Skip to main content

An Introduction to the Mathematical Theory of Neural Networks

  • Conference paper
Fourth Granada Lectures in Computational Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 493))

  • 417 Accesses

Abstract

In this lecture we present a short introduction to the theory of neural networks, in which the mathematical aspects are given special consideration. Static and dynamic aspects of models for pattern retrieval are discussed as well as a statistical mechanical treatment of the Hopfield model in the case where the number of patterns and neurons is large. As a motivation for the study of neural networks we mention the contrast between the fact that von Neumann’s type of sequential or parallel computers are quick in algorithmic computations but slow in performing recognition of patterns, whereas brains (not necessarily human brains) are comparatively slow in algorithmic computations but much quicker in performing pattern recognition. Neural networks (as “caricatures” of biological neuronal networks) are attempts to understand operationally such features of quick recognition of patterns (or signals). In fact they show some efficiency in performing “associative, adaptive memory” (as manifested in retrieval of memories and recognition of simple patterns). The methods used for their study stem from statistical mechanics and the theory of stochastic processes. This is particularly evident in the study of the Hopfield model (Hopfield 1982) to which we shall dedicate most attention in these lectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amit D. (1989): Modeling brain function, Cambridge Univ. Press.

    MATH  Google Scholar 

  • Albeverio S., Feng J. and Tirozzi B. (1997): Rigorous results in neural networks, book in preperation.

    Google Scholar 

  • Albeverio S., Kondratiev Yu. and Röckner M. (1997): J. Funct. Anal. 144, 394–423.

    Article  MATH  MathSciNet  Google Scholar 

  • Arnold V.I. and Avez A. (1968): Ergodic Problems of Classical Mechanics, Benjamin, New York.

    Google Scholar 

  • Albeverio S., Tirozzi B. and Zegarlinski B. (1992): Comm. Math. Phys. 150, 337–373.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Ay N. (1996): Ein kombinatorisch geometrischer Zugang zum Hopfield-Modell, Diplomarbeit, Bochum.

    Google Scholar 

  • Baxter R.J. (1982): Exactly solvable models in statistical mechanics, Acadamic Press, London.

    Google Scholar 

  • Bovier A. and Gayrard V. (1992): J. Stat. Phys. 69, 597–627.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Bovier A. and Gayrard V. (1997): On the retrieval states of the Hopfield Model, Prob. Theory. relat. Fields to appear.

    Google Scholar 

  • Bovier A. and Gayrard V. (1995): An Almost Sure Large Deviation Principle for the Hopfield Model, Preprint 146, Weierstrasse Institute, Berlin.

    Google Scholar 

  • Bovier A., Gayrard V. and Picco P. (1994): Probab. Theory Related Fields 100, 329–363.

    Article  MATH  MathSciNet  Google Scholar 

  • Feng J. and Tirozzi B. (1997): Capacity of the Hopfield Model J. of Physics A in press.

    Google Scholar 

  • Guerra F. (1995): About the overlap distribution in mean field spin glass models preprint.

    Google Scholar 

  • Hopfield J.J. (1982): Proc. Natl. Acad. Sci. USA 79, 1554–2558.

    MathSciNet  Google Scholar 

  • Hecht-Nielsen R. (1990): Neurocomputing, Addison-Wesley, Reading.

    Google Scholar 

  • losifescu M. (1980): Finite Markov Processes and their application, Wily, Chiherter.

    Google Scholar 

  • Kinnebrock W. (1992): Neuronale Netze, Oldenbourg, München.

    MATH  Google Scholar 

  • Loukianova D. (1994): Two rigorous bounds in the Hopfield model of associative memory, Manuscript.

    Google Scholar 

  • Loukianova D. (1994): Capacité de mémoire dlans le modèle de Hopfield, C. R. Acad. Sci. Paris, 318, Ser. I, 157–160.

    Google Scholar 

  • Malyshev V. and Spieksma F.M. (1997): Dynamics in neural networks with a finite number of patterns, to appear in Math. Phys. Electr. J.

    Google Scholar 

  • Newman C. (1988): Memory capacity in neural network models. Rigorous bounds, Neural Networks 1, 223–238.

    Google Scholar 

  • Peretto P. (1992): An introduction to the modeling of neural networks, Cambridge University Press.

    Google Scholar 

  • Pastur L. and Figotin A. (1977): Sov. J. Low Temp. Phys. 3, 378–383.

    Google Scholar 

  • Pastur L. and Figotin A. (1978): Theor. Math. Phys. 35, 403–414.

    Article  MathSciNet  Google Scholar 

  • Pastur L. and Shcherbina M. (1991): J. Stat. Phys. 621, 1–19.

    Article  ADS  MathSciNet  Google Scholar 

  • Pastur L., Shcherbina M. and Tirozzi B. (1994): J. Stat Phys. 74, 1161–1183.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Pastur L., Shcherbina M. and Tirozzi B. (1996): Disordered systems: self averaging and replica solutions, WIAS Workshop on “Mathematics of random interactions”, Berlin, 21–24 August 1996.

    Google Scholar 

  • Procesi C. and Tirozzi B. (1989): Int. J. Mod. Phys., 134, 143–159.

    MathSciNet  Google Scholar 

  • Ritter H., Martinez Th. and Schulten K. (1994): Neurale Netze, Addeson, Bonn.

    Google Scholar 

  • Rojas R. (1993): Theorie der neuronalen Netze, Springer.

    Google Scholar 

  • Rosenblatt F. (1980): Principles of Neurodynamics, Spartina, New York.

    Google Scholar 

  • Scacciatelli E. and Tirozzi B. (1992): J. Stat. Phys. 67, 981–1008.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Shcherbina M. (1997): On the replica symmetric solution for the Sherrington-Kirkpatrick model, to appear in Heiv. Phys. Acta.

    Google Scholar 

  • Shcherbina M. and Tirozzi B. (1993): J. Stat. Phys. 72, 113–125.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • Simon B. (1993): The statistical mechanics of lattice gases, Princeton University.

    Google Scholar 

  • Sinai Ya. G. (1982): Model Theory of Phase transitions: Rigorous results, Oxford.

    Google Scholar 

  • Sinai Ya. G. (1994): Topics in ergodic theory, Princeton University Press.

    Google Scholar 

  • Tirozzi B. (1995): Modelli Matematici di Reti Neurali, CEDAM, Padova.

    Google Scholar 

  • Talagrand M. (1996): The Sherrington-Kirkpatrick model: A challenge for mathematicians, Paris, Preprint.

    Google Scholar 

  • Talagrand M. (1996): Rigorous results for the Hopfield model with many patterns, Paris VI, Preprint.

    Google Scholar 

  • Taylor J.G. ed. (1993): Mathematical approaches to neural networks, North Holland, Amsterdam.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Albeverio, S., Tirozzi, B. (1997). An Introduction to the Mathematical Theory of Neural Networks. In: Garrido, P.L., Marro, J. (eds) Fourth Granada Lectures in Computational Physics. Lecture Notes in Physics, vol 493. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-14148-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-14148-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-14150-2

  • Online ISBN: 978-3-662-14148-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics