Skip to main content

SCID-hu Mice as a Model for the Study of Human Malignancies

  • Chapter
Human Hematopoiesis in SCID Mice

Part of the book series: Medical Intelligence Unit ((MIU.LANDES))

  • 22 Accesses

Abstract

Despite recent advances in the study of human leukemias, and related fields of research such as molecular biology, immunology, and cell biology, the biology of this heterogeneous disease has not yet been completely elucidated. In addition to the mechanisms of leukemogenesis, questions remain regarding the events involved in tumor progression from a preleukemic stage, the regulation of leukemic cell growth by the bone marrow microenvironment, the effects of leukemic cells on normal hematopoiesis, the abnormalities in the leukemic bone marrow microenvironment, the identification of “leukemic stem” cells, and the mechanisms of graft-versus-leukemia (GVL) effects. These questions are difficult to address without experimental animal systems capable of modeling the complex in vivo events of leukemogenesis and leukemias. Models to develop new therapeutic modalities such as cytokine treatment, differentiation induction therapy, and gene therapy are also required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watanabe S, Shimosato Y, Kuroki M et al. Transplantability of human lymphoid cell line, lymphoma, and leukemia in splenectomized and/or irradiated nude mice. Cancer Res 1980; 40: 2588–95.

    PubMed  CAS  Google Scholar 

  2. Osugi Y, Gershwin ME, Owens RB et al. Tumorigenicity of human malignant lymphoblasts: Comparative study with unmanipulated nude mice, anti-lymphocyte serum-treated nude mice, and X-irradiated nude mice. J Natl Cancer Inst 1980; 65: 715–8.

    Google Scholar 

  3. Clutterbuck RD, Hills CA, Hoey P et al. Studies on the development of human acute myeloid leukemia xenografts in immune-deprived mice: Comparison with cells in short-term culture. Leuk Res 1985; 9: 1511–8.

    Article  PubMed  CAS  Google Scholar 

  4. Kyoizumi S, Baum CM, Kaneshima H et al. Implantation and maintenance of functional human bone marrow in SCID-hu mice. Blood 1992; 79: 1704–11.

    PubMed  CAS  Google Scholar 

  5. Kyoizumi S, Murray LJ, Namikawa R. Preclinical analysis of cytokine therapy in the SCID-hu mouse. Blood 1993; 81: 1479–88.

    PubMed  CAS  Google Scholar 

  6. Digiusto D, Chen S, Combs J et al. Human fetal bone marrow early progenitors for T, B, and myeloid cells are found exclusively in the population expressing high levels of CD34. Blood 1994; 84: 421–32.

    PubMed  CAS  Google Scholar 

  7. Chen BP, Galy A, Kyoizumi S et al. Engraftment of human hematopoietic precursor cells with secondary transfer potential in SCID-hu mice. Blood 1994; 84: 2497–505.

    PubMed  CAS  Google Scholar 

  8. Namikawa R, Ueda R, Kyoizumi S. Growth of human myeloid leukemias in the human marrow environment of SCID-hu mice. Blood 1993; 82: 2526–36.

    PubMed  CAS  Google Scholar 

  9. Kamel-Reid S, Letarte M, Sirard C et al. A model of human acute lymphoblastic leukemia in immune-deficient SCID mice. Science 1989; 246: 1597–600.

    Article  PubMed  CAS  Google Scholar 

  10. Cesano A, Connor R, Lange B et al. Homing and progression patterns of childhood acute lymphoblastic leukemias in severe combined immunodeficiency mice. Blood 1991; 77: 2463–74.

    PubMed  CAS  Google Scholar 

  11. Namen AE, Lupton S, Hjerrild K et al. Stimulation of B-cell progenitors by cloned marine interleukin-7. Nature 1988; 333: 571–3.

    Article  PubMed  CAS  Google Scholar 

  12. Lyman SD, James L, Vanden Bos T et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: A proliferative factor for primitive hematopoietic cells. Cell 1993; 75: 1157–67.

    Article  PubMed  CAS  Google Scholar 

  13. Hannum C, Culpepper J, Campbell D et al. Ligand for FLT3/FLK2 receptor tyrosine kinase regulates the growth response of haematopoietic stem cells and is encoded by variant mRNAs. Nature 1994; 368: 643–8.

    Article  PubMed  CAS  Google Scholar 

  14. Kamel-Reid S, Letarte M, Doedens M et al. Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice. Blood 1991; 78: 2973–81.

    PubMed  CAS  Google Scholar 

  15. Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–8.

    Article  PubMed  CAS  Google Scholar 

  16. Raza A, Preisler HD, Day R et al. Direct relationship between remission duration in acute myeloid leukemia and cell cycle kinetics: a leukemia intergroup study. Blood 1990; 76: 2191–7.

    PubMed  CAS  Google Scholar 

  17. Raza A, Yousuf N, Abbas A et al. High expression of transforming growth factor-beta long cell cycle times and a unique clustering of S-phase cells in patients with acute promyelocytic leukemia. Blood 1992; 79: 1037–48.

    PubMed  CAS  Google Scholar 

  18. Huang ME, Ye YC, Chen SR et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood 1988; 72: 567–72.

    PubMed  CAS  Google Scholar 

  19. Castaigne S, Chomienne C, Daniel M et al. All-trans retinoic acid as a differentiation therapy for acute promyelocytic leukemia. I. Clinical results. Blood 1990; 76: 1704–9.

    PubMed  CAS  Google Scholar 

  20. Moore MAS, Williams N, Metcalf D. In vitro colony formation by normal and leukemic human hematopoietic cells: Characterization of the colony-forming cells. J Natl Cancer Inst 1973; 50: 603–23.

    Google Scholar 

  21. Buick R, Till J, McCulloch E. Colony assay for proliferative blast cells circulating in myeloblastic leukemia. Lancet 1977; 1: 862–3.

    Article  PubMed  CAS  Google Scholar 

  22. Sabbath KD, Ball ED, Larcom P et al. Heterogeneity of clonogenic cells in acute myeloblastic leukemia. J Clin Invest 1985; 75: 746–53.

    Article  PubMed  CAS  Google Scholar 

  23. Howell AL, Stukel TA, Bloomfield CD et al. Induction of differentiation in blast cells and leukemia colony-forming cells from patients with acute myeloid leukemia. Blood 1990; 75: 721–9.

    PubMed  CAS  Google Scholar 

  24. McCulloch E. Stem cells in normal and leukemic hemopoiesis. Blood 1983; 62: 1–13.

    PubMed  CAS  Google Scholar 

  25. Griffin JD, Lowenberg B. Clonogenic cells in acute myeloblastic leukemia. Blood 1986; 68: 1185–95.

    PubMed  CAS  Google Scholar 

  26. Terstappen LLMR. Myeloid cell differentiation in normal bone marrow and acute myeloid leukemia assessed by multi-dimensional flow cytometry. Analyt Cell Pathol 1990; 2: 229–40.

    CAS  Google Scholar 

  27. Thomas ED, Clift RA. Indications for marrow transplantation in chronicmyelogenous leukemia. Blood 1989; 73: 861–4.

    PubMed  CAS  Google Scholar 

  28. Daley GQ, Etten RAV, Baltimore D. Blast crisis in a mutine model of chronic myelogenous leukemia. Proc Natl Acad Sci U.S.A. 1991; 88: 11335–8.

    Article  PubMed  CAS  Google Scholar 

  29. Gishizky ML, Johnson WJ, Witte ON. Efficient transplantation of BCRABL-induced chronic myelogenous leukemia-like syndrome in mice. Proc Natl Acad Sci U S A 1993; 90: 3755–9.

    Article  PubMed  CAS  Google Scholar 

  30. McGahon A, Bissonnette R, Schmitt M et al. BCR-ABL maintains resistance of chronic myelogenous leukemia cells to apoptotic cell death. Blood 1994; 83: 1179–87.

    PubMed  CAS  Google Scholar 

  31. Bedi A, Zehnbauer BA, Barber JP et al. Inhibition of apoptosis by BCRABL in chronic myeloid leukemia. Blood 1994; 83: 2038–44.

    PubMed  CAS  Google Scholar 

  32. Coulombel L, Kalousek DK, Eaves CJ et al. Long-term marrow culture reveals chromosomally normal hematopoietic progenitor cells in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. N Engl J Med. 1983; 308: 1493–8.

    Article  PubMed  CAS  Google Scholar 

  33. Sawyers CL, Gishizky ML, Quan S et al. Propagation of human blastic myeloid leukemias in the SCID mouse. Blood 1992; 79: 2089–98.

    PubMed  CAS  Google Scholar 

  34. Eaves AC, Cashman JD, Gaboury LA et al. Unregulated proliferation of primitive chronic myeloid leukemia progenitors in the presence of normal marrow adherent cells. Proc Natl Acad Sci U S A 1986; 83: 5306–10.

    Article  PubMed  CAS  Google Scholar 

  35. Gordon MY, Dowding CR, Riley GP et al. Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 1987; 328: 342–4.

    Article  PubMed  CAS  Google Scholar 

  36. Talpaz M, Kantarjian HM, McCredie K et al. Hematologic remission and cytogenetic improvement induced by recombinant human interferon alpha A in chronic myelogenous leukemia. N Engl J Med 1986; 314: 1065–9.

    Article  PubMed  CAS  Google Scholar 

  37. Kantarjian HM, Deisseroth A, Kurzrock R et al. Chronic myelogenous leukemia: a concise update. Blood 1993; 82: 691–703.

    PubMed  CAS  Google Scholar 

  38. Verfaillie CM, McCarthy JB, McGlave PB. Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia. Decreased adhesion to stroma and fibronectin but increased adhesion to the basement membrane components laminin and collagen type IV. J Clin Invest 1992; 90: 1232–41.

    Article  PubMed  CAS  Google Scholar 

  39. Bhatia R, Wayner EA, McGlave PB et al. Interferon-alpha restores normal adhesion of chronic myelogenous leukemia hematopoietic progenitors to bone marrow stroma by correcting impaired beta 1 integrin receptor function. J Clin Invest 1994; 94: 384–91.

    Article  PubMed  CAS  Google Scholar 

  40. Cesano A, Hoxie JA, Lange B et al. The severe combined immunodeficient (SCID) mouse as a model for human myeloid leukemias. Oncogene 1992; 7: 827–36.

    PubMed  CAS  Google Scholar 

  41. Kitamura T, Tange T, Terasawa T et al. Establishment and characterization of a unique human cell line that proliferates dependently on GMCSF, IL-3, or erythropoietin. J Cell Physiol 1989; 140: 323–34.

    Article  PubMed  CAS  Google Scholar 

  42. Kitamura T, Takaku F, Miyajima A. IL-1 up-regulates the expression of cytokine receptors on a factor-dependent human hemopoietic cell line, TF-1. Int Immunol 1991; 3: 571–7.

    Article  PubMed  CAS  Google Scholar 

  43. Shtivelman E, Namikawa R. Species-specific metastasis of human tumor cells in the SCID-hu mouse. Proc Natl Acad Sci U.S.A., in press.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Namikawa, R. (1995). SCID-hu Mice as a Model for the Study of Human Malignancies. In: Human Hematopoiesis in SCID Mice. Medical Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22008-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22008-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22010-8

  • Online ISBN: 978-3-662-22008-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics