Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 372))

  • 1409 Accesses

Abstract

Over the past several years one may be able to observe an increasing trend to use purely geometric arguments in the proofs of theorems in the theory of finite groups. The idea is a simple one. In the course of proving a theorem about finite groups, one displays some geometric configuration built out of a finite group G. He then proceeds to characterize the known configuration as being some very familiar geometric object. Because of this, the group G is a subgroup of the group of automorphisms of the geometric object, and this can frequently be used to characterize the group G. A good illustration of this principle would be the Suzuki-O’Nan characterization of the three dimensional projective unitary groups over a finite field by the centralizer of an involution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Michael Aschbacher, “Doubly transitive groups in which the stabilizer of two points is abelian”, J. Algebra 18 (1971), 114–136. MR43#2059.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Aschbacher, “On doubly transitive groups of degree n E 2 mod 4 “, Illinois J. Math. 16 (1972), 276–279. MR45#8713.

    MathSciNet  MATH  Google Scholar 

  3. M. Aschbacher, “2-transitive groups whose 2-point stabilizer has 2-rank 2 “, submitted.

    Google Scholar 

  4. Helmut Bender, “Endliche zweifach transitive Permutationsgruppen, deren Involutionen keine Fixpunkte haben”, Math. Z. 104 (1968), 175–204. MR37#2846

    Article  MathSciNet  Google Scholar 

  5. Helmut Bender, “Transitive Gruppen gerader Ordnung, in denen jede Involutionen genau einen Punkt festlasst”, J. Algebra 17 (1971), 527–554. MR44#5370.

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Beukenhout and E. Shult, “On the foundations of polar geometry”, submitted.

    Google Scholar 

  7. George Glauberman, “Central elements in core-free groups”, J. Algebra 4 (1966), 403–420. MR34#2681.

    Article  MathSciNet  Google Scholar 

  8. M. Hale and E. Shult, “Equiangular lines, the graph extension theorem, and transfer in triply transitive groups”, submitted.

    Google Scholar 

  9. Marshall Hall, “Automorphisms of Steiner Triple systems”, IBM J. Pes. Develop. 4 (1960), 460–472. MR23#Al282.

    Article  MATH  Google Scholar 

  10. Christoph Hering, “Zweifach transitive Permutationsgruppen, in denen zwei die maximale Anzahl von Fixpunkten von Involutionen ist”, Math. Z. 104 (1968), 150–174. MR37#295.

    Article  MathSciNet  MATH  Google Scholar 

  11. Christoph Hering, “On subgroups with trivial normalizer intersection”, J. Algebra 20 (1972), 622–629. 2b1.239.20026.

    Article  MathSciNet  MATH  Google Scholar 

  12. Christoph Hering, and William M. Kantor, and Gary M. Seitz, “Finite groups with a split BN-pair of rank I”, J. Algebra 20 (1972), 435–475. 7,61.244.20003

    Article  MathSciNet  Google Scholar 

  13. William M. Kantor, Michael E. O’Nan and Gary M. Seitz, “2-transitive groups in which the stabilizer of two points is cyclic”, J. Algebra 21 (1972), 17–50.

    Article  MathSciNet  MATH  Google Scholar 

  14. P.W.H. Lemmens and J.J. Seidel, “Equiangular lines”, J. Algebra (to appear).

    Google Scholar 

  15. M. O’Nan, “A characterization of Ln(q) as a permutation group”, Math. Z. 127 (1972), 301–314.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. O’Nan, “Normal structure of the one-point stabilizer of a doubly transitive permutation group, I”, submitted.

    Google Scholar 

  17. Stanley E. Payne, “Affine representations of generalized quadrangles”, J. Algebra 16 (1970), 473–485. MR42#8381.

    Article  MathSciNet  Google Scholar 

  18. J.J. Seidel, “Strongly regular graphs”, Recent Progress in Combinatorics, 185–198 (Proc. Third Waterloo Conf. Combinatorics, 1968; Academic Press, New York, London, 1969). MR40#7148.

    Google Scholar 

  19. J.J. Seidel, “On two-graphs and Shult’s characterization of symplectic and orthogonal geometries over GF(2) ‘, Tech. Univ. Eindhoven T.H.-Report 73-WSK-02.

    Google Scholar 

  20. Ernest E. Shult, “Characterizations of certain classes of graphs”, J. Ccrrbinatorial Theory Ser. B 13 (1972), 142–167. Zó1.227.05110.

    Article  Google Scholar 

  21. Ernest Shult, “On a class of doubly transitive groups”, Illinois J. Math. 16 (1972), 434–445. MR45#5211.

    MathSciNet  MATH  Google Scholar 

  22. E.E. Shult, “On doubly transitive groups of even degree”, submitted.

    Google Scholar 

  23. E.E. Shult, “Hall triple systems”, University of Florida, mimeographed notes.

    Google Scholar 

  24. G. Tallini, “Ruled graphic systems”, Atti. Cony. Geo. Comb. Perugia (1971), 403–411.

    Google Scholar 

  25. D. Taylor, “Regular 2-graphs”, submitted.

    Google Scholar 

  26. D. Taylor, Personal communication.

    Google Scholar 

  27. J.A. Thas, “On 4-gonal configurations”, Geometrica Dedicata (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shult, E.E. (1974). Geometric Characterizations in Finite Group Theory. In: Newman, M.F. (eds) Proceedings of the Second International Conference on the Theory of Groups. Lecture Notes in Mathematics, vol 372. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21571-5_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21571-5_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-06845-7

  • Online ISBN: 978-3-662-21571-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics