Skip to main content

Insecticidal and Nematicidal Metabolites from Fungi

  • Chapter
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

Even though their fungal nature may not have been recognised as such, fungi growing on insects or their larvae have long drawn the interest of naturalists. Prominent examples are Cordyceps species and the silkworm diseases, white and green muscardine, caused by Beauveria bassiana and Metarhizium anisopliae. Even today these fungi and their interactions with their hosts are still a matter of investigations. A modern pictorial overview on entomopathogenic fungi is given by Samson et al. (1988). Fungal diseases are dealt with by Carruthers and Soper (1987) and the underlying biochemistry and molecular biology have been described by Khachatourians (Chap. 17, vol. VI) and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addor RW (1995) Insecticides. In: Godfrey CRA (ed) Agrochemicals from natural products. Dekker, New York, pp 1–62

    Google Scholar 

  • Ahren D, Ursing BM, Tunlid A (1998) Phylogeny of nematode-trapping fungi based on 18 S rDNA sequences. FEMS Microbiol Lett 158: 179–184

    CAS  Google Scholar 

  • Anderson MG, Jarman TB, Rickards RW (1995) Structures and absolute configuration of antibiotics of the oligorosporon group from the nematode-trapping fungus Arthrobotrys oligospora. J Antibiot 48: 391–398

    CAS  Google Scholar 

  • Anderson MG, Rickards RW, Lacey E (1999) Structures of flagranones A, B, and C, cyclohexenoxide antibiotics from the nematode-trapping fungus Duddingtonia fia-grans. J Antibiotics 52: 1023–1028

    CAS  Google Scholar 

  • Anke H, Sterner O (1991) Comparison of the antimicrobial and cytotoxic activities of twenty unsaturated scsquiterpene dialdehydes from plants and mushrooms. Planta Med 57: 344–346

    CAS  Google Scholar 

  • Anke H, Sterner O (1997) Nematicidal compounds from higher fungi. Curr Org Chem 1: 361–374

    CAS  Google Scholar 

  • Anke H, Stadler M, Mayer A, Sterner O (1995) Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and Ascomycetes. Can J Bot 73 (Suppl 1): 932–939

    Google Scholar 

  • Anke H, Morales P, Sterner O (1996) Assays of the biological activities of two fatty acid derivatives formed in the edible mushrooms Cantharellus cibarius and C. tubaeformis as a response to injury. Planta Med 62: 181–183

    CAS  Google Scholar 

  • Banks RM, Blanflower SE, Everett JR, Manger BR, Reading C (1997) Novel anthelmintic metabolites from an Aspergillus species; the aspergillimides. J Antibiot 50: 840–846

    CAS  Google Scholar 

  • Barron GL (1977) The nematode-destroying fungi. Topics in mycobiology no 1. Lancaster Press, Lancaster

    Google Scholar 

  • Belofsky GN, Gloer JB, Wicklow DT, Dowd PF (1998a) Shearamide A: a new cyclic peptide from the ascostromata of Eupenicillium shearii. Tetrahedron Lett 39: 5497–5500

    CAS  Google Scholar 

  • Belofsky GN, Gloer KB, Gloer.B, Wicklow DT, Dowd PF (1998b) New p-terphenyl and polyketide metabolites from the sclerotia of Penicillium raistrickii. J Nat Prod 61: 1115–1119

    CAS  Google Scholar 

  • Berdy J (2000) Bioactive natural product database (BNPD). Szenzor Management consulting Com, Budapest

    Google Scholar 

  • Bergendorff O, Anke H, Dekermendjian K, Nielsen M, Rudong S, Sterner O, Witt R (1994) The affinity of cyclodepsipeptides isolated from Fusarium sp. 43–88 to the brain chloride channel domain of GABAA and dopamine D-1 receptors in vitro. J Antibiot 47: 1560–1561

    CAS  Google Scholar 

  • Betina V (1989) Mycotoxins chemical, biological and environmental aspects. Chapter 13: Cytochalasans. Elsevier, Amsterdam, pp 285–324

    Google Scholar 

  • Blizzard TA, Ruby CL, Mrozik H, Preiser FA, Fisher MH (1989) Brine shrimp (Artemia sauna) as a convenient bioassay for avermectin analogs. J Antibiot 42: 1304–1307

    CAS  Google Scholar 

  • Bok JW, Lermer L, Chilton J, Klingeman HG, Towers OH (1999) Antitumor sterols from the mycelia of Curdy-ceps sinensis. Phytochemistry 51: 891–898

    CAS  Google Scholar 

  • Bourne JM, Kerry BR (1999) Effect of host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biol Biochem 31: 75–84

    CAS  Google Scholar 

  • Breen JP (1994) Acremonium endophytc interactions with enhanced plant resistance to insects. Annu Rev Entomol 39:401–423

    Google Scholar 

  • Bresinsky A, Best H (1985) Giftpilze. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 152–154

    Google Scholar 

  • Büchel, E, Martini U, Mayer A, Anke H, Sterner O (1998a) Omphalotins B, C, and D, nematicidal cyclopeptides from Omphalotus olearius. Absolute configuration of omphalotin A. Tetrahedron 54: 5345–5352

    Google Scholar 

  • Büchel E. Mayer A, Martini U, Anke H, Sterner O (1998b) Structure elucidation of omphalotin, a cyclic dodecapeptide with potent nematicidal activity from Omphalotus olearius. Pest Sci 54: 309–311

    Google Scholar 

  • Burrows PR. Kerry R, Perry RN (1994) New approaches to plant-parasitic nematode control. J Zool Lund 232:341–346

    Google Scholar 

  • Calhoun LA, Findlay JA, Miller JD, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycol Res 96: 281–286

    Google Scholar 

  • Camazine S, Resch J, Eisner T, Meinwald J (1983) Mushroom chemical defense: pungent sesquiterpenoid dialdehyde antifeedant to opossum. J Chem Ecol 10: 1439–1447

    Google Scholar 

  • Cantin A, Moya P, Miranda MA, Primo J, Primo-Yufera E (1998) Isolation of N-(2-methyl-3-oxodecanoyl) pyrrole and N-(2-methyl-3-oxodec-8-enoyl)pyrrole, two new natural products from Penicillium brevicompactum. and synthesis of analogues with insecticidal and fungicidal activity. J Agric Food Chem 46: 4748–4753

    CAS  Google Scholar 

  • Cantin A, Moya P, Castillo MA, Primo J, Miranda MA, Primo-Yufera E (1999) Isolation and synthesis of N(2-methyl-3-oxodec-8-enoyl)-2-pyrroline and 2-(hept5-enyl)-3-methyl-4-oxo-6,7,8,8a-tetrahydro-4H-pyrrol o[2,1-b]-1,3-oxazine, two new fungal metabolites with in vivo anti-juvenile hormone and insecticidal activity. Eur J Org Chem 1999: 221–226

    Google Scholar 

  • Carroll GC (1991) Fungal association of woody plants as insect antagonists in leaves and stems. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant-herbivore interactions. Wiley, New York, pp 253–271

    Google Scholar 

  • Carruthers RI, Soper RS (1987) Fungal diseases. In: Fuxa JR, Tanada Y (eds) Epizootiology of insect diseases. Wiley, New York, pp 357–416

    Google Scholar 

  • Castillo M. Moya P, Couillaud F, Garcera MD, MartfnezPardo R (1998) A heterocyclic oxime from a fungus with anti-juvenile hormone activity. Arch Insect Biochem Physiol 37: 287–294

    Google Scholar 

  • Castillo M-A, Moya P, Cantin A, Miranda MA, Primo J, Hernandez E, Primo-Yfifera E (1999) Insecticidal, anti-juvenile hormone, and fungicidal activities of organic extracts from different Penicillium species and their isolated active compounds. J Agric Food Chem 47: 2120–2124

    CAS  Google Scholar 

  • Chapman and Hall (1999) Dictionary of natural products. Chapman and Hall dictionaries on CD-ROM

    Google Scholar 

  • Chitwood DJ (1993) Naturally occurring nematicides. In: Duke SO, Menn JJ, Plimmer JR (eds) Pest control with enhanced environmental safety. American Chemical Society, Washington, DC, pp 300–315

    Google Scholar 

  • Clay K (1992) Endophytes as antagonists of plant pests. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, Berlin Heidelberg, New York, pp 331–357

    Google Scholar 

  • Claydon N, Grove JF (1978) Metabolic products of Entomophthora virulenta. J Chem Soc Perkin Trans 1: 171–173

    Google Scholar 

  • Claydon N, Grove JF, Pople M (1977) Insecticidal secondary metabolic product from the entomogenous fungus Fusarium solani. J Invertebr Pathol 30: 216–223

    CAS  Google Scholar 

  • Cleland TA (1996) Inhibitory glutamate receptor channels. Mol Neurobiol 13: 97–136

    CAS  Google Scholar 

  • Cole LM, Roush RT, Casidia JE (1995) Drosophila GABAgated chloride channel: modified [3HjEBOB binding site associated with AlaaSer or Gly mutants of Rdl subunit. Life Sci 56: 57–765

    Google Scholar 

  • Cole M, Rolinson GN (1972) Microbial metabolites with insecticidal properties. Appl Microbial 24: 660–463

    CAS  Google Scholar 

  • Daniewski W, Gumulka M, Przesmycka D, Ptaszynska K, B1oszyk E, Drozdz B (1995) Sesquiterpenes of Lac-twills origin, antifeedant structure-activity relationships. Phytochemistry 38: 1161–1168

    CAS  Google Scholar 

  • Davis EI, Meyers DM, Dullum CJ, Feitclson JS (1997) Nematicidal activity of fatty acid esters on soybean cyst and root-knot nematodes. J Nematol 29 (Suppl 4): 677–684

    CAS  Google Scholar 

  • de Hoog GS (1985) Taxonomy of the Dactylaria complex, IV. Dactylaria, Neta, Subulispora and Scolecobasidium. In: de Hoog (ed) Taxonomy of the Dactylaria complex, IV-VI. Stud Mycol 26. CBS, Baarn, pp 160

    Google Scholar 

  • Djiand C, Pijarowski L (1996) Study of transcuticular permeation kinetics, accumulation, and selective activity of nematicidal dicarboxylic acids. Pesticide Biochem Physiol 56: 12–15

    Google Scholar 

  • Dowd PF (1992) Insect interactions with mycotoxinproducing fungi and their hosts. In: Bhatnagar D, Lillehoj EB, Arora DK (eds) Handbook of applied mycology: mycotoxins in ecological systems. Dekker, New York, pp 137–155

    Google Scholar 

  • Dowd PF, Peng FC, Chen JW, Ling KH (1992) Toxicity and anticholinesterase activity of the fungal metabolites territrems to the corn earworm Helicoverpa zea. Entomol Exp Appl 65: 57–64

    CAS  Google Scholar 

  • Duddington CL (1960) The friendly fungi - a new approach to the eelworm problem. Faber and Faber, London

    Google Scholar 

  • Dumas C, Robert P, Pais M, Vey A, Quiot JM (1994) Insecticidal and cytotoxic effects of natural and hemisynthetic destruxins. Comp Biochem Physiol Pharmacol Toxicol Endocrinol 108: 195–203

    CAS  Google Scholar 

  • Eldefrawi ME, Abatis M, Filbin MT, Eldefrawi AT (1985) Glutamate and GABA receptors of insect muscles: biochemical identification and interaction with insecticides. In: von Keyserlingk HC, Jäger A, von Szczepanski C (eds) Approaches to new leads for insecticides. Springer, Berlin Heidelberg New York, pp 101–116

    Google Scholar 

  • Erkel G, Anke T (1997) Products from basidiomycetes. In: Rehm H-J, Reed G, Pithier A, Stadler P (eds) Biotechnology, vol 7. VCH, Weinheim, pp 489–533

    Google Scholar 

  • Faedo M, Larsen M, Waller PJ (1997) The potential of nematophagous fungi to control the free-living stages of nematode parasites of sheep–comparison between Australian isolates of Arthrobotrys spp. and Duddingtonia ftagrans. Vet Parasitol 72: 149–155

    CAS  Google Scholar 

  • Findlay JA, Buthelezi S, Lavoie R, Pena-Rodriguez L, Miller JD (1995a) Bioactive isocoumarins and related metabolites from conifer endophytes. J Nat Prod 58: 1759–166

    CAS  Google Scholar 

  • Findlay JA, Li G, Penner PE, Miller JD (1995b) Novel diterpenoid insect toxins from a conifer endophyte. J Nat Prod 58: 197–200

    CAS  Google Scholar 

  • Findlay JA, Buthelezi S, Li G, Seveck M. Miller JD (1997) Insect toxins from an endophytic fungus from winter-green. J Nat Prod 60: 1214–1215

    CAS  Google Scholar 

  • Fujioka T, Yao K, Hamano K, Hosoya T, Kagasaki T, Furukawa Y, Haruyama H, Sato S, Koga T, Tsujita Y (1996) Epi-cochlioquinone A, a novel acyl-CoA:cholestrol acyltransferase inhibitor produced by Stachybotrys bisbyi. J Antibiot 49: 409–413

    CAS  Google Scholar 

  • Gasco A, Serafino A, Mortarinin V, Menziani E, Bianco MA, Scurti JC (1974) An antibacterial and antifungal compound from Calvatia lilacina. Tetrahed Lett 38: 3431–3432

    Google Scholar 

  • Geßner G, Meder S, Rink T, Boheim G, Harder A, Jeschke P, Scherkenbeck J, Londershausen M (1996) lonoph ore and anthelmintic activity of PF 1022 A, a

    Google Scholar 

  • cyclooctadcpsipeptide, arc not related. Pestle Sci 48:399–407

    Google Scholar 

  • Gloer JB (1995) Antiinsectan natural products from fungal sclerotia. Accts Chem Res 28: 343–350

    CAS  Google Scholar 

  • Gloer JB (1997) Applications of fungal ecology in the search for new bioactive natural products. In: Esser K, Lemke PA (eds) The Mycota, vol IV. Wicklow DT, Söderström B (vol eds) Environmental and microbial relationships. Springer, Berlin Heidelberg New York, pp 249–268

    Google Scholar 

  • Gomi S. Imamura K, Yaguchi T, Kodama Y, Minowa N, Koyama M (1995) PF1018, a novel insecticidal compound produced by Humicola sp. J Antibiot 47: 571–580

    Google Scholar 

  • Gupta S, Krasnoff SB, Roberts DW, Renwick JAA, Brinen LS, Clardy J (1991a) Structures of the efrapeptins: potent inhibitors of mitochondrial ATPase from the fungus Tolypocladium niveum. J Am Chem Soc 113: 707–709

    CAS  Google Scholar 

  • Gupta S, Krasnoff SB, Underwood NL, Renwick JA, Roberts DW (1991b) Isolation of beauvericin as an insect toxin from Fusarium semitectum and Fusarium moniliforme var. subglutinans. Mycopathology 115: 185–189

    CAS  Google Scholar 

  • Gupta S, Krasnoff SB, Roberts DW, Renwick JAA, Brinen LS, Clardy J (1992) Structure of efrapeptins from the fungus Tolypocladium niveum. Inhibitors of mitochondria) ATPase. J Org Chem 57: 2306–2313

    Google Scholar 

  • Hajek AE, St Leger RJ (1994) Interactions between fungal pathogens and insect hosts. Annu Rev Entomol 39: 293–322

    Google Scholar 

  • Hautzel R, Anke H (1990) Screening of basidiomycetes and ascomycetes for plant growth regulating substances. Introduction of the gibbcrcllic acid induced de-novo synthesis of hydrolytic enzymes in embryoless seeds of Triticum aestivum as test system. Z Naturforsch 45c: 1093–1098

    CAS  Google Scholar 

  • Hayashi H, Takiuchi K, Murao S, Arai M (1989) Structure and insecticidal activity of new indole alkaloids, okaramines A and B, from Penicillium simplicissiumum AK-40. Agric Biol Chem 53: 461–469

    CAS  Google Scholar 

  • Hayashi H, Asabu Y, Murao S, Nakayama M, Arai M (1993a) Penitrem A, as a convulsive factor against silkworm, from Penicillium simplicissimum AK-40. Chem Express 8: 177–180

    CAS  Google Scholar 

  • Hayashi H, Asabu Y, Murao S. Nakayama M, Arai M (1993b) A new congener of penitrems, 6-bromopenitrem E, from Penicillium simplicissimum AK-40. Chem Express 8: 233–236

    CAS  Google Scholar 

  • Hayashi H, Mukaihara M. Murao S. Arai M, Lee AY. Clardy J (1994) Acetoxydchydroaustin, a new bioactive compound, and related compound neoaustin from Penicillium sp. MG-11. Biosci Biotech Biochem 58: 334–338

    CAS  Google Scholar 

  • Hayashi H, Asabu Y, Murao S, Nakayama M, Arai M (1995) New okaramine congeners, okaramines D, E, and F, from Penicillium simplicissimum AK-40. Biosci Biotech Biochem 59: 246–250

    CAS  Google Scholar 

  • Hayashi H, Nakatani T, Inoue Y, Nakayama M, Nozaki H (1997) New dihydroquinolinone toxic to Artemia salina produced by Penicillium sp. NTC-47. Biosci Biotech Biochem 61: 914–916

    CAS  Google Scholar 

  • Hayashi H, Nishimoto Y, Akiyama K, Nozaki H (2000) New paralytic alkaloids, asperparalines A, B, and C, from Aspergillus japonicus JV-23. Biosci Biotechnol Biochem 64: 111–115

    CAS  Google Scholar 

  • Hensens OD, Ondeyka JG, Dombrowski AW, Ostlind DA, Zink DL (1999) Isolation and structure of nodulisporic acid A, and A2, novel insecticides from a Nodulisporium sp. Tetrahedron Lett 40: 5455–5458

    CAS  Google Scholar 

  • Hiromoto B (1998) International patent WO 98/58618. Composition having nematicidal activity

    Google Scholar 

  • Hohn TM (1997) Fungal phytotoxins: biosynthesis and activity. In: Esser K, Lemke PA (eds) The Mycota, vol VA. Caroll GC, Tudzynski P (vol eds) Plant relationships. Springer, Berlin Heidelberg New York. pp 129–144

    Google Scholar 

  • Hosoya T (1998) Application of underutilized mircobial resources in drug discovery: a review focused on discomycetes. Annu Rep Sankyo Res Lab 50: 15–40

    CAS  Google Scholar 

  • Jaffee BA (1998) Susceptibility of a cyst and root-knot nematode to three nematode-trapping fungi. Fundam Appl Nematol 21: 695–703

    Google Scholar 

  • Jansen BJM, de Groot A (1991) The occurrence and biological activity of driman sesquiterpenoids. Nat Prod Rep 8: 309–318

    CAS  Google Scholar 

  • Jansson H-B, Nordbring-Hertz B (1980) Interactions between nematophagous fungi and plant-parasitic nematodes: attraction, induction of trap formation and capture. Nematologia 26: 383–389

    Google Scholar 

  • Jansson H-B, Tunlid A, Nordbring-Hertz B (1997) Nematodes. In: Anke T (ed) Fungal biotechnology. Chapman and Hall, Weinheim, pp 38–50

    Google Scholar 

  • Jegorov A, Sedmera P, Havlicek V. Matha V (1998) Destruxin Ed, a cyclopcptidc from the fungus Metarhizium anisopliae. Phytochemistry 49: 1815–1817

    CAS  Google Scholar 

  • Johnson A, Whitney NJ (1994) Cytotoxicity and insecticidal activity of endophytic fungi from black spruce (Picea mariana) needles. Can J Microbiol 40: 24–27

    Google Scholar 

  • Jonassohn M, Sterner O, Anke H (1996) Structure-activity relationships for unsaturated dialdehydes 12. The reactivity of unsaturated dialdehydes towards triacetic acid lactonc. Tetrahedron 52: 1473–1478

    Google Scholar 

  • Ju Y, Sacalis JN, Still CC (1998) Bioactive flavonoids from endophyte-infected blue grass (Pou ampla). J Agric Food Chem 46: 3785–3788

    CAS  Google Scholar 

  • Khachatourians GG (1996) Biochemistry and molecular biology of entomopathogenic fungi. In: Esser K, Lemke PA (eds) The Mycota. vol VI. Howard DH, Miller JD (vol eds) Human and animal relationships. Springer, Berlin Heidelberg New York, pp 331–363

    Google Scholar 

  • Köpcke B (1999) Pilze als Produzenten nematizider and anderer Sekundärmetabolite. Dissertation, Univ Kaiserslautern, 1999

    Google Scholar 

  • Köpcke B, Mayer A, Anke H, Sterner O (1999) Bioactive azo-and azoxyformamides from Lycoperdon pyrifbrme (Schaeff. ex Pers. ). Nat Prod Lett 13: 41–46

    Google Scholar 

  • Krasnoff SB, Gupta S (1991) Identification and directed biosynthesis of efrapeptins in the fungus Tolypocladium geodes Gams ( Deuteromycotina: Hyphomycetes). J Chem Ecol 17: 1953–1962

    Google Scholar 

  • Krasnoff SB, Gibson DM, Belofsky GN, Oloer KB, Gloer JB (1996) New destruxins from the entomopathogenic fungus Aschersonia sp. J Nat Prod 59: 485–489

    CAS  Google Scholar 

  • Kubo I, Kim M, Wood WF. Naoki H (1986) Clitocine, a new insecticidal nucleoside from the mushroom Clitocybe inversa. Tetrahedron Lett 27:4277–428(1

    Google Scholar 

  • Kuno F, Otoguro K, Shiomi K, Iwai I, Omura S (1996) Arisugacins A and B, novel and selective acetyl-cholinesterase inhibitors from Penicillium sp. FO-4259. I. Screening, taxonomy, fermentation, isolation and biological activity. J Antibiot 49: 742–747

    Google Scholar 

  • Leuchtmann A, Clay K (1997) The population biology of grass endophytes. In: Esser K, Lemke PA (eds) The Mycota, vol V, part A. Caron GC, Tudzynski P (vol eds) Plant relationships. Springer, Berlin Heidelberg New York, pp 185–202

    Google Scholar 

  • Liou GY, Tzean SS (1997) Phylogeny of the genus Arthrobotrys and allied nematode-trapping fungi based on rDNA sequences. Mycologia 89: 876–884

    CAS  Google Scholar 

  • Logrieco A, Moretti A, Castella G, Kostecki M, Golinski P, Ritieni A, Chelkowski J (1998) Beauvericin production by Fusarium species. Appl Environ Mircrobiol 64: 3084–3088

    CAS  Google Scholar 

  • Londershausen M (1996) Approaches to new parasiticides. Pestic Sci 48: 269–292

    CAS  Google Scholar 

  • Malsam O, Kilian M. Hain R, Berg D (1997) Fungal insecticides. In: Anke T (ed) Fungal biotechnology. Chapman and Hall, Weinheim, pp 27–37

    Google Scholar 

  • Martin RJ, Robertson AP, Bjorn H (1997) Target sites of anthelmintics. Parasitology 114: 5111–5124

    Google Scholar 

  • Mayer A, Martini U, Anke H, Sterner O, Kilian M. Wachendorff-Neumann U, Harder A, Jeschke P (1996a) Organisch-chemische Verbindungen and Verfahren zu ihrer Herstellung. Patentanmeldung DE 197 54 298. 0

    CAS  Google Scholar 

  • Mayer A, Sterner O, Anke H (1996b) Screening of higher fungi for nematicidal compounds using Meloidogyne incognita (Kofoid & White) Chitwood as test organism. Mededelingen Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Univ Gent, pp 839–847

    Google Scholar 

  • Mayer A, Sterner O, Anke H (1997a) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. 1. Fermentation and biological activity. Nat Prod Lett 10: 25–33

    Google Scholar 

  • Mayer A, Anke H, Sterner O. Kilian M. Hain R, Berg D, Etzcl D, Gau (1997b) Cyclic dodecapeptide and process for the preparation thereof. WO 97/20857 (12. 06. 97 )

    Google Scholar 

  • Mayer A, Kilian M, Roster B, Sterner O. Anke H (1999) In vitro and in vivo ncmaticidal activities of the cyclic dodecapeptide omphalotin A. Pest Sci 55: 27–30

    CAS  Google Scholar 

  • Mazet I, Hung SY, Boucias DG (1994) Detection of toxic metabolites in the hemolymph of Beauveria bassiana infected Spodoptera exigua larvae. Experientia 50: 42–147

    Google Scholar 

  • Mier N, Canete S, Klaebe A, Chavant L, Fournier D (1996) Insecticidal properties of mushroom and toadstool carpophores. Phytochemistry 41: 1293–1296

    CAS  Google Scholar 

  • Milner RJ, Staples JA (1996) Biological control of termites: results and experiences within a CSIRO project in Australia. Biocont Sci Technol 6: 3–9

    Google Scholar 

  • Morgan-Jones G, Gams W (1982) Notes on Hyphomycetes. XLI. An endophyte of Festuca arundinacea and the anamorph of Epichloe typhina, new taxa in one of the new Sections of Acremonium. Mycotaxon 15: 311–318

    Google Scholar 

  • Morino T, Nishimoto M, Masuda A. Fujita S. Nishikiori T. Satto S (1995) NK374200, a novel insecticidal agent from Talaromyces, found by physicochemical screening.) Antibiot 48: 1509–1510

    CAS  Google Scholar 

  • Oh Ii, Swenson DC, Gloer JB, Wicklow DT, Dowd PF (1998) chaetochalasin A: a new bioactive metabolite from Chaetomium brasiliense. Tetrahedron Lett 39: 7633–7636

    Google Scholar 

  • Okuda T, Nakayama N, Fujiwara A (1982) Calvatic acid production by the Lycoperdaceae 1. Calvatic acid and related compounds produced by Lycoperdon pyriforme. Trans Mycol Soc Jpn 23: 225–234

    CAS  Google Scholar 

  • Omura S, Kuno F, Otoguro K, Sunazuka T, Shiomi K,Masuma R, Iwai I (1995) Arisugacin, a novel and selective inhibitor of acetylcholinesterase from Penicillium sp. FO-4259. J Antibiot 48: 745–746

    CAS  Google Scholar 

  • Ondeyka JG, Helms GL, Hensens OD, Goetz MA, Zink DL, Tsipouras A, Shoop WL, Slayton L, Dombrowski AW, Polishook JD, Ostlind DA, Tsou NN, Ball RG, Singh SB (1997) Nodulisporic acid A, a novel and potent insecticide from a Nodulisporium sp. Isolation, structure determination, and chemical transformations. J Am Chem Soc 119: 8809–8816

    Google Scholar 

  • Pegler DN, Yao Y-J, Li Y (1994) The Chinese `caterpillar fungus’. Mycologist 8: 3–5

    Google Scholar 

  • Premachandran D (1990) European patent EP 0363 897 A2. A new nematocidal agent comprises the fungus Myrothecium verrucaria or metabolites therefrom

    Google Scholar 

  • Relman AS (1991) Tacrine as a treatment for Alzheimer’s dementia. N Engl J Med 324: 349–352

    Google Scholar 

  • Roberts DW, Hajek AE (1992) Entomopathogenic fungi as bioinsecticides. In: Leatham GF (ed) Frontiers in industrial mycology. Chapman and Hall, New York, pp 144–159

    Google Scholar 

  • Rubner A (1996) Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. Stud Mycol 39. CBS, Baarn

    Google Scholar 

  • Samson RA, Evans HC, Latgé J-P (1988) Atlas of entomopathogenic fungi. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schreier MH (1997) Mechanism of action of cyclosporin. In: Anke T (cd) Fungal biotechnology. Chapman and Hall, Weinheim, pp 137–146

    Google Scholar 

  • Shiono Y, Akiyama K, Hayashi H (1999) New okramine congeners, okramines J, K, L, M and related compounds from Penicillium simplicissimum ATCC 90288. Biosci Biotechnol Biochem 63: 1910–1920

    CAS  Google Scholar 

  • Shiono Y, Akiyama K, Hayashi H (2000) Okramines N, O, P, Q and R, new okramine congeners, from Penicillium simplicissimum ATCC 90288. Biosci Biotechnol Biochem 64: 103–110

    CAS  Google Scholar 

  • Siegel MR, Bush LP (1997) Toxin production in grass/endophyte associations. In: Esser K, Lemke PA (eds) The Mycota, vol V, part A. Caroll GC, Tudzynski P (vol eds) Plant relationships. Springer, Berlin Heidelberg New York, pp 185–207

    Google Scholar 

  • Stadler M, Sterner O (1998) Production of bioactive secondary metabolites in the fruit bodies of macrofungi as a response to injury. Phytochemistry 49: 10131019

    Google Scholar 

  • Stadler M, Anke H, Sterner O (1993a) Linoleic acid: the nematicidal principle of several nematophagous fungi and its production in trap-forming submerged cultures. Arch Microbiol 160: 401–405

    CAS  Google Scholar 

  • Stadler M, Sterner O, Anke H (1993b) New biologically active compounds from the nematode-trapping fungus Arthrobotrys oligospora Fresenius. Z Naturforschg 48c: 843–850

    CAS  Google Scholar 

  • Stadler M, Anke H, Dekermendjian K, Reiss R, Sterner O, Witt R (1995) New bioactive azaphilones from the fruit bodies and mycelial cultures of the ascomycete Bulgaria inquinans ( Fr. ). Nat Prod Lett 7: 7–14

    Google Scholar 

  • Sterner O, Bergman R, Kihlberg J, Oluwadiya J, Wickberg B, Vidari G, De Bernardi M, De Marchi F, Fronza G, Vita-Finzi P (1985a) Basidiomycete sesquiterpenes:

    Google Scholar 

  • the silica gel induced degradation of velutinal derivatives. J Org Chem 50:950–953

    Google Scholar 

  • Sterner O, Bergman R, Kihlberg J, Wickberg B (1985b) The sesquiterpenes of Lactarius vellereus and their role in a proposed chemical defence system. J Nat Prod 48: 279–288

    CAS  Google Scholar 

  • Sterner O. Etzel W, Mayer A. Anke H (1997) Omphalotin, a new cyclic peptide with potent nematicidal activity from Omphalotus olearius. II. Isolation and structure determination. Nat Prod Lett 10: 33–38

    Google Scholar 

  • Stirling GR, Smith U (1998) Field tests of formulated products containing either Verticillium chlamydosporium or Arthrobotrys dactyloides for biological control of root-knot nematodes. Biol Contr 11: 231–239

    Google Scholar 

  • Stirling GR, Smith U, Licastro KA, Eden LM (1998) control of root-knot nematode with formulations of the nematode-trapping fungus Arthrobotrys dactyloides. Biol Contr 11: 224–230

    Google Scholar 

  • Szallasi A, Bfrô T, Modarres S, Garlaschelli L, Petersen M, Klusch A, Vidari G, Jonassohn M, De Rosa S, Sterner O. Blumberg P, Krause J (1998) Dialdehyde sesquiterpenes and other terpenoids as vanilloids. Eur J Pharmacol 356: 81–89

    CAS  Google Scholar 

  • Takaishi Y, Adachi R, Murakami Y, Ohashi T, Nakano K, Tomimatsu T (1992) A polyoxygenated steroid from Lasiosphaera nipponica. Phytochemistry 31: 243246

    Google Scholar 

  • Takaishi Y, Murakami Y, Uda M, Ohashi T, Hamamura N, Kiso M, Kadota S (1997) Hydroxyphenylazoformamide derivatives from Calvatia craniformis. Phytochemistry 45: 997–1001

    CAS  Google Scholar 

  • Takemoto T, Nakajima T (1964) Isolation of the insecticidal constituent from Tricholoma muscarium. Yakugaku Zasshi 84: 1183–1186

    CAS  Google Scholar 

  • Takemoto T, Nakajima T, Sakuma P (1964) Isolation of a flyicidal constituent, ibotenic acid from Amanita mus-caria and A. pantherina. Yakugaku Zasshi 84: 12331234

    Google Scholar 

  • Tang W, Eisenbrand G (1992) Chinese drugs of plant origin. Springer, Berlin Heidelberg New York, pp 373376

    Google Scholar 

  • Teetor-Barsch GH, Roberts DW (1983) Entomogenous Fusarium species. Mycopathologia 84: 3–16

    CAS  Google Scholar 

  • Tsipouras A, Adefarati AA, Tkacz JS, Frazier EG, Rohrer SP, Birzin E, Rosegay A, Zink DL, Goetz MA, Singh SB, Schaeffer JM (1996) Ophiobolin M and analogues, noncompetitive inhibitors of ivermectin binding with nematocidal activity. Bioorg Med Chem 4: 531536

    Google Scholar 

  • Turner WB, Aldridge DC (1983) Fungal metabolites I I. Academic Press, London

    Google Scholar 

  • van Oorschot (1985) A review of Arthrobotrys and allied genera. In: de Hoog (ed) Taxonomy of the Dactylaria complex, IV—VI. Stud Mycol 26. CBS, Baarn, pp 6196

    Google Scholar 

  • Vilcinskas A, Matha V, Götz P (1997) Inhibition of phygocytic activity of plasmatocytes isolated from Galleria mellonella by entomogenous fungi and their secondary metabolites. J Insect Physiol 43: 475–483

    CAS  Google Scholar 

  • Weiser J, Matha V (1988a) The insecticidal activity of cyclosporins on mosquito larvae. J Invertebr Pathol 51: 92–93

    CAS  Google Scholar 

  • Weiser J, Matha V(1988b) Tolypin, a new insecticidal metabolite of fungi of the genus Tolypocladium. J Invertebr Pathol 51: 94–96

    Google Scholar 

  • Wieland T (1996) Toxins and psychoactive compounds from mushrooms. In: Esser K, Lemke PA (eds) The

    Google Scholar 

  • Mycota, vol VI. Howard DH, Miller JD (vol eds) Human and animal relationships. Springer, Berlin Heidelberg New York, pp 229–248

    Google Scholar 

  • Zhu JS, Halpern GM, Jones K (1998a) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part I. J Altern Complement Med 4: 289–303

    CAS  Google Scholar 

  • Zhu JS, Halpern GM, Jones K (1998b) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part II. J Altern Complement Med 4: 429–457

    CAS  Google Scholar 

  • Zopf W (1888) Zur Kenntnis der Infections-Krankheiten niederer Tiere und Pflanzen. N Acta Ac Leop 52: 314–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anke, H., Sterner, O. (2002). Insecticidal and Nematicidal Metabolites from Fungi. In: Osiewacz, H.D. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10378-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10378-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07481-3

  • Online ISBN: 978-3-662-10378-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics