene of wheat. Plant Cell 1: 969–976

    PubMed  CAS  Google Scholar 

  • Marek-Swize KA (1994) Somatic embryogenesis, maturation and DNA transfer in Pinus. MS Thesis, Texas A&M Univ., College Station, Texas 45 pp

    Google Scholar 

  • Mundy J, Shinozaki K-Y, Oeda K, Chua N-H (1989) Water stress and ABA responsive rice genes. UCLA Symposium on Molecular and Cellular Biology: Plant Gene Transfer. J Cell Biochem Suppl 13D: 308

    Google Scholar 

  • Newton RJ, Yibrah HS, Dong N, Clapham DH, von Arnold S (1992) Expression of an abscisic acid responsive promoter in Picea abies (L.) Karst. following bombardment from an electric discharge particle accelerater. Plant Cell Rep 11: 188–191

    Google Scholar 

  • Newton RJ, Dong N, Marek–Swize K, Cairney J (1993) Genetic transformation of slash Pine. In: Proc 22nd South For Tree Imp Conf, Atlanta, Georgia, 06–14–17, pp 390–402

    Google Scholar 

  • Newton RJ, Dong N, Gould J, Chang S, Cairney J (1994) Understanding pine stress responses via transformation. TAPPI Biol Sci Symp, Minneapolis-Bloomington, Minnesota, Oct 2–6

    Google Scholar 

  • Newton RJ, Marek-Swize KA, Magallanes-Cedeno ME, Dong N, Sen S, Jain SM (1995) Somatic embryogenesis in slash pine (Pinus elliottii Engelm.). In: Gupta PK, Jain SM, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer, Dordrecht, pp 183–195

    Chapter  Google Scholar 

  • Owens JN, Molder M (1977) Seed-cone differentiation and sexual reproduction in western white pine (Pinus monticola) [British Columbia]. Can J Bot 55: 2574–2590

    Article  Google Scholar 

  • Robertson D, Wessinger AK, Ackley R, Glover S, Sederoff RR (1992) Genetic transformation of Norway spruce (Picea abies ( L.) Karst) using somatic embryo explants by microprojectile bombardment. Plant Mol Biol 19: 925–935

    Google Scholar 

  • Russell JA, Roy MK, Sanford JC (1992) Major improvements in biolistic transformation of suspension cultured tobacco cells. In Vitro Cell Dev Biol 28P: 97–105

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Extraction and purification of plasmid DNA. In: Nolan C (ed) Molecular cloning, a laboratory manual, 2nd ed. Cold Spring Harbor Lab Press, Cold Spring Harbor, pp 1–38

    Google Scholar 

  • Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79: 206–209

    Article  CAS  Google Scholar 

  • Sen S, Aimers-Halliday J, McKinley CR, Newton RJ (1994a) Micropropagation of conifers by organogenesis. Life Sci Adv 12: 129–135

    Google Scholar 

  • Sen S, Magallanes-Cedeno ME, Kamps RH, McKinley CR, Newton RJ (1994b) In Vitro micro-propagation of Afghan pine. Can J For Res 24: 1248–1252

    Article  Google Scholar 

  • Shark KB, Smith FD, Harpending PR, Rasmussen JL,Sanford JC (1991) Biolistic transformation of a procaryote, Bacillus megaterium. Appl Environ Microbiol 57: 480–485

    CAS  Google Scholar 

  • Sheffield RM, Knight HA, McClure JP (1983) The slash pine resource. In: Stone EL (ed) The managed slash pine ecosystem. School For Res Cons, Univ Florida, Gainesville, pp 4–23

    Google Scholar 

  • Synder EB, Wakely PC, Wells 00 (1967) Slash pine provenance tests. J For 65: 414–420

    Google Scholar 

  • Stomp A-M, Weissinger A, Sederoff RR (1991) Transient expression from microprojectile-mediated DNA transfer in Pinus taeda. Plant Cell Rep 10: 187–190

    Article  Google Scholar 

  • Switzer GL (1959) The influence of geographic seed source on the performance of slash pine on the Northeast Mississippi Experimental Forest. Mississippi State Univ Ag Exp Sta, Information Sheet 652, State College, 2 pp

    Google Scholar 

  • Tautorus TE, Bekkaoui F, Pilon M, Datla RSS, Crosby WL, Fowke LC, Dunstan DI (1989) Factors affecting transient gene expression in electroporated black spruce (Picea mariana) and jack pine (Pinus banksiana) protoplasts. Theor Appl Genet 78: 531–536

    Article  Google Scholar 

  • Tautorus TE, Fowke LC, Dunstan DI (1991) Somatic embryogenesis in conifers. Can J Bot 69: 1873–1899

    Article  Google Scholar 

  • Van Buijtenen JP, Bilan MV, Zimmerman RH (1976) Morphophysiological characteristics related to drought resistance in Pinus taeda. In: Cannell MGR, Last FT (eds) Tree physiology and yield improvement. Academic Press, New York, pp 349–359

    Google Scholar 

  • Wilson SM, Thorpe TA, Moloney MM (1989) PEG-mediated expression of GUS and CAT genes in protoplasts from embryogenic suspension cultures of Picea glauca. Plant Cell Rep 7: 704–707

    CAS  Google Scholar 

  • Ye GN, Daniell H, Sanford JC (1990) Optimization of delivery of foreign DNA into higher-plant chloroplast. Plant Mol Biol 15: 809–819

    Article  PubMed  CAS  Google Scholar 

  • Zobel B, Talbert J (1984) Applied forest tree improvement. Wiley, New York, 505 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Newton, R.J., Dong, N., Sen, S., Marek-Swize, K., Chang, S. (1996). Genetic Transformation in Pinus elliottii Engelm. (Slash Pine). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering VII. Biotechnology in Agriculture and Forestry, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09368-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09368-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08240-5

  • Online ISBN: 978-3-662-09368-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics