Skip to main content

The Application of Boundary Elements to Steady and Unsteady Potential Fluid Flow Problems in Two and Three Dimensions

  • Conference paper
Boundary Element Methods

Part of the book series: Boundary Elements ((BOUNDARY,volume 3))

Abstract

The Boundary Element Method is applied to both steady and unsteady potential flow of a compressible liquid inside a fixed volume. For steady flow the velocity potential satisfies the Laplace or Poisson equation. This potential can be found by solving the linear equations resulting from a discretisation of the boundary integral equation.

The velocity potential for unsteady fluid flow can be found by solving the three-dimensional wave equation. The potential at a certain point and moment can be expressed in an integral over the boundary of the values of the potential at the retarded time plus a (inhomogeneous) source term.

The computer code BEREPOT (Boundary Element Retarded Potential Technique) has been developed to calculate the potential successively. This code can handle boundaries consisting of a rigid structure and non-reflecting openings representing infinitely long pipes.

This method has been applied to the flow of liquid sodium in cooling components of Liquid-Metal Fast Breeder Reactors. Special attention will be paid to the pressure wave propagation resulting from a sodium-water reaction following a tube rupture in a LMFBR steam generator. The boundary is given by (parts of) the s.g. walls and the connections with the piping system. The validity of the potential flow model and of the solution method, the boundary conditions and other applications will be discussed. Some results will be compared with the results from analytical solutions and from other numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bruijn, J.G.M. de (1980), private communication.

    Google Scholar 

  • Bruijn, J.G.M. de and Zijl, W. (1981), Least Squares Finite Element Solution of several Thermal-Hydraulic Problems in a Heat Exchanger, Proc. of the 2nd Int. Conf. on numerical methods in Thermal Problems, Venice.

    Google Scholar 

  • Chorin, A.J. and Marsden, J.E., (1979). A mathematical Introduction to Fluid Mechanics, Springer Verlag, New York.

    Book  MATH  Google Scholar 

  • Mitzner, K.M. (1967), Numerical Solution for transient scattering from a hard surface of arbitrary shape-retarded potential technique, J. Acoust. Soc. Am. 42: 391.

    Article  ADS  MATH  Google Scholar 

  • Neilson, H.C.; Lu, Y.P. and Wang Y.F. (1978) Transient scattering by arbitrary axisymmetric surfaces, J. Acoust. Soc. Am. 63: 1719.

    Article  ADS  Google Scholar 

  • Stratton, J.A.: (1941). Electromagnetic Theory, McGraw-Hill Co.

    Google Scholar 

  • Wrobel, L.C. and Brebbia, C.A. (1979) in: Numerical Methods in Thermal Problems ed’s: Lewis, R.W. and Morgan, K.; Pineridge Press, Swansea, p 58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Groenenboom, P.H.L. (1981). The Application of Boundary Elements to Steady and Unsteady Potential Fluid Flow Problems in Two and Three Dimensions. In: Brebbia, C.A. (eds) Boundary Element Methods. Boundary Elements, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11270-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11270-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-11272-4

  • Online ISBN: 978-3-662-11270-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics