Skip to main content

Inflection Point and Alveolar Recruitment in ARDS

  • Conference paper
Yearbook of Intensive Care and Emergency Medicine 1997

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1997))

Abstract

Hypoxia is a hallmark of acute respiratory distress syndrome (ARDS) [1] and a major therapeutic goal is to improve arterial oxygen content. The mechanism underlying hypoxia is true intrapulmonary shunt [2] due to non-ventilated, perfused alveoli with little contribution of ventilation-perfusion mismatching. The increase in inspiratory oxygen concentration is not enough to correct hypoxia (refractory hypoxia), and reopening closed lung units represents the only way to improve gas exchange. Three principal reasons account for alveolar exclusion from ventilation:

  1. 1)

    the filling of the air spaces by exudate, pseudomembranes, cellular debris and inflammatory cells as consequence of the structural damage of the alveolo-capillary unit;

  2. 2)

    the collapse of small airways as a consequence of reduced lung volume and loss of the lining surfactant [3]; and

  3. 3)

    atelectasis due to compression of dependent lung units by increased weight of the overlying edematous lung parenchyma [4] or high O2 concentrations [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashbaugh DG, David G, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2: 319–323

    Article  PubMed  CAS  Google Scholar 

  2. Dantzker DR, Brook CJ, Dehart P, Lynch JP, Weg JG (1979) Ventilation perfusion distributions in the adult respiratory distress syndrome. Am Rev Respir Dis 120: 1039–1052

    PubMed  CAS  Google Scholar 

  3. Pontoppidan H, Geffin B, Lowenstein E (1972) Acute respiratory failure in the adult (first of three parts). N Engl J Med 287: 690–696

    Article  PubMed  CAS  Google Scholar 

  4. Pelosi P, D’Andrea L, Vitale G, Pesenti A, Gattinoni L (1994) Vertical gradient of regional lung inflation in Adult Respiratory Distress Syndrome. Am J Respir Crit Care Med 149: 8–13

    PubMed  CAS  Google Scholar 

  5. Dantzker DR, Wagner PD, West JB (1975) Instability of lung units with low VA/Q ratios during OZ breathing. J Appl Physiol 38: 886–895

    Google Scholar 

  6. Rossi A, Ranieri M (1994) Positive End-Expiratory Pressure. In: Martin J Tobin (ed) Principles and Practice of Mechanical Ventilation. McGraw Hill, New York, pp 256–304

    Google Scholar 

  7. Maunder RJ, Shuman WP, McHugh JW, Marglin SI, Butler J (1986) Preservation of normal lung regions in the adult respiratory distress syndrome. Analysis by computed tomography. JAMA 255: 2463–2465

    Google Scholar 

  8. Gattinoni L, Mascheroni D, Torresin A, et al (1986) Morphological response to positive end-expiratory pressure in acute respiratory failure. Computerized tomography study. Intensive Care Med 12: 137–142

    Google Scholar 

  9. Dreyfuss D, Soler P, Basset G, Saumon G (1988) High inflation pressure pulmonary edema

    Google Scholar 

  10. Muscedere JG, Mullen JBM, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149: 1327–1334

    PubMed  CAS  Google Scholar 

  11. Mead J, Takishima T, Leith D (1970) Stress distribution in lungs: A model of pulmonary elasticity. J Appl Physiol 28: 596–608

    Google Scholar 

  12. Falke KJ, Pontoppidan H, Kumar A, Leith D, Geffin B, Laver M (1972) Ventilation with end-expiratory pressure in acute lung disease. J Clin Invest 51: 2315–2323

    Article  PubMed  CAS  Google Scholar 

  13. Kumar A, Falke KJ, Geffin B, et al (1970) Continuous positive pressure ventilation in acute respiratory failure. Effects on hemodynamic and lung function. N Engl J Med 283: 1430–1436

    Google Scholar 

  14. Dantzker DR, Lynch JP, Weg JG (1980) Depression of cardiac output is a mechanism of shunt reduction in the therapy of acute respiratory failure. Chest 77: 636–642

    Article  PubMed  CAS  Google Scholar 

  15. Hedenstierna G (1993) The recording of FRC–Is it of importance and can it be made simple? Intensive Care Med 19: 365–366

    Article  PubMed  CAS  Google Scholar 

  16. Suter M, Fairley HB, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 6: 284–289

    Article  Google Scholar 

  17. Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome Chest 86: 58–66

    CAS  Google Scholar 

  18. Gattinoni L, Pesenti A, Avalli L, Ross F, Bombino M (1987) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136: 730–736

    Google Scholar 

  19. Ranieri VM, Giuliani R, Fiore T, Dambrosio M (1994) Volume-pressure curve of the respiratory system predicts effects of PEEP in ARDS: “Occlusion” versus “Constant Flow” technique. Am J Respir Crit Care Med 149: 19–27

    PubMed  CAS  Google Scholar 

  20. D’Angelo E, Calderini E, Torri G, Robatto FM, Bono D, Milic-Emili J (1989) Respiratory mechanics in anesthetized paralyzed humans: Effects of flow, volume, and time. J Appl Physiol 67: 2556–2564

    Google Scholar 

  21. Agostoni E, Hyatt RE (1986) Static behavior of the respiratory system. In: Macklem PT, Mead J (eds) Handbook of Physiology, Section 3: The respiratory system. Vol 3: Mechanics of breathing. Part 1. Am Physiol Soc, Bethesda, pp 113–130

    Google Scholar 

  22. Mancebo J, Calaf N, Benito S (1985) Pulmonary compliance measurement in acute respiratory failure. Crit Care Med 13: 589–591

    Article  PubMed  CAS  Google Scholar 

  23. Holzapfel L, Robert D, Perrin F, Blanc PL, Palmier B, Guerin C (1983) Static pressure-volume curves and effect of positive end-expiratory pressure on gas exchange in adult respiratory distress syndrome. Crit Care Med 11: 591–597

    Article  PubMed  CAS  Google Scholar 

  24. Roupie E, Dambrosino M, Servillo G, et al (1995) Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome. Am J Respir Crit Care Med 152: 121–128

    PubMed  CAS  Google Scholar 

  25. Brunet F, Jeanbourquin D, Monchi M, et al (1995) Should mechanical ventilation be optimized to blood gases, lung mechanics, or thoracic CT scan? Am J Respir Crit Care Med 152: 524–530

    PubMed  CAS  Google Scholar 

  26. Gattinoni L, Pesenti A (1991) Computed tomography scanning in acute respiratory failure in: Zapol WM, Lemaire F (eds) Adult respiratory distress syndrome, Dekker, New York, pp 199–221

    Google Scholar 

  27. Amato MBP, Barbas CSV, Medeiros DM, et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome, Am J Respir Crit Care Med 152: 1835–1846

    PubMed  CAS  Google Scholar 

  28. Milic-Emili J, Henderson JAM, Dolovich MB, Trop D, Kaneko K (1966) Regional distribution of inspired gas in the lung. J Appl Physics 21: 749–759

    CAS  Google Scholar 

  29. Sutherland PW, Katsura T, Milic-Emili J (1968) Previous volume history of the lung and regional distribution of gas. J Appl Physiol 25: 566–574

    PubMed  CAS  Google Scholar 

  30. Glaister DH, Schroter RC, Sudlow MF, Milic-Emili J (1973) Transpulmonary pressure gradient and ventilation distribution in excised lungs. Respir Physiol 17: 365–385

    Article  PubMed  CAS  Google Scholar 

  31. Demedts M, Clément J, Stanescu DC, van de Woestijne KP (1975) Inflection point on transpulmonary pressure-volume curves and closing volume. J Appl Physiol 38: 228–235

    PubMed  CAS  Google Scholar 

  32. Lemaire F, Simoneau G, Harf A, Rivara D, Tesseire B, Atlan G, Rapin M (1979) Static pulmonary pressure-volume curve, positive end-expiratory pressure and gas exchange in acute respiratory failure. Am Rev Respir Dis (Suppl) 119: 328 (Abst)

    Google Scholar 

  33. Suter PM, Fairley HB, Isenberg MD (1978) Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 73: 158–162

    Article  PubMed  CAS  Google Scholar 

  34. Pelosi P, Cereda M, Foti G, Giacomini M, Pesenti A (1995) Alteration of lung and chest wall mechanics in patients with acute lung injury: Effects of positive end-expiratory pressure. Am J Respir Crit Care Med 152: 531–537

    Google Scholar 

  35. Mergoni M, Martelli A, Primavera S, Rossi A (1995) Chest wall static PV curves in patients with acute lung injury. Am J Respir Crit Care Med 151 (Suppl): A765 (Abst)

    Google Scholar 

  36. Froese AB, Bryan AC (1974) Effect of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology 41: 242–255

    Article  PubMed  CAS  Google Scholar 

  37. Kanarek DJ, Shannon DC (1975) Adverse effect of positive end-expiratory pressure on pulmonary perfusion and arterial oxygenation. Am Rev Respir Dis 112: 457–459

    PubMed  CAS  Google Scholar 

  38. Horton WG, Cheney FW (1975) Variable effect of positive end-expiratory pressure. Arch Surg 110: 395–398

    Article  PubMed  CAS  Google Scholar 

  39. Brun-Buisson C,Abrouk K, Ben Lakhal S, Lemaire F (1987) Reduction of venous admixture with PEEP during human ARF. Respective role of alveolar recruitment vs decrease in blood flow. Am Rev Respir Dis 135: A6

    Google Scholar 

  40. Gattinoni L, Pesenti A, Bombino M, et al (1988) Relationship between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69: 824–832

    Article  PubMed  CAS  Google Scholar 

  41. Gattinoni L, Pelosi P, Grotti S, Valenza F (1995) Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 151: 1807–1814

    PubMed  CAS  Google Scholar 

  42. Katz JA, Ozanne GM, Zinn SE, Fairley HB (1981) Time course and mechanism of lung-volume increase with PEEP in acute pulmonary failure. Anesthesiology 54: 9–16

    Article  PubMed  CAS  Google Scholar 

  43. Ranieri M, Eissa NT, Corbeil C, et al (1993) Effects of positive end-expiratory pressure on alveolar recruitment and gas exchange in patients with the adult respiratory distress syndrome. Am Rev Respir Dis 144: 544–551

    Article  Google Scholar 

  44. Yalta P, Takala J, Eissa T, Milic-Emili J (1992) Effects of PEEP on respiratory mechanics after open heart surgery. Chest 102: 227–233

    Article  Google Scholar 

  45. Yalta P, Takala J, Eissa T, Milic-Emili J (1993) Does alveolar recruitment occur with positive end-expiratory pressure in adult respiratory distress syndrome patients? J Crit Care 8: 34–42

    Article  Google Scholar 

  46. Mergoni M, Martelli A, Primavera S, et al (1996) Relationship between lower inflection point and alveolar recruitment in acute respiratory failure. Abstract from “Simposio Mostra Anestesia Rianimazione Terapia Intensiva” (SMART) Milano

    Google Scholar 

  47. Lamy M, Fallat RJ, Koeniger E, et al (1976) Pathologic features and mechanics of hypoxemia in adult respiratory distress syndrome. Am Rev Respir Dis 114: 267–284

    PubMed  CAS  Google Scholar 

  48. Sydow M, Burchardi H, Ephraim E, Zielmann S, Crozier TA (1994) Long-term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume-controlled inverse ratio-ventilation. Am J Respir Crit Care Med 149: 1550–1556

    Google Scholar 

  49. Greaves IA, Hildebrandt J, Hoppin FG (1986) Micromechanics of the lung. In: Macklem PT, Mead J (ed) Handbook of Physiology, 3rd edn. Am Physiol Soc, Bethesda, pp 217–231

    Google Scholar 

  50. Licthtwarck-Aschoff M, Nielsen JB, Sjostrand UH, Edgren EL (1992) An experimental randomized study of five different ventilatory modes in a piglet model of severe respiratory distress. Intensive Care Med 18: 339–347

    Article  Google Scholar 

  51. Macklem PT, Proctor DF, Hogg JC (1970) The stability of peripheral airways. Respir Physiol 8: 191–203

    Article  PubMed  CAS  Google Scholar 

  52. Glaister DH, Schroter RC, Sudlow MS, Milic-Emili J (1973) Transpulmonary pressure gradient and ventilation distribution in excised lungs. Respir Physiol 17: 347–364

    Article  PubMed  CAS  Google Scholar 

  53. Gaver DP, Samsel RW, Solway J (1990) Effects of surface tension and viscosity on airway reopening. J Appl Physiol 69: 74–85

    PubMed  Google Scholar 

  54. Naureckas ET, Dawson CA, Gerber BS, et al (1994) Airway reopening pressure in isolated rat lungs. J Appl Physiol 76: 1372–1377

    PubMed  CAS  Google Scholar 

  55. Otis DR, Petak F, Hantos Z, Fredberg JJ, Kamm RD (1996) Airway closure and opening assessed by the alveolar capsule oscillation technique. J Appl Physiol 80: 2077–2084

    PubMed  Google Scholar 

  56. Lachman B (1992) Open up the lung and keep the lung open. Intensive Care Med 18: 319–321

    Article  Google Scholar 

  57. Amato MBP, Barbas CSV, Medeiros D, et al (1996) Improved survival in ARDS: Beneficial effects of a lung protective strategy. Am J Respir Crit Care Med 153: A531 (Abst)

    Google Scholar 

  58. Hickling KG, Henderson SJ, Jackson R (1990) Low mortality associated with low volume pressure limited ventilation with permissive hypercapnia in severe adult respiratory syndrome. Intensive Care Med 16: 372–377

    Article  PubMed  CAS  Google Scholar 

  59. Hickling KC, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: A prospective study. Crit Care Med 22: 1568–1578

    Google Scholar 

  60. Puybasset L, Stewart T, Rouby JJ, et al (1994) Inhaled nitric oxide reverses the increase in pulmonary vascular resistance induced by permissive hypercapnea in patients with acute respiratory distress syndrome. Anesthesiology 80: 1254–1267

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mergoni, M., Volpi, A., Rossi, A. (1997). Inflection Point and Alveolar Recruitment in ARDS. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1997. Yearbook of Intensive Care and Emergency Medicine, vol 1997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13450-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13450-4_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13452-8

  • Online ISBN: 978-3-662-13450-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics