Skip to main content

Neutrophil Function in Uremia: Inhibition by Endogenous Plasma Inhibitor(s)

  • Chapter
Nephrology
  • 6 Accesses

Abstract

Infectious complications in patients with end-stage renal disease result in significant morbidity and mortality. Uremia is an immunocompromised state which is due to the direct effects of uremic toxins and to indirect factors, e.g., malnutrition, dialysis membranes with their effects on complement system and white blood cells, or vascular access for dialysis providing a portal of entry for microorganisms [1]. Dysfunction of polymorphonuclear cells (PMN) in uremia includes adherence, the first step in neutrophil migration, chemotaxis, phagocytotic capacity, generation of reactive oxygen intermediates, or intracellular killing of bacteria [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tolkoff NE, Rubin RH (1990) Uremia and host defenses. N Engl J Med 322: 770–772

    Article  Google Scholar 

  2. Haag-Weber M, Hable M, Schollmeyer P, Hörl WH (1989) Metabolic response of neutrophils to uremia and dialysis. Kidney Int 36 (Suppl 27): S293 - S298

    Google Scholar 

  3. Clark RA, Hamony BH, Ford G, Kimball HR (1972) Chemotaxis in acute renal failure. J Infect Dis 126: 460–463

    Article  PubMed  CAS  Google Scholar 

  4. Baum J, Cestero RVM, Freeman RB (1975) Chemotaxis of polymorphonuclear leukocytes and delayed hypersensitivity in uremia. Kidney Int 7 (Suppl 2): S147 - S153

    Google Scholar 

  5. Siriwatratananonta P, Sinsakul V, Stern K, Slavin RG (1978) Defective chemotaxis in uremia. J Lab Clin Med 92: 402–407

    PubMed  CAS  Google Scholar 

  6. Pedersen JO, Knudsen F, Nielsen AH, Grunnet N (1987) The ability of uremic serum to induce neutrophil chemotaxis in relation to hemodialysis Blood Purif 5: 24–28

    CAS  Google Scholar 

  7. Hirabayashi Y, Kobayashi T, Nishikawa A, Aoki T, Takaya J, Kobayashi Y (1988) Oxidative metabolism and phagocytosis of polymorphonuclear leukocytes in patients with chronic renal failure. Nephron 49: 305–312

    Article  PubMed  CAS  Google Scholar 

  8. Vanholder RC, Dhondt A, Ringoir SMG (1988) Challenge of phagocyte metabolism by extracorporeal test. Trans Am Soc Artif Intern Organs 34: 214–218

    Google Scholar 

  9. Hällgren R, Fjellström KE, Venge P (1979) Kinetic studies of phagocytosis. II. The serum-independent uptake of IgG-coated particles by polymorphonuclear leukocytes from uremic patients on regular dialysis treatment. J Lab Clin Med 94: 277–284

    Google Scholar 

  10. Ritchey EE, Wallin JD, Shah SV (1981) Chemiluminescence and superoxide anion production by leukocytes from chronic hemodialysis patients. Kidney Int 19: 349–358

    Article  PubMed  CAS  Google Scholar 

  11. Nguyen AT, Lethias C, Zingraff J, Herbelin A, Naret C, Descamps-Latscha B (1985) Hemodialysis membrane-induced activation of phagocyte oxidative metabolism detected in vivo and in vitro within microamounts of whole blood. Kidney Int 28: 158–167

    Article  PubMed  CAS  Google Scholar 

  12. Kolb G, Schönemann H, Fischer W, Bittner K, Lange H, Höffken H, Damann V, Joseph K, Havemann K (1988) Hemodialysis with cuprophane membranes leads to alteration of granulocyte oxidative metabolism and leukocyte sequestion in the lung. In: Hörl WH, Heidland A (eds) Proteases: Potential role in health and disease II. Plenum, New York, pp 377–384

    Chapter  Google Scholar 

  13. Markert M, Heierli C, Kuwahara T, Frei J, Wauters JP (1988) Dialyzed polymorphonuclear neutrophil oxidative metabolism during dialysis: a comparative study with 5 new and reused membranes. Clin Nephrol 29: 129–136

    PubMed  CAS  Google Scholar 

  14. McCaleb ML, Izzo MS, Lockwood DH (1985) Characterization and partial purification of a factor from uremic human serum that induces insulin resistance. J Clin Invest 75: 391396

    Google Scholar 

  15. DeFronzo RA, Tobin JD, Rowe JW, Andres R (1978) Glucose intolerance in uremia. J Clin Invest 62: 425–435

    Article  PubMed  CAS  Google Scholar 

  16. Hampers CL, Soeldner JS, Doak PB, Merrill JP (1966) Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J Clin Invest 45: 1719–1731

    Article  PubMed  CAS  Google Scholar 

  17. Balesteri P, Rindi P, Biagini M, Giovaneti S (1972) Effects of uremic serum, urea, creati-nine and methylguanidine on glucose metabolism. Clin Sci 42: 395–404

    Google Scholar 

  18. Morgan JM, Morgan RE (1964) Study of the effect of uremic metabolites on erythrocyte glycosis. Metabolism 13: 629–635

    Article  PubMed  CAS  Google Scholar 

  19. Dzurik R (1980) Metabolic alterations caused by uremia. Proc Eur Dial Transplant Assoc 17: 577–586

    PubMed  CAS  Google Scholar 

  20. McCaleb ML, Mevorach R, Freeman RB, Izzo MS, Lockwood DH (1984) Induction of insulin resistance in normal adipose tissue by uremic human serum. Kidney Int 25: 416421

    Google Scholar 

  21. Korchak HM, Rutherford LE, Weissman G (1984) Stimulus response coupling in the human neutrophiles. I. Kinetic analysis of changes in calcium permeability. J Biol Chem 259: 4070

    Google Scholar 

  22. McCall C, Schmitt J, Cousart S, O’Flaherty J, Bass D, Wykle R (1985) Stimulation of hexose transport by human polymorphonuclear leucocytes: a possible role of protein kinase C. Biochem Biophys Res Commun 126: 450–456

    Article  PubMed  CAS  Google Scholar 

  23. Krause KH, Schlegel W, Wollheim CB, Andersson T, Waldvogel FA, Lew PD (1985) Chemotactic peptide activation of human neutrophils and HL-60 cells. Pertussis toxin reveals correlation between inositol triophate generation, calcium ion transients, and cellular activation. J Clin Invest 76: 1348–1354

    Google Scholar 

  24. Haag-Weber M, Hable M, Schollmeyer P, Hörl WH (1989) Hemodialysis improves carbohydrate metabolism in polymorphonuclear neutrophils ( PMN) (abstract ). Kidney Int 35: 248

    Google Scholar 

  25. Haag-Weber M, Schollmeyer P, Hörl WH (1989) Neutrophil activation during hemodialysis. In: Hörl WH, Schollmeyer P (eds) New perspectives in hemodialysis, peritoneal dialysis, arteriovenous hemofiltration, and plasmapheresis. Plenum, New York, pp 27–37

    Chapter  Google Scholar 

  26. Hörl WH, Haag-Weber M, Georgopoulos A, Block LH (1990) The physicochemical characterization of a polypeptide present in uremic serum that inhibits the biological activity of polymorphonuclear cells. Proc Natl Acad Sci USA 87: 6353–6357

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Japan

About this chapter

Cite this chapter

Hörl, W.H. (1991). Neutrophil Function in Uremia: Inhibition by Endogenous Plasma Inhibitor(s). In: Hatano, M. (eds) Nephrology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35158-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35158-1_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70074-6

  • Online ISBN: 978-3-662-35158-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics