Skip to main content

Abstract

Signaling by receptors with tyrosine kinase activity (RTK) plays an important role in the control of such cellular processes as cell growth, differentiation and motility. The binding of growth factors to RTKs promotes the activation of their intrinsic tyrosine kinase function and their interaction with a repertoire of intracellular molecules that elicit the appropriate biological response.1 In some cases “gain of function” mutations lead to a constitutive activation of the receptor and, as a consequence, to a chronic stimulation of its intracellular signaling pathway.2 Indeed, many members of the RTK gene superfamily were initially isolated as oncogenes that arose from mutations deregulating their kinase activity. Ret, a member of the RTK family, was first isolated as a transforming gene created by a recombination with the rfp gene during transfection of a T cell lymphoma DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kazlauskas A. Receptor tyrosine kinases and their targets. Current Opinion in Genetics and Development 1994; 4: 5–14.

    Article  PubMed  CAS  Google Scholar 

  2. Bishop JM. Molecular themes in oncogenesis. Cell 1991; 64: 235–48.

    Article  PubMed  CAS  Google Scholar 

  3. Takahashi M, Ritz J, Cooper GM. Activation of a novel human transforming gene, ret, by DNA rearrangement. Cell 1985; 42: 581–8.

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi M, Buma T, Iwamoto Y et al. Cloning and expression of the ret proto-oncogene encoding a tyrosine kinase with two potential transmembrane domains. Oncogene 1988; 3: 571–8.

    PubMed  CAS  Google Scholar 

  5. Iwamoto T, Taniguchi M, Asai N et al. cDNA cloning of mouse ret proto-oncogene and its sequence similarity to the cadherin superfamily. Oncogene 1993; 8: 107–91.

    Google Scholar 

  6. Schuchardt A, Srinivas S, Pachnis V et al. Isolation and characterization of a chicken homolog of the c-ret proto-oncogene. Oncogene 1995; 10: 641–9.

    PubMed  CAS  Google Scholar 

  7. Sugaya R, Ishimaru S, Hosoya T et al. A Drosophila homolog of human proto-oncogene ret transiently expressed in embryonic neu-ronal precursor cells including neuroblasts and CNS cells. Mechanisms of Development 1994; 45: 139–45.

    Article  PubMed  CAS  Google Scholar 

  8. Pachnis V, Mankoo B, Costantini F. Expression of the c-RET proto-oncogene during mouse embryogenesis. Development 1993; 119: 1005–17.

    PubMed  CAS  Google Scholar 

  9. Avantaggiato V, Dathan NA, Grieco M. et al. Developmental expression of the RET protooncogene. Cell Growth and Diff 1994; 5: 305–11.

    CAS  Google Scholar 

  10. Tsuzuki T, Takahashi M, Asai N et al. Spatial and temporal expression of the ret proto-oncogene product in embryonic, infant and adult rat tissues. Oncogene 1995; 10: 191–8.

    PubMed  CAS  Google Scholar 

  11. Fabien N, Paulin C, Santoro M et al. Expression of the RET proto-oncogene in normal human C-cells and adrenal medulla. Int J Onc 1994; 4: 623–6.

    CAS  Google Scholar 

  12. Fabien N, Paulin C, Santoro M et al. The RET proto-oncogene is expressed in predominantly epithelial human thymomas. Int J Onc 1994; 5: 489–93.

    CAS  Google Scholar 

  13. Schuchardt A, D’Agati V, Larsson-Blomberg L et al. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor ret. Nature 1994; 367: 380–3.

    Article  PubMed  CAS  Google Scholar 

  14. Romeo G, Ronchetto P, Luo Y et al. Point mutations affecting the tyrosine kinase domain of the RET proto-oncogene in Hirschsprung’s disease. Nature 1994; 367: 377–8.

    Article  PubMed  CAS  Google Scholar 

  15. Edery P, Lyonnet S, Mulligan LM et al. Mutations of the RET proto-oncogene in Hirschsprung’s disease. Nature 1994; 367: 378–80.

    Article  PubMed  CAS  Google Scholar 

  16. Santoro M, Rosati R, Grieco M et al. The ret proto-oncogene is consistently expressed in human pheochromocytomas and thyroid medullary carcinomas. Oncogene 1990; 5: 1595–8.

    PubMed  CAS  Google Scholar 

  17. Ikeda I, Ishizaka Y, Tahira T et al. Specific expression of the ret proto-oncogene in human neuroblastoma cell lines. Oncogene 1990; 5: 1291–6.

    PubMed  CAS  Google Scholar 

  18. Santoro M, Carlomagno F, Romano A et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995; 267: 381–3.

    Article  PubMed  CAS  Google Scholar 

  19. Asai N, Iwashita T, Matsuyama M et al. Mechanism of activation of the ret proto-oncogene by multiple endocrine neoplasia 2A mutations. Mol Cell Biol 1995; 15: 1613–9.

    PubMed  CAS  Google Scholar 

  20. Fusco A, Grieco M, Santoro M et al. A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases. Nature 1987; 328: 170–2.

    Article  PubMed  CAS  Google Scholar 

  21. Bongarzone I, Pierotti MA, Monzini N et al. High frequency of activation of tyrosine kinase oncogenes in human papillary thyroid carcinoma. Oncogene 1989; 4: 1457–62.

    PubMed  CAS  Google Scholar 

  22. Grieco M, Santoro M, Berlingieri MT et al. PTC is a novel rearranged form of the ret proto-oncogene and is frequently detected in vivo in human thyroid papillary carcinomas. Cell 1990; 60: 557–63.

    Article  PubMed  CAS  Google Scholar 

  23. Santoro M, Carlomagno F, Hay ID et al. RET oncogene activation in human thyroid neoplasms is restricted to the papillary carcinoma subtype. J Clin Invest 1992; 89: 1517–22.

    Article  PubMed  CAS  Google Scholar 

  24. Grieco M, Cerrato A, Santoro M et al. Cloning and characterization of H4 (D10S170), a gene involved in RET rearrangements in vivo. Oncogene 1994; 9: 2531–5.

    PubMed  CAS  Google Scholar 

  25. Pierotti MA, Santoro M, Jenkins RB et al. Characterization of a chromosome 10q inversion juxtaposing RET and H4 genes and creating the oncogenic sequence PTC. Proc Natl Acad Sci USA 1992; 89: 1616–20.

    Article  PubMed  CAS  Google Scholar 

  26. Bongarzone I, Monzini N, Borrello MG et al. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine-kinase and the regulatory subunit RI alpha of cyclic AMP protein kinase A. Mol Cell Biol 1993; 13: 358–66.

    PubMed  CAS  Google Scholar 

  27. Santoro M, Dathan NA, Berlingieri MT et al. Molecular characterization of RET/PTC3: a novel rearranged version of the RET proto-oncogene in a human thyroid papillary carcinoma. Oncogene 1994; 9: 509–16.

    PubMed  CAS  Google Scholar 

  28. Bongarzone I, Butti MG, Coronelli S et al. Frequent activation of the ret proto-oncogene by fusion with a new activating gene in papillary thyroid carcinomas. Cancer Res 1994; 54: 2979–85.

    PubMed  CAS  Google Scholar 

  29. Lanzi C, Borrello MG, Bongarzone I et al. Identification of the product of two oncogenic rearranged forms of the RET proto-oncogene in papillary thyroid carcinomas. Oncogene 1992; 7: 2189–94.

    PubMed  CAS  Google Scholar 

  30. Santoro M, Sabino N, Ishizaka Y et al. Involvement of RET oncogene in human tumors: specificity of RET activation to thyroid tumors. Br J Cancer 1993; 68: 460–4.

    Article  PubMed  CAS  Google Scholar 

  31. Iwamoto T, Takahashi M, Ito M et al. Oncogenicity of the ret transforming gene in MMTV/ret transgenic mice. Oncogene 1990; 5: 533–42.

    Google Scholar 

  32. Iwamoto T, Takahashi M, Ito M et al. Aberrant melanogenesis and melanocytic tumor development in transgenic mice that carry a metallothionein/ret fusion gene. EMBO J 1991; 10: 3167–75.

    PubMed  CAS  Google Scholar 

  33. Fusco A, Berlingieri MT, Di Fiore PP et al. One and two-step transformation of rat thyroid epithelial cells by retroviral oncogenes. Mol Cell Biol 1987; 7: 3365–70.

    PubMed  CAS  Google Scholar 

  34. Santoro M, Melillo RM, Berlingieri MT et al. The TRK and RET tyrosine-kinase oncogenes cooperate with ras in the neoplastic transformation of a rat thyroid epithelial cell line. Cell Growth and Diff 1993; 4: 77–84.

    CAS  Google Scholar 

  35. Schlessinger J. SH2/SH3 signaling proteins. Current Biology 1994; 4: 25–30.

    CAS  Google Scholar 

  36. Santoro M, Wong WT, Aroca P et al. An epidermal growth factor receptor/ret chimera generates mitogenic and transforming signals: evidence for a ret-specific signaling pathway. Mol Cell Biol 1994; 14: 663–75.

    PubMed  CAS  Google Scholar 

  37. Majerus PW, Ross TS, Cunningham TW et al. Recent insights in phosphatidylinositol signaling. Cell 1990; 63: 459–65.

    Article  PubMed  CAS  Google Scholar 

  38. Escobedo JA, Kaplan DR, Kavanaugh WM et al. A phosphatidylinositol-3 kinase binds to platelet-derived growth factor receptors through a specific receptor sequence containing phosphotyrosine. Mol Cell Biol 1991; 11: 1125–32.

    PubMed  CAS  Google Scholar 

  39. Hu P, Margolis B. Skolnik R et al. Interaction of phosphatidylinositol-3 kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol Cell Biol 1992; 12: 981–90.

    PubMed  CAS  Google Scholar 

  40. Whitman M, Kaplan DR, Schaffhausen B et al. Association of phosphatidylinositol kinase activity with polyoma middle T competent for transformation. Nature 1985; 315: 239–42.

    Article  PubMed  CAS  Google Scholar 

  41. Songyang Z, Shoelson SE, Chauduri G et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993; 72: 767–78.

    Article  PubMed  CAS  Google Scholar 

  42. McCormick F. Activators and effectors of ras p21 proteins. Current Opinion in Genetics and Development 1994; 4: 71–6.

    Article  PubMed  CAS  Google Scholar 

  43. Grieco D, Dathan NA, Santoro M et al Activated RET oncogene products induce maturation of Xenopus oocytes. Oncogene 1995; 11: 113–7.

    PubMed  CAS  Google Scholar 

  44. Pelicci G, Lanfrancone L, Grignani F et al. A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell 1992; 70: 93–104.

    Article  PubMed  CAS  Google Scholar 

  45. Borrello MG, Pelicci G, Arighi E et al. The oncogenic versions of the RET and TRK tyrosine kinases bind she and Grb2 adaptor proteins. Oncogene 1994; 9: 1661–8.

    PubMed  CAS  Google Scholar 

  46. Serth J, Weber W, French M et al. Binding of the H-ras p21 GTPase activating protein by the activated epidermal growth factor receptor leads to inhibition of the p21 GTPase activity in vitro. Biochemistry 1992; 31: 6361–5.

    Article  PubMed  CAS  Google Scholar 

  47. Nobes C, Hall A. Regulation and function of the Rho subfamily of small GTPases. Current opinion in genetics and development 1994; 4: 77–81.

    Article  PubMed  CAS  Google Scholar 

  48. Herskowitz I. MAP kinase pathways in yeast: for mating and more. Cell 1995; 80: 187–97.

    Article  PubMed  CAS  Google Scholar 

  49. Lange-Carter CA, Johnson GL. Ras-dependent growth factor regulation of MEK kinase in PC12 cells. Science 1994; 265: 1458–61.

    Article  PubMed  CAS  Google Scholar 

  50. Roberts TM. A signal chain of events. Nature 1992; 360: 534–5.

    Article  PubMed  CAS  Google Scholar 

  51. Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Current Biology 1994; 4: 82–9.

    Article  CAS  Google Scholar 

  52. D’Arcangelo G, Halegoua S. A branched signaling pathway for nerve growth factor is revealed by Src-, Ras-, and raf-mediated gene inductions. Mol Cell Biol 1993; 13: 3146–55.

    PubMed  Google Scholar 

  53. Porras A, Muszynski, Rapp UR et al. Dissociation between activa-tion of Raf-1 kinase and the 42-kDa mitogen-activated protein kinase/90-kDA S6 kinase (MAPK/RSK) cascade in the insulin/Ras pathway of adipocytic differentiation of 3T3 L1 cells. J Biol Chem 1994; 269: 12741–8.

    PubMed  CAS  Google Scholar 

  54. Qureshi SA, Alexandropoulos K, Rim M et al. Evidence that Ha-Ras mediated two distinguishable intracellular signals activated by v-Src. J Biol Chem 1992; 267: 17635–9.

    PubMed  CAS  Google Scholar 

  55. Polakis P, McCormick F. Interactions between p21 ras proteins and their GTPase activating proteins. Cancer Sury 1992; 12: 25–42.

    CAS  Google Scholar 

  56. Rodriguez-Viciana P, Warne PH, Dhand R et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 1994; 370: 527–32.

    Article  PubMed  CAS  Google Scholar 

  57. Berra E, Diaz-Meco MT, Dominguez I et al. Protein kinase isoform is critical for mitogenic signal transduction. Cell 1993; 74: 555–63.

    Article  PubMed  CAS  Google Scholar 

  58. Cai H, Erhardt P, Troppmair J et al. Hydrolysis of phosphatidylcholine couples Ras to activation of Raf protein kinase during mitogenic signal transduction. Mol Cell Biol 1993; 13: 7645–51.

    PubMed  CAS  Google Scholar 

  59. Hunter T. Cooperation between oncogenes. Cell 1991; 64: 249–70.

    Article  PubMed  CAS  Google Scholar 

  60. Vassart G, Dumont JE. The thyrotropin receptor and the regulation of thyrocyte function and growth. Endocr Rev 1992; 13: 596–611.

    PubMed  CAS  Google Scholar 

  61. Al-Alawi N, Rose DW, Buckmaster C et al. Thyrotropin-induced mitogenesis is ras dependent but appears to bypass the raf dependent cytoplasmic kinase cascade. Mol Cell Biol 1995; 15: 1162–8.

    PubMed  CAS  Google Scholar 

  62. Hofstra RMW, Landsvater RM, Ceccherini I et al. A mutation in the RET proto-oncogene associated with multiple endocrine neoplasia type 2B and sporadic medullary thyroid carcinoma. Nature 1994; 367: 375–76.

    Article  PubMed  CAS  Google Scholar 

  63. Songyang Z, Carraway III KL, Eck MJ et al. Catalytic specificity of protein-tyrosine kinases is critical for selective signaling. Nature 1995; 373: 536–40.

    Article  PubMed  CAS  Google Scholar 

  64. van der Geet P, Hunter T, Lindberg RA. Receptor protein-tyrosine kinases and their signal transduction pathways. Ann Rev Cell Biol 1994; 10: 251–337.

    Article  Google Scholar 

  65. Ben-Baruch N, Yarden Y. Neu differentiation factors: a family of alternatively spliced neuronal and mesenchymal factors. Proc Soc Exp Biol Med 1994; 206: 221–7.

    PubMed  CAS  Google Scholar 

  66. Gherardi E, Sharpe M, Lane K et al. Hepatocyte growth factor/ scatter factor (HGF/SF), the c-met receptor and the behavior of epithelial cells. Symp Soc Exp Biol 1993; 47: 163–81.

    PubMed  CAS  Google Scholar 

  67. Marshall CJ. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 1995; 80: 179–85.

    Article  PubMed  CAS  Google Scholar 

  68. Hill CS, Treisman R. Transcriptional regulation by extracellular signals: mechanisms and specificity. Cell 1995; 80: 199–211.

    Article  PubMed  CAS  Google Scholar 

  69. Greenberger JS, Sakakeeny MA, Humphries RK et al. Demonstration of permanent factor-dependent multipotential (erythroid/neu-trophil/basophil) hematopoietic progenitor cell lines. Proc Natl Acad Sci USA 1983; 80: 2931–5.

    Article  PubMed  CAS  Google Scholar 

  70. Pierce JH, Ruggiero M, Fleming TP et al. Signal transduction through the EGF receptor transfected in IL-3 dependent hematopoietic cells. Science 1988; 239: 628–31.

    Article  PubMed  CAS  Google Scholar 

  71. Romano A, Wong WT, Santoro M et al. The high transforming potency of erbB-2 and ret is associated with phosphorylation of paxillin and a 23 kDa protein. Oncogene 1994; 9: 2923–33.

    PubMed  CAS  Google Scholar 

  72. Turner CE. Paxillin is a major phosphotyrosine-containing protein during embryonic development. J Cell Biol 1991; 115:201–7.

    Google Scholar 

  73. Turner CE, Miller JT. Primary sequence of paxillin contains putative SH2 and SH3 domain binding motifs and multiple LIM domains: identification of a vinculin and pp125Fak-binding region. J Cell Sci 1994; 107: 1583–91.

    PubMed  CAS  Google Scholar 

  74. Fazioli F, Minichiello L, Matoska P et al. Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J 1993; 12: 3799–808.

    PubMed  CAS  Google Scholar 

  75. Wong WT, Carlomagno F, Druck T et al. Evolutionary conservation of the EPS8 gene and its mapping to human chromosome 12q23-q24. Oncogene 1994; 9: 3057–61.

    PubMed  CAS  Google Scholar 

  76. Fazioli F, Minichiello L, Matoskova B et al. eps15, a novel tyrosine kinase substrate exhibits transforming activity. Mol Cell Biol 1993; 13: 5814–28.

    PubMed  CAS  Google Scholar 

  77. Wong WT, Kraus MH, Carlomagno F et al. The human eps 15 gene, encoding a tyrosine kinase substrate, is conserved in evolution and maps to 1p31-p32. Oncogene 1994; 9: 1591–7.

    PubMed  CAS  Google Scholar 

  78. Bretscher A. Rapid phosphorylation and reorganization of ezrin and spectrin accompany morphological changes induces in A-431 cells by epidermal growth factor. J Cell Biol 1989; 108: 921–30.

    Article  PubMed  CAS  Google Scholar 

  79. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal phaeochromocytoma cells that respond to nerve growth factor. Proc Natl Acad Sci USA 1976; 76: 2424–8.

    Article  Google Scholar 

  80. Ohmichi M, Pang L, Ribon V et al. Divergence of signaling pathways for insulin in PC12 pheochromocytoma cells. Endocrinology 1993; 133: 46–56.

    Article  PubMed  CAS  Google Scholar 

  81. Califano D, Monaco C, De Vita G et al. Activated RET/PTC oncogene elicits immediate early and delayed response genes in PC12 cells. Oncogene 1995; 11: 107–12.

    PubMed  CAS  Google Scholar 

  82. Pawson T, Hunter T. Signal transduction and growth control in normal and cancer cells. Current Opinion in Genetics and Development 1994; 4: 1–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fusco, A., Vecchio, G., Dathan, N.A., Carlomagno, F., Di Fiore, P.P., Santoro, M. (1996). Intracellular Signaling by the ret Tyrosine Kinase. In: Genetic Mechanisms in Multiple Endocrine Neoplasia Type 2. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-21948-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-21948-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21950-8

  • Online ISBN: 978-3-662-21948-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics