Skip to main content

The Feynman-Kac Formula and Semigroups

  • Chapter
Brownian Motion, Obstacles and Random Media

Part of the book series: Springer Monographs in Mathematics ((SMM))

Abstract

In this chapter we introduce a class of self-adjoint semigroups naturally attached to the Feynman-Kac formula. Section 1 presents in a regular setting the probabilistic functionals we shall study, and begins the discussion of their functional analytic description. Section 2 introduces the class of potential we shall consider in the sequel. Section 3 studies some properties of the semigroups, which are defined in terms of expectations of Brownian motion functionals already encountered in Section 1. In Section 4 we provide by means of quadratic forms, a functional analytic characterization of the semigroups defined in Section 3. We shall amply use throughout the remaining chapters the bridge between functional analytic and probabilistic point of views developed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and References

  1. B. Simon. Schrödinger semigroups. Bull. of the A.M.S., 7 (3): 447–526, 1982.

    Article  MATH  Google Scholar 

  2. K.L. Chung and Z. Zhao. From Brownian motion to Schrödinger’s equation. Springer New York, 1995.

    Google Scholar 

  3. M. Kac. On some connections between probability theory and differential and integral equations. In: Proc. Second Berkeley Symposium, L.M. Le Cam and J. Neyman editors, University of California Press, Berkeley, pages 189–215, 1951.

    Google Scholar 

  4. M. Kac. Probability and Related Topics in Physical Sciences. Interscience, New York, 1959.

    MATH  Google Scholar 

  5. Z.M. Ma. Some new results concerning Dirichlet forms, Feynman-Kac semi-groups and Schrödinger equations. Contemporary Mathematics, 118: 239–254, 1991.

    Article  Google Scholar 

  6. T. Kato. Schrödinger operators with singular potentials. Israel J. Math., 13: 135–148, 1973.

    Article  Google Scholar 

  7. M. Aizenman and B. Simon. Brownian motion and Harnack inequality for Schrödinger operators. Comm. Pure Appl. Math., 35: 209–273, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Bass. Probabilistic techniques in analysis. Springer New York, 1995.

    Google Scholar 

  9. M. Reed and B. Simon. Methods of modern mathematical Physics, volume I-IV. Academic Press, 1972, 1975, 1978, 1979.

    Google Scholar 

  10. T. Kato. Perturbation theory for linear operators. Springer New York, 2nd corrected printing of the 2nd edition, 1984.

    Google Scholar 

  11. M. Fukushima. Dirichlet forms and Markov processes. North-Holland/Kodanska, Amsterdam, 1980.

    MATH  Google Scholar 

  12. M. Fukushima, Y. Oshima, and M. Takeda. Dirichlet forms and symmetric Markov processes. Walter de Gruyter, Berlin, 1994.

    Book  MATH  Google Scholar 

  13. Z.M. Ma and M. Röckner. Introduction to the theory of Dirichlet forms. Springer New York, 1992.

    Google Scholar 

  14. M. Fukushima. Dirichlet forms and Markov processes. North-Holland/Kodanska, Amsterdam, 1980.

    MATH  Google Scholar 

  15. E.A. Carlen, S. Kusuoka, and D.W. Stroock. Upperbounds for symmetric Markov transition functions. Ann. Inst. Poincaré, numéro spécial P. Lévy, 27 (2): 245–287, 1987.

    MathSciNet  Google Scholar 

  16. E.B. Davies. Heat kernels and spectral theory. Cambridge University Press, Cambridge, 1989.

    Book  MATH  Google Scholar 

  17. A. Friedman. Partial differential equations of parabolic type. Prentice Hall, Englewood Cliff, N.J., 1964.

    MATH  Google Scholar 

  18. N.V. Krylov. Lectures on elliptic and parabolic equations in Hölder spaces. Graduate Studies in Mathematics. A.M.S., Providence, Vol. 12, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sznitman, AS. (1998). The Feynman-Kac Formula and Semigroups. In: Brownian Motion, Obstacles and Random Media. Springer Monographs in Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-11281-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-11281-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-08420-1

  • Online ISBN: 978-3-662-11281-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics