Skip to main content

Studies on the Mechanism of Nitrogenase Catalysis— Substrates-Cluster-Coordination-Chemistry Approach

  • Chapter
The Nitrogen Fixation and its Research in China
  • 227 Accesses

Abstract

Nitrogenase is a complex metalloenzyme reversibly dissociable into two metallo- protein components: component 1, the MoFe-protein, a tetramer (α 2 β 2) with 2 Mo, about 30 Fe and about the same number of acid-labile S, and a molecular weight of about 220 kDa, carries the binding sites for the reducible substrates; and component 2, the Fe-protein, a dimer (Γ 2), with a 4Fe-4S cluster and a molecular weight of about 60 kDa, serves as a specific electron carrier to transfer electrons to the MoFe-protein with the aid of the “electron activator” ATP, which goes into the enzyme complex as MgATP bound to the Fe-protein and is hydrolyzed into ADP and inorganic phosphate, Pi, concomitant with the electron transfer; each dimeric molecule of Fe-protein being able to bind reversibly one or two molecules of MgATP or MgADP. However, MgATP appears to be a nonreducible substrate of nitrogenase, its hydrolysis may, or may not be coupled to electron transfer in nitrogenase reactions, as to be discussed later.

This work is supported by the National Natural Science Foundation of China and has also been supported by grants from the National Science Technology Commission administered through Academia Sinica and through National Education Commission.

To whom correspondence should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews MA, Knobler CB, Kaesz HD (1979) Crystal molecular structure of Fe, (NCCH,CH,CH3) (CO)9, Characterization of a cluster complex with triply bridging nitrile ligand. J Amer Chem Soc 101: 7260

    Google Scholar 

  • Antonio MR, Teo BK, Orme-Johnson WH, Nelson MJ, Groh SE et al. (1982) Iron EXAFS of the iron-molybdenum cofactor of nitrogenasc J. Amer. Chem. Soc. 104: 4703

    Google Scholar 

  • Bercaw JE (1977) Reduction of molecular nitrogen to hydrazine at titanium and zirconium. In: Newton WE, Postgate JR, Rodriguez-Barrueco C (eds) Recent Development in Nitrogen Fixation, p 25; see also Manriquex,IM, Sanner RD, March RF, Bercaw JE (1976) J Amer Chem Soc 98: 3042

    Google Scholar 

  • Blount JF, Dahl LE, Hoogzand C, Hubei W (1966) Structure of and bonding in an alkync-nonacarbonyltriiron complex. A new type of iron-acetylene interaction. J Amer Chem Soc 88: 292; cf. also Dahl LF, Smith DL (1962) J Amer Chem Soc 84: 2450

    Google Scholar 

  • Bulen WA (1976) Nitrogenase from Ar and reactions affecting mechanistic interpretations. In: WE Newton CJ Nyman (eds) Proc of the First International Symposium on Nitrogen Fixation, Vol. 1, p 177

    Google Scholar 

  • Burgess BK, Yang S-S, You, C-B, Li J-G, Freisen, GD et al. (1981) In: Gison AH, Newton WE (eds) Current Perspectives in Nitrogen Fixation pp 71

    Google Scholar 

  • Burgess BK (1984) Structure and activity of nitrogenase— An overview. In: C’ Veeger WE Newton (eds) Advances in Nitrogen Fixation Research, pp 103

    Chapter  Google Scholar 

  • Cai (Tsai), Q.-R (KR), Zhang, H.-B, Lin G.-D (1987) Cluster catalysis in fixation of nitrogen to ammonia catalyzed by nitrogenase by iron catalysts. Advances in Science of China—Chemistry, Vol 2, 125

    Google Scholar 

  • Chen I-1-B, Lin G-D, Zhang H-T, Tsai K-R (1985) Chemical modelling of ATP-driven electron transport in nitrogenase-catalyzed reactions. J Xiamen Univ (Nat Sci) 24: 448

    Google Scholar 

  • Collet TA, Hickman AB, Salifoglou T, Wright DA, Orme-Johnson WH (1990) Physical characterization of the molybdenum-iron cofactor of nitrogenase. Final Program 8th lilt Congr Nitrogen Fixation (Knoxville, Tenn. 1990), Abstr A-10

    Google Scholar 

  • Coucouvanis D, Baenziger NC, Simhon ED, Stremple P, Swenson D, Kostikas A et al. (1980) Heterodinuclear di-p-sulfido bridged dimers containing iron and molybdenum or tungsten. Structures of (Ph4P)2 (FeMS4) complexes ( M = Mo, W ). J Amer Chem Soc 102: 1730

    Google Scholar 

  • Coucouvanis D, Baenziger NC, Simhon ED, Stremple P, Swenson D, Kostikas A et al. (1980) Synthesis and structural characterization of the (Ph4P)2(CI,FeS,MS,FeCI7) complexes (M = Mo, W). First example of a doubly bridging MoS4 unit and its possible relevance as a structural feature in the nitrogenase active site. J Amer Chem Soc 102: 1732

    Google Scholar 

  • Cramer SP, Gillum WO, Hodgson KO, Mortenson LE, Stiefel El, Chisnell JR. Brill WJ, Shah VK (1978) The molybdenum site in nitrogenase. 2. A comparative study of MoFe-proteins and the FeMo-cofactor by X-ray absorption spectroscopy. J Amer Chem Soc 100: 3814

    Google Scholar 

  • Diamantis AA, Dubrawski JV (1981) Preparation and structure of ethylene diaminotetraacetate complexes of ruthenium ( II) with dinitrogen, carbon monoxide, and other n-acceptor ligands. Inorg Chem 20: 1142

    Google Scholar 

  • Eisenhuth WH, Van Wazer JR (1968) Equilibrium in the methanolysis of dimethylzinc. J Amer Chem Soc 90: 5397

    Article  CAS  Google Scholar 

  • Flank AM, Weininger M, Mortrnson LE Cramer SP (1986) Single-crystal FXAFS of nitrogenase. J Amer Chem Soc 108: 1049

    Article  CAS  Google Scholar 

  • Guth JH, Burris RH (1983) Inhibition of nitrogenase-catalyzed NH3 formation by H,. Biochemistry 22: 5111

    Article  CAS  Google Scholar 

  • Haight GP, Jr (1987) Hydrolysis of phosphate esters and anhydrides: role of metal ions. Coord Chem Rev 79: 293–319. See also Crease IC, Haight GP, Peachey R, Robinson WT, Sargeson AM ( 1984 ) Rapid cleavage of chelated pyrophosphate using metal ion complexes. J Chem Soc Chem Commun, pp 1568

    Google Scholar 

  • Hardy RWF, Burns RC, Parshall GW (1971) Biochemistry of Nitrogen Fixation. Advan Chemistry Series 100: 219

    Google Scholar 

  • Hardy RWF (1979) Reducible substrates of nitrogenase. In: RWF Hardy, F Bottomley, RC Burns (eds), A Treatise on Nitrogen Fixation, pp 515

    Google Scholar 

  • Hoch GE, Schneider KC, Burris RH (1960) Hydrogen evolution and exchange, and conversion of N2O to N2 by soybean root nodules. Biochim Biophys Acta 37: 273

    Article  CAS  Google Scholar 

  • Hoffman BM, Roberts JE, Orme-Johnson WH (1982) Molybdenum-95 and proton ENDOR spectroscopy of the nitrogenase MoFe-protein. J Amer Chem Soc 104: 860

    Google Scholar 

  • Jackson EK, Parshall GW, Hardy RWF (1968) Hydrogen reactions of nitrogenase. Formation of molecule HD by nitrogenase by an inorganic model. J Biol Chem 243: 4932

    Google Scholar 

  • Jensen BB, Burris RH (1985) Effect of high pN2 and high pD3 on NH3 production, H2 evolution, and HD formation by nitrogenases. Biochemistry 24: 1141

    Google Scholar 

  • Jonas K, Brauer DJ, Kruger C, Roberts PJ, Tsay Y.-H (1976) “Side-on” dinitrogen transition metal complexes. The molecular structure of {C6H5[Na•O(C2H5)2]z[(C6H5)2Ni]2N2NaLi6 (0C2H5)4O(C2H5)2}2. J Amer Chem Soc 98: 74

    Google Scholar 

  • Kovacs JA, Holm RH (1986) Assembly of vanadium-iron-sulfur cubane clusters from mononuclear and linear trinuclear reactants. J Amer Chem Soc 108: 340

    Article  CAS  Google Scholar 

  • Kruger C, Y-H Tsay (1973) Molecular structure of a 7-dinitrogen-nickel-lithium complex. Angew Chem Int Ed 12: 998

    Article  Google Scholar 

  • Kubas GJ, Vergamini PJ, Eastman MP, Prater KB (1976) Electrochemistry of the ion-sulfer cluster compound [(n-C5H5)2Fe2S2(SC2H5)2]. Synthesis properties of the oxidation products. J Organomet Chem 117: 71

    Google Scholar 

  • Kubas GJ, Vergamini PJ (1981) Synthesis, characterization, reactions of iron-sulfur clusters con-taining the S2 ligand: (Cp2Fe2(S2) (SR)3),(Cp4Fe4S5), (Cp4Fe4S6). Inorg Chem 20: 2667

    Google Scholar 

  • Leuchenko LA (1980) Spectroscopic investigation of FeMo-co, coenzyme A as one of the probable components of an active site of nitrogenase. BBRC 96: 1384

    Google Scholar 

  • Likhtenstein GI (1988) Structure molecular dynamics of metalloenzymes studied by physical label methods. J Mol Catal 47: 129

    Article  Google Scholar 

  • Lu J-X (1973) Structural-chemical aspects in biological nitrogen fixation process on the coordination activation and reductive hydrogenation of N2 in nitrogen fixation. In: Progress in Chemical Modelling of Biological Nitrogen Fixation, 2nd Compilation (from the 1973 Symposium papers), pp 1–53. Science Press, China, 1976; cf. also Nitrogen Fixation Research Group of the Fujian Inst of Structure of Matter, Kexue Tongbao ( 1975 ) 20: 540

    Google Scholar 

  • Lu J-X (1980) Composite “string bag” cluster model for the active centre of nitrogenase. In: WE Newton, WH Orme-Johnson (eds), Nitrogen Fixation Vol 1, pp 343

    Google Scholar 

  • Madden M, Shah V, Kindon N, Burke S, Ludden, P (1990) Dinitrogen reduction by dinitrogenase activated in vitro is dependent upon which diastereomer of 1-fluorohomocitrate is incorporated into the FeMo-co. Final Program, 8th Int Congr Nitrogen Fixation (Knoxville, Tenn 1990), Abstr A-05

    Google Scholar 

  • McKenna CE, McKenna M-C, Huang CW (1976) Low stereoselectivity in methylacetylene and cyclopropene reactions by nitrogenase. Proc Natl Acad Sci USA 76: 4773

    Article  Google Scholar 

  • McKenna CE, McKenna M-C, Higa M (1976) Chemical probes of nitrogenase. I Cyclopropene. Nitrogenase-catalyzed reduction to propene and cyclopropane. J Amer Chem Soc 98: 4657

    Google Scholar 

  • McKenna CE, Huang C-W Jones JB, McKenna M-C, Makajima T, Nguyen HT (1980) Cyclopropenes: New chemical probes of nitrogenase active site interactions. In: WE Newton, WH Orme-Johnson (eds), Nitrogen Fixation Vol. 1, pp 223

    Google Scholar 

  • McKenna CE, Fran H, Nakajima T, Osumi A (1981) Active site probes for nitrogenase. In: AH Gibson, WE Newton (eds) Current Perspectives in Nitrogen Fixation, p358

    Google Scholar 

  • Mortenson LE, Thorneley RNF (1979) Structure function of nitrogenase. Ann Rev Biochem 48: 387

    Article  CAS  Google Scholar 

  • Nelson WJ, Levy MA, Orme-Johnson WH (1983) Metal and sulfur composition of iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA 80: 147

    Article  CAS  Google Scholar 

  • Newton WE, Bulen WA, Hadfield KL, Stiefel EI, Watt GD (1977) HD formation as a probe for intermediates in N2 reduction. In: WE Newton, JR Postgate, C Rodriguez-Sarrueco (eds), Recent Development in Nitrogen Fixation, pp 119

    Google Scholar 

  • Newton WE, Burgess BK, Cummings SC, Lough S, McDonald JW, Rubinson JF, Conradison SD, Hodgson KO (1984) Structure aspects and reactivity of the FeMo-co from nitrogenase. In: C Veeger, WE Newton (eds), Advan Nitrogen Fixation Res., pp 160

    Google Scholar 

  • Nitrogen Fixation Research Group, Kirin Univ (1973) “Chemical Modelling of Biological Nitrogen Fixation”. Science Press, China

    Google Scholar 

  • Nitrogen Fixation Research Group, Chemistry Department, Kirin Univ (1974) Theory of chemical bonding in dinitrogen complexes. Scientia Sinica 17: 192

    Google Scholar 

  • Nitrogen Fixation Research Group, Chemistry Department, Xiamen Univ (1974) On the mechanism of nitrogenase catalysis and structure of the active centre. J Xiamen Univ Nat Sei 13: (1), 111

    Google Scholar 

  • Nitrogen Fixation Research Group, Chemistry Department, Xiamen Univ (1976) Aspects of the structure of nitrogenase active-centre coordination catalysis in chemical modelling of biological nitrogen fixation. In: Progress in Chemical Modelling of Biological Nitrogen Fixation in China, 2nd Compilation (from 1973 Symp papers), pp 163–209 Science Press, China, 1976

    Google Scholar 

  • Nitrogen Fixation Research Group, Chemistry Department, Xiamen Univ. (1976) A model of nitrogenase active-centre and mechanism of nitrogenase catalysis. Scientia Sinica ( Engl. Ed. ) 34: 460

    Google Scholar 

  • Nitrogen Fixation Research Group Inst of Physical Chemistry, Xiamen Univ (1982) Fixation of dinitrogen to ammonia via enzymatic, non-anzymatic catalysis. J Xiamen Univ (Nat Sci) 21: 424

    Google Scholar 

  • Ooi, B-L, Sykes A.G. (1989) Solution properties and reactivity of the aqua ion of Mo’, incomplete euboidal Mo S cluster (Mo3S4(H2O)9)4+. Inorg Chem 28: 3799

    Article  CAS  Google Scholar 

  • Orme-Johnson WH, Munck E (1980) On the prosthetic groups of nitrogenase. In: MP Coughlan (ed.), Molybdenum Molybdenum Containing Enzymes, pp. 427

    Google Scholar 

  • Orme-Johnson WH, Lindahl P, Meade J, Warren W, Nelson M, Groh S, Orme-Johnson NR, Munck E et al. (1981) Nitrogenase: prothetic groups and their reactivities. In: AH Gibson WE Newton (eds) Current Perspectives in Nitrogen Fixation, pp 79

    Google Scholar 

  • Orme-Johnson WH (1985) Molecular basis of biological nitrogen fixation. Ann Rev Biophys Chem 4: 419

    Article  Google Scholar 

  • Pez GP, Apgar P, Crissey (1982) Reactivity of [tr(n1:n5-C5H4)] (n-CSH5),Ti, with dinitrogen. Structure of a titanium complex with a triply-coordinated N3 ligand. J Amer Chem Soc 104: 482

    Google Scholar 

  • Schrock RR, Blum L, Theopold KU (1984) Hydrazido(1-), 1,2-hydrazido(2-), and hydrazido(4-) complexes of tungsten (VI). In: C Veeger, WE Newton (eds), Advances in Nitrogen Fixation Research, pp. 75

    Chapter  Google Scholar 

  • Schultz PG, Lerner RA, Benkovic SJ (1990) Catalytic antibodies. C EN News 68: (22), 26 Shah VK, Brill WJ (1977) Isolation of an iron-molybdenum cofactor from nitrogcnase. Proc Natl Acad Sei USA 74: 3249

    Google Scholar 

  • Shibahara T, Yamamoto T, Kanadani H, Kuroya H (1987) Double-cubane type, molybdenum-sulfur cluster aquo ion, [(H2O)9Mo3S4MoS4Mo3(H2O)o]s’ J Amer Chem Soc 109: 3495; Shibabara T (1988) Proc 26th Intern Coord Chem Conf Portugal, 1988 paper A27 (cf Ooi Sykes, 1989); Akashi H, Shibahara T (1889) Novel cubane-type molybdenum-tin cluster complexes. (H2O)9Mo3S4SnS4Mo3(112O)9)8 and Mo3SnS4(aq)6*. Inorg Chem 28: 2906

    Google Scholar 

  • Smith BE, Lowe DJ, Bray RC (1973) Studies by electron paramagnetic resonance on the catalytic mechanism of nitrogenase of Kp. Biochem J 135: 331

    CAS  Google Scholar 

  • Smith BE, Bishop PE, Dixon RA, Eady RR, Filler WA, Lowe DJ, Richards AJM, Thomson AJ, Thorneley RNF, Postagate JR (1985) The FeMo-co of nitrogenase. In: HJ Evans, PJ Bottomley, WE Newton (eds), Nitrogen Fixation Research Progress, pp 597

    Google Scholar 

  • Smith BE, Buck M, Eady RR, Lowe DJ, Throneley RNF, Ashby G, Deistung J, Eldridge M, Fisher K, Gormal C, loannids I, Kent H, Arber J, Flood A, Garner CD, Hasnain S, Miller R (1988) Recent studies on the structure and function of molybdenum nitrogenase. In: Bothe de Bruijn WE Newton (eds.), Nitrogen Fixation: Hundred Years after Gustav Fischer, pp 91

    Google Scholar 

  • Song Y (1984) Effects of labile ligands on self-assembly of tetra-thiomolybdate-2FeC12 with excess FeClz. MS thesis. Xiamen Univ

    Google Scholar 

  • Stephens P, McKenna CE, Smith BE, Nguyen HT, McKenna M-C, Thompson AJ, Delvin F, Jones BJ (1979) CD and MCD of nitrogenase proteins. Proc Natl Acad Sci USA 76: 2585

    Article  CAS  Google Scholar 

  • Stiefel EI, Burgess BK, Wheland S, Newton WE, Corbin JL, Watt GD (1980) Ar biochemistry: H2 (D2) N2 relationships of nitrogenase and some aspects of iron metabolism. In: WE Newton, WH Orme-Johnson (eds), Nitrogen Fixation, Vol I, pp 211

    Google Scholar 

  • Swamy KCK, Day RO, Holmes RR (1988) A new structural form of tin as a double cube. A heptanuclear tin-sulfur cluster. J Amer Chem Soc 110: 7543

    Google Scholar 

  • Tang Aoqing (1982; 1983 ) Plenary presentations given at the 1st 2nd National Conf on Chemical Modelling of Biological Nitrogen Fixation; cf Nitrogen Fixation Research Group, Kirin University (1974; 1976 )

    Google Scholar 

  • Thomas MG, Mutterties EL, Day RO, Day VW (1976) Metal clusters in catalysis. 5. Four electron n2-ligand bonding in clusters and catalytic intermediates. J Amer Chem Soc 98: 4645 Thorneley RNF, Lowe DJ (1983) Nitrogenase of Kp. Biochem J 215: 543

    Google Scholar 

  • Thorneley RNF, Bergstrom NHJ, Eady RR, Lowe DJ (1989) Vanadium nitrogenase of Azotobacter chroococcum. Biochem J 257: 789

    CAS  Google Scholar 

  • Tsai KR (1965) Catalysis by coordination activation. Chinese Univ J Sci (Chemistry Chem Eng Ed) 1965: 486

    Google Scholar 

  • Tsai KR, Lin S-T, Wan H-L (1979) Evolution of a model of nitrogenase active-centre and mechanism of nitrogenase catalysis. J Xiamen Univ (Nat Sci) 18: 30

    Google Scholar 

  • Tsai KR (1980) Development of a model of nitrogenase active centre and mechanism of nitrogenase catalysis. In: WE Newton, WH Orme-Johnson (eds), Nitrogen Fixation, Vol 1, pp 373

    Google Scholar 

  • Tsai KR, Wan H-L (1981) Coordination catalysis by transition-metal complexes. In: M Tsutsui, Y Ishi, Huang Y-Z (eds.), Fund Res Organomet Chem pp 1

    Google Scholar 

  • Tsai KR et al. (1990) Coordination catalysis in chemical modelling of biological nitrogen fixation-development of a model of nitrogenase active-centre and mechanism of nitrogenase catalysis. Submitted for publication

    Google Scholar 

  • Walker M, Mortenson LE (1973) Oxidation reduction properties of nitrogenase from Cp W5. BBRC 54: 669

    Google Scholar 

  • Wang Z-C, Watt GD (1984) [42-uptake activity of the MoFe-protein component of Au nitrogenase. Proc Natl Acad Sci USA 81: 376

    Google Scholar 

  • Wan H-L, Tsai KR (1981) Chemical modelling of biological nitrogen fixation. XIV EH MO study of probable modes of p3(n2) coordination of some nitrogenase substrates (cyclopropene etc.) reductive hydrogenation intermediates of N2. J Xiamen Univ (Nat Sci) 20: 62

    Google Scholar 

  • Xu Z-W, Yan C-Z, Ding M-T, Zhang P-X, Lin S-T, Xu L-S, Tsai KR (1980) Chemical modelling of biological nitrogen fixation. VI. Synthesis and catalytic activities of FeMo-co modelling compounds. J Xiamen Unvi (Nat Sci) 19: 41

    Google Scholar 

  • You C-B, Song W, Zeng D, Tsai KR (1990) ATP binding to Fe-protein and ATP-driven electron transfer in nitrogen fixation. In: Nitrogen Fixation Research in China

    Google Scholar 

  • Zeng D, Xu L-S, Chen J-F, Zhang F-Z, Hung H-Q, Xu Z-W, Lin G-D, Zhang M-H (1980) The biological activities of the modelling compounds of FeMo-co nitrogenase. J Xiamen Univ (Nat Sci) 19: (4) 78

    Google Scholar 

  • Zhang F-Z, Xu L-S, Chen J-F, Huang H-Q, Zeng D, Liao Y-Y, Yuan L-W (1988) Some characteristics of laser Raman and electronic absorption spectra of FeMo-co of nitrogenase. J Xiamen Unvi (Nat Sci) 27: 572

    Google Scholar 

  • Zhang H-T et al. (1985) Unpublished results; cf Zhang H-T et al. (1990)

    Google Scholar 

  • Zhang H-T, Lin G-D, Song Y, Tsai KR (1990) Spectroscopic studies on labile-ligand-assisted self-assembly of tetrathiomolybdate-2FeCl2 linear trinuclear cluster with excess FeCl2 by various Lewis-basic ligands. Submitted for publication

    Google Scholar 

  • Zhou Z-H, Lin G-D, Zhang H-T, KR Tsai (1990) Spectroscopic study on labile-ligand-assisted self-assembly of tetrathiovanadate-2FeCl2 linear trinuclear cluster with 2FeCl2 and catalytic activity of thiovanadate-FeCl2 system in the reduction of acetylene by KBH4. Submitted for publication

    Google Scholar 

  • Zumft WG, Mortenson LE (1975) The nitrogen-fixing complex of bacteria. Biochim Biophys Acta 416: 1

    Article  CAS  Google Scholar 

  • Zumft WG (1978) Isolation of thiomolybdate compounds from the molybdenum-iron protein of Cp nitrogenase Eur J Biochem 91: 345

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsai, K.R., Wan, HL., Zhang, HT., Xu, LS. (1992). Studies on the Mechanism of Nitrogenase Catalysis— Substrates-Cluster-Coordination-Chemistry Approach. In: Hong, GF. (eds) The Nitrogen Fixation and its Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-10385-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-10385-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-10387-6

  • Online ISBN: 978-3-662-10385-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics