Skip to main content

Compensation Devices Break the Limit Line of Silicon

  • Chapter
Silicon
  • 1008 Accesses

Abstract

Today’s lifestyle is no longer conceivable without the generation, distribution and conversion of electrical energy. We daily use numerous electrically driven machines, which draw their energy either from AC or DC rails or from batteries. All of these applications require a power conversion from the input line to the desired output voltage. In the past this task was often accomplished by linear voltage regulators, which in the case of AC/DC conversion used huge, heavy chokes. In times of mobile communication and global business, where products are no longer developed for local markets but rather are sold worldwide, this approch is no longer satisfactory. From the manufacturers point of view, platform strategies have the advantage of reduced production complexity and better purchasing conditions due to increased volume. The other driving force is the mobile use of equipment in countries with different AC power supplies: a mobile phone battery may be refueled today in Germany, tomorrow in the US and next week in Japan. The charger has to supply in all cases the same output voltage and current from substantially different input lines. This requirement is best fulfilled today by switch mode power supplies (SMPS). These power converters work typically in the range of 70 to 100 kHz instead of 50 Hz and may therefore use a small, lightweight transformer. This difference in weight is obvious when a switch mode power supply is compared with a linear regulator. A key component of an SMPS is the high-voltage switch, which typically sustains a blocking voltage in the range of 500 to 800 V depending on the chosen circuit topology. A widespread topology for the low end of the power range of up to 200 W is the flyback converter, which transforms the energy in the blocking phase of the switch. This topology requires transistors with 500 to 600 V blocking capability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Laska, M. Münzer, F. Pfirsch, C. Schaeffer, T. Schmidt: The field stop IGBT (FS-IGBT)–a new power device concept with a great improvement potential. Proc. ISPSD (2000) pp. 355–358

    Google Scholar 

  2. T. Laska, M. Matschitsch, W. Scholz: Ultrathin-wafer technology for a new 600V-NPT-IGBT. Proc. ISPSD (1997) pp. 361–364

    Google Scholar 

  3. X.B. Chen, C. Hu: Optimum doping profile of power MOSFET’s epitaxial layer. IEEE Trans. Electron Devices ED-29, 985 (1982)

    Google Scholar 

  4. T. Kobayashi et al.: High-voltage power MOSFETs reached almost to the Si limit. Proc. ISPSD (2001) pp. 99–102

    Google Scholar 

  5. G. Deboy, M. März, J.-P. Stengl, H. Strack, J. Tihanyi, H. Weber: A new generation of high voltage MOSFETs breaks the limit line of silicon. Tech. Digest IEDM (1998) pp. 683–685

    Google Scholar 

  6. T. Fujihira: Theory of semiconductor superjunction devices. Jpn. J. Appl. Phys. 36, 6254 (1997)

    Article  CAS  Google Scholar 

  7. A.W. Ludikhuize: A review of the RESURF technology. Proc. ISPSD (2000) pp. 11–18

    Google Scholar 

  8. David J. Coe: US patent 4, 754, 310 (1988)

    Google Scholar 

  9. J. Tihanyi: A qualitative study of the DC performance of SIPMOS transistors. Siemens Forsch.- u. Entwickl.-Ber. 9, Nr. 4, (1980) pp. 181–189

    Google Scholar 

  10. M. Rüb, D. Ahlers, J. Baumgartl, G. Deboy, W. Friza, O. Häberlen, I. Steinigke: A novel trench concept for the fabrication of compensation devices. Proc. ISPSD (2003) pp. 203–206

    Google Scholar 

  11. T. Nitta, T. Minato, M. Yano, A. Uenishi, M. Harada, S. Hine: Experimental results and simulation analysis of 250 V super trench MOSFET. Proc. ISPSD (2000) pp. 77–80

    Google Scholar 

  12. J. Meijer, B. Burchard, K. Ivanova, B.E. Volland, I.W. Rangelow, M. Rüb, G. Deboy: High energy ion projection for deep ion implantation as a low cost, high throughput alternative for subsequent epitaxy processes. Proc. EIPBN (2003)

    Google Scholar 

  13. P.M. Shenoy, G. Dolny: Analysis of the effect of charge imbalance on the static and dynamic characteristics of the super junction MOSFET. Proc. ISPSD (1999) pp. 99–102

    Google Scholar 

  14. ST Supermesh product family, values calculated from best-of-class type 600 V, 550 Q max. rating

    Google Scholar 

  15. Fuji FAP-G product family, values calculated from best-of-class type 600 V, 540 Q max. rating

    Google Scholar 

  16. M. Schutten: General Electric, Schenectady, personal discussion

    Google Scholar 

  17. M. Schmitt, H.-J. Schulze, A. Schlögl, M. Vossebürger, A. Willmeroth, G. De-boy, G. Wachutka: A comparison of electron, proton and helium ion irradiation for the optimization of the Coo1MOSTM body diode. Proc. ISPSD (2002) pp. 229–232

    Google Scholar 

  18. G. Deboy, J. Hancock, M. Pürschel, U. Wahl, A. Willmeroth: Compensation devices solve failure mode of the phase shift ZVS bridge during light load operation. Proc. APEC (2002)

    Google Scholar 

  19. L. Lorenz, G. Deboy, I. Zverev: Matched pair of Coo1MOSTM transistor with SiC Schottky diode — advantages in the application. IEEE IAS Conf. Rec. (2000) pp. 376–383

    Google Scholar 

  20. I. Zverev: Frequency related trade off’s in a hard switching CCM PFC boost converter. Proc. APEC (2003)

    Google Scholar 

  21. B. Lu, W. Dong, Q. Zhao, F.C. Lee: Performance evaluation of Coo1MOSTM and SiC diode for single-phase

    Google Scholar 

  22. M. Saggio, D. Fagone, S. Musumeci: MdmeshTM — innovative technology for high voltage power MOSFETs. Proc. ISPSD (2000) pp. 65–68

    Google Scholar 

  23. Y. Onishi, S. Iwamoto, T. Sato, T. Nagaoka, K. Ueno, T. Fujihira: 24 mOhmcm2 680 V silicon superjunction MOSFET. Proc. ISPSD (2002) pp. 241–244

    Google Scholar 

  24. W. Saito, I. Omura, S. Aida, S. Koduki, M. Izumisawa, T. Ogura: 600 V Semisuperjunction MOSFET. Proc. ISPSD (2003) pp. 45–48

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Deboy, G. (2004). Compensation Devices Break the Limit Line of Silicon. In: Siffert, P., Krimmel, E.F. (eds) Silicon. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09897-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09897-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07356-4

  • Online ISBN: 978-3-662-09897-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics