Skip to main content

Part of the book series: Yearbook of Intensive Care and Emergency Medicine ((YEARBOOK,volume 1997))

  • 134 Accesses

Abstract

The gut serves not only as a portal of entry for nutrients, small ions, and water, but also as a selective barrier preventing systemic contamination by lumen-derived microbes or microbial products. A key component of the gastrointestinal barrier is the epithelium itself. There are only two ways that substances (ions, molecules, or particles) can traverse the epithelium from the lumenal compartment to the basolateral compartment. Permeation can occur via the transcellular pathway (i.e. through cells) or via the paracellular pathway (i.e. between cells).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gumbiner B (1987) Structure, biochemistry, and assembly of epithelial tight junctions. Am J Physiol 253: C749–C758

    PubMed  CAS  Google Scholar 

  2. Anderson JM, Van Itallie CM (1995) Tight junctions and the Molecular basis for regulation of paracellular permeability. Am J Physiol 269: G467–G475

    PubMed  CAS  Google Scholar 

  3. Fish EM, Molitoris BA (1994) Alterations in epithelial polarity and the pathogenesis of disease states. N Engl J Med 330: 1580–1588

    Article  PubMed  CAS  Google Scholar 

  4. Claude P, Goodenough DA (1973) Fracture faces of zonulae occludentes from “tight” and“leaky” epithelia. J Cell Biol 58: 390–400

    Article  PubMed  CAS  Google Scholar 

  5. Claude P (1978) Morphological factors influencing transepithelial permeability: A model for resistance of the zonula occludens. J Membrane Biol 39: 219–232

    Article  CAS  Google Scholar 

  6. Madara JL (1989) Loosening tight junctions: Lessons from the intestine. J Clin Invest 83: 1089–1094

    Article  PubMed  CAS  Google Scholar 

  7. Riddington DW, Venkatesh B, Boivin CM, et al (1996) Intestinal permeability, gastric intramucosal pH, and systemic endotoxemia in patients undergoing cardiopulmonary bypass. J Am Med Assoc 275: 1007–1012

    Article  CAS  Google Scholar 

  8. Bjaranson I, Macpherson A, Hollander D (1995) Intestinal permeability: An overview. Gastroenterol 108: 1566–1581

    Google Scholar 

  9. Langkamp-Henken B, Donovan TB, Pate LM, et al (1995) Increased intestinal permeability following blunt and penetrating trauma. Crit Care Med 23: 660–664

    Article  PubMed  CAS  Google Scholar 

  10. Sinclair DG, Haslam PL, Quinlan GJ, et al (1995) The effect of cardiopulmonary bypass on intestinal and pulmonary endothelial permeability. Chest 108: 718–724

    Article  PubMed  CAS  Google Scholar 

  11. Ryan CM, Yarmush ML, Burke JF, et al (1992) Increased gut permeability early after burns correlates with the extent of burn injury. Crit Care Med 20: 1508–1512

    Article  PubMed  CAS  Google Scholar 

  12. Peeters M, Ghoos Y, Maes B, et al (1994) Increased permeability of macroscopically normal small bowel in Crohn’s disease. Digestive Dis Sci 39: 2170–2176

    Article  CAS  Google Scholar 

  13. Maxton DG, Bjaranson I, Reynolds AP, et al (1986) 51Cr-EDTA, L-rhamnose, and polyethylene glycol 400 as probe markers for “in vivo” assessment of human intestinal permeability. Clin Sci 71: 71–80

    Google Scholar 

  14. Roumen RMH, van der Vliet JA, Wevers RA, et al (1993) Intestinal permeability is increased after major vascular surgery. J Vasc Surg 17: 734–737

    Article  PubMed  CAS  Google Scholar 

  15. Ohri SK, Bjarnson I, Pathi V, et al (1993) Cardiopulmonary bypass impairs small intestinal transport and increases gut permeability. Ann Thorac Surg 55: 1080–1086

    Article  PubMed  CAS  Google Scholar 

  16. Madara JL, Barenberg D, Carison S (1986) Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: Further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol 102: 2125–2136

    Google Scholar 

  17. Madar.a JL, Stafford J, Barenberg D, et al (1988) Functional coupling of tight junctions and microfilaments in T84 monolayers. Am J Physiol 254: G416–G423

    Google Scholar 

  18. Madara JL, Moore R, Carlson S (1987) Alteration of intestinal tight junction structure and permeability by cytoskeletal contraction. Am J Physiol 253: C854–C861

    PubMed  CAS  Google Scholar 

  19. Kroshian VM, Sheridan AM, Lieberthal W (1994) Functional and cytoskeletal changes induced by sublethal injury in proximal tubular epithelial cells. Am J Physiol 266: F21–F30•

    Google Scholar 

  20. Welsh MJ, Shasby DM, Husted RM (1985) Oxidants increase paracellular permeability in a cultured epithelial cell line. J Clin Invest 76: 1155–1168

    Article  PubMed  CAS  Google Scholar 

  21. Bulsma PB, Peeters RA, Groot JA, et al (1995) Differential in vivo and in vitro intestinal permeability to lactulose and mannitol in animals and humans: A hypothesis. Gastroenterology 108: 687–696

    Google Scholar 

  22. Jodal M, Kramer M, Lauterbach I (eds) (1977) The intestinal countercurrent exchanger and its influence on intestinal absorption. In: Intestinal Permeation. Excerpta Medica, Amsterdam, pp 48–55

    Google Scholar 

  23. Pappenheimer JR, Reiss KZ (1987) Contribution of solvent drag through intercellular tight junctions to absorption of nutrients by the small intestine in the rat. J Membrane Biol 100: 123–136

    Article  CAS  Google Scholar 

  24. Pantzar N, Bergqvist PBF, Bugge M, et al (1995) Small intestinal absorption of polyethylene glycol 400 to 1,000 in the portacaval shunted rat. Hepatology 21: 1167–1173

    PubMed  CAS  Google Scholar 

  25. Epstein MD, Tchervenkov JI, Alexander JW, et al (1991) Increased gut permeability following burn trauma. Arch Surg 126: 198–200

    Article  PubMed  CAS  Google Scholar 

  26. Fink MP,Antonsson JB, Wang H, et al (1991) Increased intestinal permeability in endotoxic pigs: Mesenteric hypoperfusion as an etiologic factor. Arch Surg 126: 211–218

    Google Scholar 

  27. Horton JW (1992) Alterations in intestinal permeability and blood flow in a new model of mesenteric ischemia. Circ Shock 36: 134–139

    PubMed  CAS  Google Scholar 

  28. Bulkley GB, Kvietys PR, Parks DA, et al (1985) Relationship of blood flow and oxygen consumption to ischemic injury in the canine small intestine. Gastroenterology 89: 852–857

    PubMed  CAS  Google Scholar 

  29. Madara JL, Dharmsathaphorn K (1985) Occluding junction structure-function relationships in cultured epithelial monolayer. J Cell Biol 101: 2124–2133

    Article  PubMed  CAS  Google Scholar 

  30. Ciancio MJ, Vitiritti L, Dhar A, et al (1992) Endotoxin-induced alterations in rat colonic water and electrolyte transport. Gastroenterology 103: 1431–1443

    Google Scholar 

  31. Carter EA, Gonnell A, Tompkins RG (1992) Increased transcellular permeability of rat small intestine after thermal injury. Burns 18: 117–120

    Article  PubMed  CAS  Google Scholar 

  32. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of human colonic carcinoma cell line (Caco-2) as a model system of intestinal epithelial permeability. Gastroenterology 96: 736–749

    PubMed  CAS  Google Scholar 

  33. Menconi MJ, Salzman AL, Unno N, et al (1997) Acidosis induces hyperpermeability in Caco-2BBe cultured intestinal epithelial monolayers. Am J Physiol (In press)

    Google Scholar 

  34. Unno N, Menconi MJ, Salzman AL, et al (1996) Hyperpermeability and ATP depletion induced by chronic hypoxia or glycolytic inhibition in Caco-2.., monolayers. Am J Physiol 270: G1010–G1021

    PubMed  CAS  Google Scholar 

  35. Unno N, Menconi MJ, Smith M, et al (1995) Nitric oxide mediates interferon-gamma-induced hyperpermeability in cultured human intestinal epithelial monolayers. Crit Care Med 23: 1170–1176

    Article  PubMed  CAS  Google Scholar 

  36. Salzman AL, Menconi MJ, Unno N, et al (1995) Nitric oxide dilates tight junctions and depletes ATP in cultured Caco-2., intestinal epithelial monolayers. Am J Physiol 268: G361–G373

    PubMed  CAS  Google Scholar 

  37. Stenson WF, Easom RA, Riehl TE, et al (1993) Regulation of paracellular permeability in Caco-2 cell monolayers by protein kinase C. Am J Physiol 265: G995–G1062

    Google Scholar 

  38. Duffey ME, Hainau B, Ho S, et al (1981) Regulation of epithelial tight junction permeability by cyclic AMP. Nature 294: 451–453

    Article  PubMed  CAS  Google Scholar 

  39. McRoberts JA, Aranda R, Riley N, et al (1990) Insulin regulates the paracellular permeability of cultured intestinal epithelial cell monolayers. J Clin Invest 85: 1127–1134

    Article  PubMed  CAS  Google Scholar 

  40. McRoberts JA, Riley NE (1992) Regulation of T84 cell monolayer permeability by insulin-like growth factors. Am J Physiol 262: C207–C213

    PubMed  CAS  Google Scholar 

  41. Bentzel CJ, Hainan B, Ho S, et al (1996) Cytoplasmic regulation of tight-junction permeability: Effects of plant cytokinins. Am J Physiol 239: C75–C89

    Google Scholar 

  42. Meza I, Obarra G, Sabanero M, et al (1980) Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J Cell Biol 87: 746–754

    Article  PubMed  CAS  Google Scholar 

  43. Stevenson BR, Begg DA (1994) Concentration-dependent effects of cytochalasin D on tight junctions and actin filaments in MDCK epithelial cells. J Cell Sci 107: 367–375

    PubMed  CAS  Google Scholar 

  44. Furuse M, Hirase T, Itoh M, et al (1993) Occludin: A novel integral membrane protein localizing at tight junctions. J Cell Biol 123: 1777–1788

    Google Scholar 

  45. Furuse M, Itoh M, Hirase T, et al (1994) Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin in tight junctions. J Cell Biol 127: 1617–1626

    Article  PubMed  CAS  Google Scholar 

  46. Deitch EA (1990) Intestinal permeability is increased in burn patients shortly after injury. Surgery 107: 411–416

    PubMed  CAS  Google Scholar 

  47. Roumen RMH, Hendriks T, Wevers RA, et al (1993) Intestinal permeability after severe trauma and hemorrhagic shock is increased without relation to septic complications. Arch Surg 128: 453–457

    Article  PubMed  CAS  Google Scholar 

  48. Pape HC, Dwenger A, Regel G, et al (1994) Increased gut permeability after multiple trauma. Br J Surg 81: 850–852

    Article  PubMed  CAS  Google Scholar 

  49. Ziegler TR, Smith RJ, O’Dwyer ST, et al (1988) Increased intestinal permeability associated with infection in burn patients. Arch Surg 123: 1313–1319

    Article  PubMed  CAS  Google Scholar 

  50. Johnston JD, Harvey CJ, Menzies IS, et al (1996) Gastrointestinal permeability and absorptive capacity in sepsis. Crit Care Med 24: 1144–1149

    Article  PubMed  CAS  Google Scholar 

  51. Matthews JB, Smith JA, Tally KJ, et al (1994) “Chemical hypoxia” increases junctional permeability and activates chloride transport in human intestinal epithelial monolayers. Surgery 116: 150–158

    Google Scholar 

  52. Unno N, Fink MP (1997) BAPTA inhibits elevation of cytosolic free CaZ+ ([CaZ+],) during chemical hypoxia and ameliorates junctional hyperpermeability in human intestinal epithelial monolayers. Surg Forum (In press)

    Google Scholar 

  53. Tsuji Y, Unno N, Menconi MJ, et al (1996) Nitric oxide donors increase cytosolic ionized calcium in cultured human intestinal epithelial cells. Shock 6: 19–24

    Article  PubMed  CAS  Google Scholar 

  54. Yamaguchi Y, Dalle-Molle E, Hardison WGM (1991) Vasopressin and A23187 stimulate phosphorylation of myosin light chain in isolated rat hepatocytes. Am J Physiol 261: G312–G319

    PubMed  CAS  Google Scholar 

  55. Lowe PJ, Miyai K, Steinbach JH, et al (1988) Hormonal regulation of hepatocyte tight junctional permeability. Am J Physiol 255: G454–G461

    PubMed  CAS  Google Scholar 

  56. Kan KS, Coleman R (1988) The calcium ionophore A23187 increases the tight-junctional permeability in rat liver. Biochem J 256: 1039–1041

    PubMed  CAS  Google Scholar 

  57. Fleming I, Gray GA, Stoclet JC (1993) Influence of endothelium on induction of the Largininenitric oxide pathway in rat aortas. Am J Physiol 264: H1200–H1207

    PubMed  CAS  Google Scholar 

  58. Peterson MW, Gruenhaupt D (1990) A23187 increases permeability of MDCK monolayers independent of phospholipase activation. Am J Physiol 259: C69–C76

    PubMed  CAS  Google Scholar 

  59. Nathanson MH (1994) Cellular and subcellular calcium signalling in gastrointestinal epithelium. Gastroenterology 106: 1349–1364

    PubMed  CAS  Google Scholar 

  60. Clapham DE (1995) Calcium signalling. Cell 80: 259–268

    Article  PubMed  CAS  Google Scholar 

  61. Nichols DG (1986) Intracellular calcium homeostasis. Br Med Bul 42: 353–358

    Google Scholar 

  62. Carafoli E (1992) The Ca’ pump of the plasma membrane. J Biol Chem 267: 2115–2118

    PubMed  CAS  Google Scholar 

  63. Strehler EE, Bittar EE, Bittar N (eds) (1995) Sodium-calcium exchangers and calcium pumps. In: Principles of Medical Biology, Vol 3. JAI Press, Greenwich

    Google Scholar 

  64. McCoy CE, Selvaggio AM, Alexander EA, et al (1988) Adenosine triphosphate depletion induces a rise in cytosolic free calcium in canine renal epithelial cells. J Clin Invest 82: 1326–1332

    Article  PubMed  CAS  Google Scholar 

  65. Madara JL, Stafford J (1989) Interferony directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 83: 724–727

    Article  PubMed  CAS  Google Scholar 

  66. Colgan SP, Resnick MB, Parkos CA, et al (1994) IL4 directly modulates function of a model human intestinal epithelium. J Immunol 153: 2122–2129

    PubMed  CAS  Google Scholar 

  67. Demling R, Lalonde C, Knox J, et al (1991) Fluid resuscitation with deferoxamine prevents systemic burn-induced oxidant injury. J Trauma 31: 538–544

    Article  PubMed  CAS  Google Scholar 

  68. Mückter H, Ben-Shaul Y, Bacher A (1987) ATP requirement for induced tight junction formation in HT 29 adenocarcinoma cells. Eur J Cell Biol 44: 258–264

    PubMed  Google Scholar 

  69. Winter M, Wilson JS, Bedell K, et al (1990) The conductance of cultured epithelial cell mono-layers: Oxidants, adenosine triphosphate, and phorbol dibutyrate. Am J Respir Cell Mol Biol 2: 355–364

    Google Scholar 

  70. Watanabe H, Kuhne W, Spahr R, et al (1991) Macromolecule permeability of coronary and aortic endothelial monolayers under energy depletion. Am J Physiol 260: H1344–H1352

    PubMed  CAS  Google Scholar 

  71. Wilson J, Winter M, Shasby DM (1990) Oxidants, ATP depletion, and endothelial permeability to macromolecules. Blood 76: 2578–2582

    Google Scholar 

  72. Gilles RJ, D’Orio V, Ciancabilla F, et al (1994) In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: A prospective, randomized study. Grit Care Med 22: 499–505

    Google Scholar 

  73. Granger DN (1988) Role of xanthine oxidase and granulocytes in ischemia-reperfusion injury. Am J Physiol 255: H1269–H1275

    PubMed  CAS  Google Scholar 

  74. Spragg RG, Hinshaw DB, Hyslop PA, et al (1985) Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D1 cells after oxidant injury. J Clin Invest 76: 1471–1476

    Article  PubMed  CAS  Google Scholar 

  75. Hinshaw DB, Armstrong BC, Burger JM, et al (1988) ATP and microfilaments in cellular oxidant injury. Am J Pathol 132: 479–488

    PubMed  CAS  Google Scholar 

  76. Hinshaw DB, Burger JM, Armstrong BC, et al (1989) Mechanism of endothelial cell shape change in oxidant injury. J Surg Res 46: 339–349

    Article  PubMed  CAS  Google Scholar 

  77. Hinshaw DB, Burger JM (1990) Protective effect of glutamine on endothelial cell ATP in oxidant injury. J Surg Res 49: 222–227

    Article  PubMed  CAS  Google Scholar 

  78. Hyslop PA, Hinshaw DB, Halsey WA Jr, et al (1988) Mechanism of oxidant-mediated cell injury: The glycolytic and mitochondrial pathways of ADP phosphorylation are major intracellular targets inactivated by hydrogen peroxide. J Biol Chem 253: 1665–1675

    Google Scholar 

  79. Hausladen A, Fridovich I (1994) Superoxide and peroxynitrite inactivate aconitases, but nitric oxide does not. J Biol Chem 269: 29405–29408

    PubMed  CAS  Google Scholar 

  80. Schraufstatter IU, Hinshaw DB, Hyslop PA, et al (1986) Oxidant injury of cells, DNA strand-breaks activate polyadenosine diphosphate-ribose polymerase and lead to depletion of nicotinamide adenine dinucleotide. J Clin Invest 77: 1312–1320

    Google Scholar 

  81. Schraufstatter IU, Hyslop PA, Hinshaw DB, et al (1986) Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci 83: 4908–4912

    Article  PubMed  CAS  Google Scholar 

  82. Szabo C, Zingarelli B, Salzman AL (1996) Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite. Circ Res 78: 1051–1063

    Article  PubMed  CAS  Google Scholar 

  83. Castro L, Rodriguez M, Radi R (1994) Aconitase is readily inactivated by peroxynitrite, but not its precursor, nitric oxide. J Biol Chem 269: 29409–29415

    PubMed  CAS  Google Scholar 

  84. Szabo C, Zingarelli B, O’Connor M, et al (1996) DNA strand breakage, activation of poly-ADP ribosyl synthetase, and cellular energy depletion are involved in the cytotoxicity in macrophages and smooth muscle cells exposed to peroxynitrite. Proc Natl Acad Sci 93: 1753–1758

    Article  PubMed  CAS  Google Scholar 

  85. Gores GJ, Nieminen AL, Wray BE, et al (1989) Intracellular pH during “chemical hypoxia” in cultured rat hepatocytes: Protection by intracellular acidosis against the onset of cell death. J Clin Invest 83: 386–396

    Google Scholar 

  86. Masaki N, Thomas AP, Hoek JB, et al (1989) Intracellular acidosis protects cultured hepatocytes from the toxic consequences of a loss of mitochondrial energization. Arch Biochem Biophys 272: 152–161

    Article  PubMed  CAS  Google Scholar 

  87. Bonventre JV, Cheung JY (1985) Effects of metabolic acidosis on viability of cells exposed to anoxia. Am J Physiol249: C149–C159

    Google Scholar 

  88. Fish EM, Molitoris B (1994) Extracellular acidosis minimizes actin cytoskeletal alterations during ATP depletion. Am J Physiol 267: F566–F572

    PubMed  CAS  Google Scholar 

  89. Oubidar M, Boquillon M, Marie C, et al (1994) Ischemia-induced brain iron delocalization: Effect of iron chelators. Free Rad Biol Med 16: 861–867

    Google Scholar 

  90. Rehncrona S, Hauge HN, Siesjo BK (1989) Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: Differences in effect by lactic acid and CO2. J Cereb Blood Flow Metab 9: 65–70

    Article  PubMed  CAS  Google Scholar 

  91. Musleh W, Bruce A, Malfroy B, et al (1994) Effects of EUK-8, a synthetic catalytic superoxide scavenger, on hypoxia-and acidosis-induced damage in hippocampal slices. Neuropharm 33: 929–934

    Article  CAS  Google Scholar 

  92. Bralet J, Bouvier C, Schrieber L, et al (1991) Effect of acidosis on lipid peroxidation in brain slices. Brain Res 539: 175–177

    Article  PubMed  CAS  Google Scholar 

  93. Siesjo BK, Bendek G, Koide T, et al (1985) Influence of acidosis on lipid peroxidation in brain tissues in vitro. J Cereb Blood Flow Metab 5: 253–258

    Article  PubMed  CAS  Google Scholar 

  94. Rodeheaver DP, Schnellman RG (1993) Extracellular acidosis ameliorates metabolic-inhibitorinduced and potentiates oxidant-induced cell death in renal proximal tubules. J Pharmacol Exp Ther 265: 1355–1360

    PubMed  CAS  Google Scholar 

  95. Lundgren J, Zhang H, Agardh CD, et al (1991) Acidosis-induced ischemic brain damage: Are free radicals involved? J Cereb Blood Flow Metab 11: 587–596

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fink, M.P. (1997). Intestinal Epithelial Hyperpermeability. In: Vincent, JL. (eds) Yearbook of Intensive Care and Emergency Medicine 1997. Yearbook of Intensive Care and Emergency Medicine, vol 1997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-13450-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-13450-4_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-13452-8

  • Online ISBN: 978-3-662-13450-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics