Skip to main content

Small Molecule Ligands for Targeting Long Circulating Liposomes

  • Chapter
Long Circulating Liposomes: Old Drugs, New Therapeutics

Part of the book series: Biotechnology Intelligence Unit ((BIOIU))

  • 222 Accesses

Abstract

Most of the contributions to this volume demonstrate the therapeutic benefits that can be provided by long circulating liposome (LCL) formulations of therapeutic and diagnostic agents. These benefits begin to approach realization of the “magic bullet” drug delivery concept. However, the success of clinically applied LCL formulations is derived from selective but nonspecific localization, i.e., not mediated by binding to a specific receptor moiety, at accessible pathological tissues where leakage occurs from the vascular circulation. This is sometimes referred to as “passive” targeting and can be thought of as simply “leakage in the plumbing”. Desires to improve targeting by virtue of binding to receptors by attaching corresponding ligands, i.e.,“active” targeting or specific localization, remain largely unfulfilled. An issue for active targeting is the ability of the LCL already localized in the target site to identify and bind to the target cells. Consequently, targeted LCL represent a potentially important means to increase the therapeutic index of encapsulated drugs.1–7

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klibanov AL, Maruyama K, Beckerleg AM et al. Activity of amphipathic poly-(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunliposome binding to target. Biochim Biophys Acta 1991; 1062: 142–148.

    Article  PubMed  CAS  Google Scholar 

  2. Mori A, Huang L. Immunoliposome targeting in a mouse model: optimization and therapeutic application. In: Gregoriadis G, ed. Liposome Technology. Boca Raton: CRC Press 1993: 153–162.

    Google Scholar 

  3. Torchilin VP, Klibanov AL, Huang L et al. Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J 1992; 6: 2716–2719.

    Google Scholar 

  4. Allen TM, Agrawal AK, Ahmad I et al. Antibody-mediated targeting of long circulating (StealthTM) liposomes. J Lipo Res 1994; 41–25.

    Google Scholar 

  5. Woodle MC. Sterically stabilized liposome therapeutics. Adv Drug Del Rev 1995; 16: 249–265.

    Article  CAS  Google Scholar 

  6. Goren D, Horowitz AT, Zalipsky S et al. Targeting of Stealth liposomes to erbB2 (Here) Receptor: in vitro and in vivo studies. Br J Cancer 1996; 74: 1749–1756.

    Article  PubMed  CAS  Google Scholar 

  7. Emanuel N, Kedar E, Bolotin E et al. Targeted delivery of doxorubicin via sterically stabilized immunoliposomes: pharmacokinetics and biodistribution in tumor-bearing mice. Pharm Res 1996; 13: 861–868.

    Article  PubMed  CAS  Google Scholar 

  8. Blume G, Cevc G, Crommelin MDJA et al. Specific targeting with poly(ethylene glycol)-modified liposomes: coupling of homing devices to the ends of the polymeric chains combines effective target binding with long circulation times. Biochim Biophys Acta 1993; 1149: 180–184.

    Google Scholar 

  9. Zalipsky S, Puntambekar B, Boulikas P et al. Peptide attachment to extremities of liposomal surface grafted PEG chains: preparation oth the long circulating form of laminin peptapeptide, YIGSR. Bioconj Chem 1995; 6: 705–708.

    Google Scholar 

  10. DeFrees SA, Phillips L, Guo L et al. Sialyl lewis x liposomes as a multivalent ligand and inhibitor of e-selectin mediated cellular adhesion. J Am Chem Soc 1996; 118: 6101–6104.

    Article  CAS  Google Scholar 

  11. n. Wang CY, Huang L. Highly efficient DNA delivery mediated by pH-sensitive immunoliposomes. Biochem 1989; 28:95o8-9514.

    Google Scholar 

  12. Wilschut J, Hoekstra D. Membrane Fusion. New York: Marcel Dekker, Inc., 1991.

    Google Scholar 

  13. Lasic DD. Liposomes: from Physics to Applications. Amsterdam: Elsevier, 1993: 575.

    Google Scholar 

  14. de Lima MCP, Hoekstra D. Liposomes, viruses, and membrane fusion. In: Philippot JR, Schuber F, eds. Liposomes as Tools in Basic Research and Industry. Boca Raton: CRC Press, 1994: 137–156.

    Google Scholar 

  15. Duzgunes N, Nir S. Liposomes as tools for elucidating the mechanism of membrane fusion. In: Philippot JR, Schuber F, eds. Liposomes as Tools in Basic Research and Industry. Boca Raton: CRC Press, 1994: 103–136.

    Google Scholar 

  16. Remy J-S, Sirlin C, Behr J-P. Gene transfer with cationic amphiphiles. In: Philippot JR, Schuber F, eds. Liposomes as Tools in Basic Research and Industry. Boca Raton: CRC Press, 1994: 159–170.

    Google Scholar 

  17. Lasic DD. Liposomes in Gene Delivery. Boca Raton: CRC Press, 1997: 32o.

    Google Scholar 

  18. Holland JW, Cullis PR, Madden TD. Poly(ethylene glycol)-lipid conjugates promote bilayer formation in mixtures of non-bilayer-forming lipids. Biochem 1996; 35: 2610–2617.

    Article  CAS  Google Scholar 

  19. Lasic DD. Liposomes within liposomes. Nature 1997; 387: 26–27.

    Article  PubMed  CAS  Google Scholar 

  20. Slepushkin VA, Simoes S, Dazin P et al. Sterically stabilized pH-sensitive liposomes-intracellular delivery of aqueous contents and prolonged circulation in vivo. J Biol Chem 1997; 272: 2382–2388.

    Article  PubMed  CAS  Google Scholar 

  21. Kirpotin D, Park JW, Hong K et al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochem 1997; 36: 66–75.

    Article  CAS  Google Scholar 

  22. Woodle MC, Raynaud FI, Dizik M et al. Oligonucleotide pharmacology and formulation: G3139 anti-BCL2 phosphorothioate in Stealth liposomes and gel implants. Nucleosides Nucleotides 1997; (in press).

    Google Scholar 

  23. Maruyama K, Kennel SJ, Huang L. Lipid composition is important for highly efficient target binding and retention of immunoliposomes. Proc Natl Acad Sci USA 1990; 87: 5744–5748.

    Article  PubMed  CAS  Google Scholar 

  24. Mori A, Klibanov AL, Torchilin VP et al. Influence of the steric barrier of amphipathic poly)ethyleneglycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett 1991; 284: 263–266.

    Article  PubMed  CAS  Google Scholar 

  25. Mori A, Kennel SJ, Huang L. Immunotargeting of liposomes containing lipophilic antitumor prodrugs. Pharm Res 1993; 10507–514.

    Google Scholar 

  26. Ahmad I, Longenecker M, Samuel J et al. Antibody-targeted dilivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice. Cancer Res 1993; 53: 1484–1488.

    PubMed  CAS  Google Scholar 

  27. Zalipsky S, Newman MS, Puntambekar B et al. Model ligands linked to polymer chains on liposomal surfaces: application of a new functionalized polyethylene glycol lipid conjugate. Polym Mater Sci Eng 1993; 67: 519–520.

    Google Scholar 

  28. Vingerhoeds MH, Steerenberg PA, Hendriks JJGW et al. Immunoliposome-mediated targeting of doxorubicin to human ovarian carcinoma in vitro and in vivo. Br J Cancer 1996; 74: 1023–1029.

    Article  PubMed  CAS  Google Scholar 

  29. Matthay KK, Abai AM, Cobb S et al. Role of ligand in antibody-directed endocytosis of liposomes by human T-leukemia cells. Cancer Res 1989; 49: 4879–4886.

    PubMed  CAS  Google Scholar 

  30. Storm G, Nassander UK, Vingerhoeds MH et al. Antibody-targeted liposomes to deliver doxorubicin to ovarian cancer cells. J Lipo Res 1994; 4: 641–666.

    Google Scholar 

  31. Allen T, Hansen CB, Kao GY et al. Therapeutic opportunities for targeted liposomal drug delivery. Adv Drug Del Rev 1996; 21: 117–133.

    Article  CAS  Google Scholar 

  32. Parr MJ, Ansell SM, Choi LS et al. Factors influenceing the retention and chemical stability of poly(ethylene glycol)-lipid conjugates incorporated into large unilamellar vesicles. Biochim Biophys Acta 1994; 1195: 21–30.

    Article  PubMed  CAS  Google Scholar 

  33. Holland JW, Hui C, Cullis PR et al. Poly(ethylene glycol)-lipid conjugates regulate the calcium-induced fusion of liposomes composed of phosphatidylethanolamine and phosphatidylserine. Biochem 1996; 35: 2618–2624.

    Article  CAS  Google Scholar 

  34. Kirpotin D, Hong K, Mullah N et al. Liposomes with detachable polymer coating: destabilization and fusion of dioleoylphophatidylethanolamine vesicles triggered by cleavage of surface-grafted poly(ethylene glycol). FEBS Lett 1996; 388: 115–118.

    Article  PubMed  CAS  Google Scholar 

  35. Zalipsky S. Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes. Bioconj Chem 1993; 4: 296–299.

    Article  CAS  Google Scholar 

  36. Haselgrubler T, Amerstorfer A, Schindler H et al. Synthesis and applications of a new poly(ethylene glycol) derivative for the crosslinking of amines with thiols. Bioconj Chem 1995; 6: 242–248.

    Article  CAS  Google Scholar 

  37. Zalipsky S. Functionalized poly(ethylene glycol)s for preparation of biologically relevant conjugates. Bioconj Chem 1995; 6: 150–165.

    Google Scholar 

  38. Park JW, Hong K, Carter P et al. Development of anti-p185HER2 immunoliposomes for cancer therapy. Proc Natl Acad Sci USA 1995; 92: 1327–1331.

    Google Scholar 

  39. Vingerhoeds MH, Haisma HJ, van Muigen M et al. A new application for liposomes in cancer therapy: immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of prodrugs. FEBS Lett 1993; 336: 485–490.

    Article  PubMed  CAS  Google Scholar 

  40. Oku N, Tokudome Y, Koike C et al. Liposomal arg-gly-asp analogs effectively inhibit metastatic B16 melanoma colonization in murine lungs. Life Sci 1996; 58: 2263–2270.

    Article  PubMed  CAS  Google Scholar 

  41. Storm G, Vingerhoeds MH, Crommelin DJA et al. Immunoliposomes bearing enzymes (immuno-enzymosomes) for site-specific activation of anticancer prodrugs. Adv Drug Del Rev 1997; 24: 225–231.

    Article  CAS  Google Scholar 

  42. Vingerhoeds MH, Haisma HJ, Belliot SO et al. Immunoliposomes as enzyme-carriers (immuno-enzymosomes) for antibody-directed enzyme prodrug therapy (ADEPT): optimization of prodrug activating capacity. Pharm Res 1996; 13: 604–610.

    Article  PubMed  CAS  Google Scholar 

  43. Trubetskoy VS, Narula J, Khaw BA et al. Chemically optimized antimyosin Fab conjuates with chelating polymers: importance of the nature of the protein-polymer single site covalent bond for biodistribution and infarction localization. Bioconj Chem 1993; 4: 251–255.

    Article  CAS  Google Scholar 

  44. Zalipsky S, Brandeis E, Newman MS et al. Long circulating, cationic liposomes containing amino-PEG-phosphatidylethanolamine. FEBS Lett 1994; 353: 71–74.

    Article  PubMed  CAS  Google Scholar 

  45. Lee RJ, Low PS. Delivery of liposomes into cultured KB cells via folate receptor-mediated endocytosis. J Biol Chem 1994; 269: 3198–3204.

    PubMed  CAS  Google Scholar 

  46. Yamamura K, Kibbey MC, Jun SH et al. Effect of matrigel and laminin peptide YIGSR on tumor growth and metastasis. Semin Cancer Biol 1993; 4259–265.

    Google Scholar 

  47. Merwin JR, Noell GS, Thomas WL et al. Targeted delivery of DNA using YEE(Ga1NAcAH)3, a synthetic glycopeptide for the asialogylcoprotein receptor. Bioconj Chem 1994; 5612–620.

    Google Scholar 

  48. De Kruif J, Storm G, van Bloois L et al. Biosynthetically lipid-modified human scFv fragments from phage display libraries as targeting molecules for immunoliposomes. FEBS Lett, 1996; 399: 232–236.

    Article  PubMed  Google Scholar 

  49. Crommelin DJA, Herron J, Storm G. (Protein)-targeted delivery with particulate systems. In: Lee VHL, Hashida M, Mizushima YM, eds. Trends and Future Perspectives in Peptide and Protein Delivery. Harwood Academic Publishers, GmbH 1994:207–239

    Google Scholar 

  50. Li S, Gao, X, Son K, Sorgi F et al. DC-Chol lipid system in gene transfer. J Controlled Rel 1996; 39: 373–381.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woodle, M.C., Lasic, D.D., Storm, G. (1998). Small Molecule Ligands for Targeting Long Circulating Liposomes. In: Woodle, M.C., Storm, G. (eds) Long Circulating Liposomes: Old Drugs, New Therapeutics. Biotechnology Intelligence Unit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-22115-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-22115-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-22117-4

  • Online ISBN: 978-3-662-22115-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics