Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 68))

Abstract

The metabolism of Plasmodium has been under study for 4 decades, and periodically the accumulated literature has been reviewed (Fulton 1951; McKee 1951; Fulton and Spooner 1955; Moulder 1962; Honigberg 1967; Peters 1969; Fletcher and Maegraith 1972; Trager 1970; Oelshlegel and Brewer 1975; Homewood 1978; Sherman 1979). The present chapter is designed to provide an introduction to the metabolic capabilities of malarial parasites; where possible, biochemical features that could provide insights into the mechanisms of drug action are emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikawa M (1977) Variations in structure and function during the life cycle of malarial parasites. Bull WHO 55:139–156

    PubMed  CAS  Google Scholar 

  • Anfinsen CB, Geiman QM, McKee RW, Ormsbee RA, Ball EG (1946) Studies on malarial parasites. VIII. Factors affecting the growth of Plasmodium knowlesi in vitro. J Exp Med 84:607–621

    PubMed  CAS  Google Scholar 

  • Bahr GF (1966) Quantitative cytochemical study of erythrocytic stages of Plasmodium lophurae and Plasmodium berghei. Milit Med 131:1064–1070

    CAS  Google Scholar 

  • Ball EG, McKee RW, Anfinsen CB, Cruz WO, Geiman QM (1948) Studies on malarial parasites. IX. Chemical and metabolic changes during growth and multiplication in vivo and in vitro. J Biol Chem 175:547–571

    PubMed  CAS  Google Scholar 

  • Bannister L, Butcher G, Mitchell G (1977) Recent advances in understanding the invasion of erythrocytes by merozoites of Plasmodium knowlesi. Bull WHO 55:163–170

    PubMed  CAS  Google Scholar 

  • Barnes MG, Polet H (1969) The influence of methylene blue on the pentose phosphate pathway in erythrocytes of monkeys infected with Plasmodium knowlesi. J Lab Clin Med 74:1–11

    PubMed  CAS  Google Scholar 

  • Bass CC, Johns FM (1912) The cultivation of malarial plasmodia (Plasmodium vivax and Plasmodium falciparum) in vitro. J Exp Med 16:567–579

    PubMed  CAS  Google Scholar 

  • Bennett TP, Trager W (1967) Pantothenic acid metabolism during avian malaria infection: pantothenate kinase activity in duck erythrocytes and in Plasmodium lophurae. J Protozool 14:214–216

    PubMed  CAS  Google Scholar 

  • Bouisset L, Ruffie J (1958) Course of Plasmodium berghei malaria in white rats deficient in vitamin A. Ann Parasitol Hum 33(3):209–217

    CAS  Google Scholar 

  • Bovarnick MR, Lindsay A, Hellerman L (1946 a) Metabolism of the malarial parasite, with reference particularly to the action of antimalarial agents. I. Preparation and properties of Plasmodium lophurae separated from the red cells of duck blood by means of saponin. J Biol Chem 163:523–533

    PubMed  CAS  Google Scholar 

  • Bovarnick MR, Lindsay A, Hellerman L (1946 b) Metabolism of the malarial parasite, with reference particularly to the action of antimalarial agents. II. Atabrine (quinacrine) inhibition of glucose oxidation in parasites initially depleted of substrate. Reversal by adenylic acid. J Biol Chem 163:535–531

    PubMed  CAS  Google Scholar 

  • Bowman IBR, Grant PT, Kermack WO (1960) The metabolism of Plasmodium berghei, separated from the host cell. Exp Parasitol 9:131–136

    PubMed  CAS  Google Scholar 

  • Bowman IBR, Grant PT, Kermack WO, Ogston D (1961) The metabolism of Plasmodium berghei, the malaria parasite of rodents. 2. An effect of mepacrine on the metabolism of glucose by the parasite separated from its host cell. Biochem J 78:472–478

    PubMed  CAS  Google Scholar 

  • Brewer GJ, Coan CC (1969) Interaction of red cell ATP levels and malaria, and the treatment of malaria with hyperoxia. Milit Med 134:1056–1067

    CAS  Google Scholar 

  • Brewer GJ, Powell RD (1965) A study of the relationship between the content of adenosine triphosphate in human red cells and the course of falciparum malaria: a new system that may confer protection against malaria. Proc Nat Acad Sci USA 54:741–745

    PubMed  CAS  Google Scholar 

  • Brohn FH, Trager W (1975) Coenzyme A requirement of malarial parasites: enzymes of coenzyme A biosynthesis in normal duck erythrocytes and erythrocytes infected with Plasmodium lophurae. Proc Nat Acad Sci USA 72:2456–2458

    PubMed  CAS  Google Scholar 

  • Bryant C, Voller A, Smith MJH (1964) The incorporation of radioactivity from [14]glucose into the soluble metabolic intermediates of malaria parasites. Am J Trop Med Hyg 13:515–519

    PubMed  CAS  Google Scholar 

  • Büngener W (1974) Einfluß von Allopurinol auf Zyklusdauer und Vermehrungsrate von Plasmodium vinckei in der Ratte. Tropenmedizin Parasitol 25:464–468

    Google Scholar 

  • Büngener W, Nielsen G (1967) Nukleinsäurenstoffwechsel bei experimenteller Malaria. 1. Untersuchungen über den Einbau von Thymidin, Uridin und Adenosin in Malariaparasiten (Plasmodium berghei and Plasmodium vinckei). Z Tropenmed Parasitol 18:456–462

    PubMed  Google Scholar 

  • Büngener W, Nielsen G (1968) Nukleinsäurenstoffwechsel bei experimenteller Malaria. 2. Einbau von Adenosin und Hypoxanthin in die Nukleinsäuren von Malariaparasiten (Plasmodium berghei and Plasmodium vinckei). Z Tropenmed Parasitol 19:185–197

    PubMed  Google Scholar 

  • Büngener W, Nielsen G (1969) Nukleinsäurenstoffwechsel bei experimenteller Malaria. 3. Einbau von Adenin aus dem Adeninnukleotidpool der Erythrozyten in die Nukleinsäuren von Malariaparasiten. Z Tropenmed Parasitol 20:66–73

    Google Scholar 

  • Carter G, Van Dyke K (1972) Drug effects on the phosphorylation of adenosine and its incorporation into nucleic acids of chloroquine sensitive and resistant erythrocyte-free malarial parasites. Proc Helminth Soc Wash 39:244–249

    CAS  Google Scholar 

  • Carter R, Walliker D (1977) Biochemical markers for strain differentiation in malarial parasites. Bull WHO 55:339–345

    PubMed  CAS  Google Scholar 

  • Ceithaml J, Evans EA Jr (1946) The biochemistry of the malaria parasite. IV. The in vitro effects of X-rays upon Plasmodium gallinaceum. J Infect Dis 78:190–197

    PubMed  CAS  Google Scholar 

  • Cenedella RJ (1968) Lipid synthesis from glucose carbon by Plasmodium berghei in vitro. Am J Trop Med Hyg 17:680–684

    CAS  Google Scholar 

  • Cenedella RJ, Jarrell JJ (1970) Suggested new mechanisms of antimalarial action for DDS involving inhibition of glucose utilization by the intraerythrocytic parasite. Am J Trop Med Hyg 19:592–598

    PubMed  CAS  Google Scholar 

  • Chaimanee P, Yuthavong Y (1979) Phosphorylation of membrane proteins from Plasmodium berghei-infected red cells. Biochem Biophys Res Comm 87:953–959

    PubMed  CAS  Google Scholar 

  • Chance ML, Momen H, Warhurst DC, Peters W (1978) The chemotherapy of rodent malaria, XXIX. DNA relationships within the subgenus Plasmodium (Vinckeia). Ann Trop Med Parasitol 72:13–22

    PubMed  CAS  Google Scholar 

  • Charet P, Aissi E, Maurois P, Bouquelet S, Biguet J (1980) Aminopeptidase in rodent Plasmodium. Comp Biochem Physiol [B] 65:519–524

    Google Scholar 

  • Chou AC, Chevli R, Fitch CD (1980) Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19:1543–1549

    PubMed  CAS  Google Scholar 

  • Christophers SR, Fulton JD (1939) Experiments with isolated malaria parasites (Plasmodium knowlesi) free from red cells. Ann Trop Med Parasitol 33:161–170

    Google Scholar 

  • Ciak J, Hahn F (1966) Chloroquine: Mode of action. Science 151:347–349

    PubMed  CAS  Google Scholar 

  • Clarke DH (1952 a) The use of phosphorus 32 in studies on Plasmodium gallinaceum. I. The development of a method for the quantitative determination of parasite growth and development in vitro. J Exp Med 96:439–450

    PubMed  CAS  Google Scholar 

  • Clarke DH (1952 b) The use of phosphorus 32 in studies on Plasmodium gallinaceum. II. Studies on conditions affecting parasite growth in intact cells and in lysates. J Exp Med 96:451–463

    PubMed  CAS  Google Scholar 

  • Conklin KA, Chou SC, Siddiqui WA, Schnell JV (1973) DNA and RNA syntheses by intraerythrocytic stages of Plasmodium knowlesi. J Protozool 20:683–688

    PubMed  CAS  Google Scholar 

  • Cook L, Grant PT, Kermack WO (1961) Proteolytic enzymes of the erythrocytic forms of rodent and simian species of malarial plasmodia. Exp Parasitol 11:372–379

    PubMed  CAS  Google Scholar 

  • Cook RT, Aikawa M, Rock RC, Little W, Sprinz H (1969) The isolation and fractionation of Plasmodium knowlesi. Milit Med 134:866–883

    CAS  Google Scholar 

  • Coombs GH, Gutteridge WE (1975) Growth in vitro and metabolism of Plasmodium vinckei chabaudi. J Protozool 22:555–560

    PubMed  CAS  Google Scholar 

  • Deans JA, Dennis ED, Cohen S (1978) Antigenic analysis of sequential erythrocytic stages of Plasmodium knowlesi. Parasitology 77:333–344

    PubMed  CAS  Google Scholar 

  • Dunn MJ (1969 a) Alterations of red blood cell sodium transport during malarial infection. J Clin Invest 48:674–684

    PubMed  CAS  Google Scholar 

  • Dunn MJ (1969 b) Alterations of red blood cell metabolism in simian malaria: evidence for abnormalities of nonparasitized cells. Milit Med 134:1100–1105

    CAS  Google Scholar 

  • Eaton JW, Brewer GJ (1969) Red cell ATP and malaria infection. Nature 222:389–390

    PubMed  CAS  Google Scholar 

  • Eaton JW, Eckman JR, Berger E, Jacob HS (1976) Suppression of malaria infection by oxidant-sensitive host erythrocytes. Nature 264:758–760

    PubMed  CAS  Google Scholar 

  • Eckman JR, Eaton JW (1979) Dependence of plasmodial glutathione metabolism on the host cell. Nature 278:754–756

    PubMed  CAS  Google Scholar 

  • Eisen H (1977) Purification of intracellular forms of Plasmodium chabaudi and their interactions with the erythrocyte membrane and serum albumin. Bull WHO 55:333–338

    PubMed  CAS  Google Scholar 

  • Fabiani G, Grellet P (1951) Etude chez le rat blanc des rapports entre 1a carence en vitamine A et le paludisme expérimental à Plasmodium berghei. C R Soc Biol (Paris) 146:441–444

    Google Scholar 

  • Ferone R (1977) Folate metabolism in malaria. Bull WHO 55:291–298

    PubMed  CAS  Google Scholar 

  • Ferone R, Hitchings GH (1966) Folate cofactor biosynthesis by Plasmodium berghei. Comparison of folate and dihydrofolate as substrates. J Protozool 13:504–506

    PubMed  CAS  Google Scholar 

  • Ferone R, Burchall JJ, Hitchings GH (1969) Plasmodium berghei dihydrofolate reductase. Isolation, properties, and inhibition by antifolates. Mol Pharmacol 5:49–59

    PubMed  CAS  Google Scholar 

  • Fitch CD, Ng R, Chevli R (1978) Erythrocyte surface: novel determinant of drug susceptibility in rodent malaria. Antimicrob Agents Chemother 14:185–193

    PubMed  CAS  Google Scholar 

  • Fletcher KA, Maegraith BG (1970) Erythrocyte reduced glutathione in malaria (Plasmodium berghei and P. knowlesi). Ann Trop Med Parasitol 64:481–486

    PubMed  CAS  Google Scholar 

  • Fletcher KA, Maegraith BG (1972) The metabolism of the malaria parasite and its host. Adv Parasitol 10:31–48

    PubMed  CAS  Google Scholar 

  • Fraser DM, Kermack WO (1957) The inhibitory action of some antimalarial drugs and related compounds on the hexokinase of yeasts and Plasmodium berghei. Br J Pharmacol Chemother 12:16–23

    PubMed  CAS  Google Scholar 

  • Friedman M (1978) Erythrocyte mechanism of sickle cell resistance to malaria. Proc Nat Acad Sci USA 75:1994–1997

    PubMed  CAS  Google Scholar 

  • Friedman M (1979 a) Ultrastructural damage to the malaria parasite in the sickled cell. J Protozool 26:195–199

    PubMed  CAS  Google Scholar 

  • Friedman M (1979b) Oxidant damage mediates variant red cell resistance to malaria. Nature 280:245–247

    PubMed  CAS  Google Scholar 

  • Friedman M, Roth E, Nagel R, Trager W (1979 a) Plasmodium falciparum: physiological interactions with the human sickle cell. Exp Parasitol 47:73–80

    PubMed  CAS  Google Scholar 

  • Friedman M, Roth E, Nagel R, Trager W (1979 b) The role of hemoglobins C, S, and NBalt in the inhibition of malaria parasite development in vitro. Am J Trop Med Hyg 28:777–780

    PubMed  CAS  Google Scholar 

  • Fulton JD (1939) Experiments on the utilization of sugars by malarial parasites (Plasmodium knowlesi). Ann Trop Med Parasitol 33:217–227

    CAS  Google Scholar 

  • Fulton JD (1951) The metabolism of malaria parasites. Brit Med Bull 8:22–27

    PubMed  CAS  Google Scholar 

  • Fulton JD, Christophers SR (1938) The inhibitive effect of drugs upon oxygen uptake by trypanosomes (Trypanosoma rhodesiense) and malaria (Plasmodium knowlesi). Ann Trop Med Parasitol 32:77–93

    CAS  Google Scholar 

  • Fulton JD, Grant PT (1956) The sulphur requirements of the erythrocytic form of Plasmodium knowlesi. Biochem J 63:274–282

    PubMed  CAS  Google Scholar 

  • Fulton JD, Spooner DF (1955) The biochemistry and nutrition of Plasmodium berghei. Indian J Malariol 9:161–176

    PubMed  CAS  Google Scholar 

  • Fulton JD, Spooner DF (1956) The in vitro respiratory metabolism of erythrocytic forms of Plasmodium berghei. Exp Parasitol 5:59–78

    PubMed  CAS  Google Scholar 

  • Godfrey D (1957) Antiparasitic action of dietary cod liver oil upon Plasmodium berghei and its reversal by vitamin E. Exp Parasitol 6:555–565

    PubMed  CAS  Google Scholar 

  • Groman NB (1951) Dynamic aspects of the nitrogen metabolism of Plasmodium gallinaceum in vivo and in vitro. J Infect Dis 88:126–150

    PubMed  CAS  Google Scholar 

  • Gutierrez J (1966) Effect of the antimalarial chloroquine on the phospholipid metabolism of avian malaria and heart tissue. Am J Trop Med Hyg 15:818–822

    PubMed  CAS  Google Scholar 

  • Gutteridge WE, Trigg PI (1970) Incorporation of radioactive precursors into DNA and RNA of Plasmodium knowlesi in vitro. J Protozool 17:89–96

    PubMed  CAS  Google Scholar 

  • Gutteridge WE, Trigg PI (1971) Action of pyrimethamine and related drugs against Plasmodium knowlesi in vitro. Parasitology 62:431–444

    PubMed  CAS  Google Scholar 

  • Gutteridge W, Trigg W (1972 a) Periodicity of nuclear DNA synthesis in the intraerythrocytic cycle of Plasmodium knowlesi. J Protozool 19:378–381

    PubMed  CAS  Google Scholar 

  • Gutteridge WE, Trigg PI (1972 b) Some studies on the DNA of Plasmodium knowlesi. In: Van den Bossche H (ed) Comparative biochemistry of parasites. Academic, New York, pp 199–218

    Google Scholar 

  • Gutteridge WE, Trigg PI, Williamson DH (1971) Properties of DNA from malarial parasites. Parasitology 62:209–219

    PubMed  CAS  Google Scholar 

  • Gutteridge WE, Trigg PI, Williamson DH (1969) Base compositions of DNA from some malarial parasites. Nature 224:1210–1211

    PubMed  CAS  Google Scholar 

  • Gutteridge WE, Trigg PI, Bayley PM (1972) Effects of chloroquine on Plasmodium in vitro. Parasitology 64:37–45

    PubMed  CAS  Google Scholar 

  • Gutteridge WE, Dave D, Richards WHG (1979) Conversion of dihydroorotate to orotate in parasitic protozoa. Biochim Biophys Acta 582:390–401

    PubMed  CAS  Google Scholar 

  • Herman YF, Ward RA, Herman RH (1966) Stimulation of the utilization of 1-14-glucose in chicken red blood cells infected with Plasmodium gallinaceum. Am J Trop Med Hyg 15:276–280

    PubMed  CAS  Google Scholar 

  • Holz GG Jr (1977) Lipids and the malarial parasite. Bull WHO 55:237–248

    PubMed  CAS  Google Scholar 

  • Homewood CA (1978) Biochemistry. In: Killick-Kendrick R, Peters W (eds) Rodent malaria. Academic, New York, pp 170–211

    Google Scholar 

  • Homewood CA, Neame KD (1974) Malaria and the permeability of the host erythrocyte. Nature 252:718–719

    PubMed  CAS  Google Scholar 

  • Homewood CA, Jewsbury JM, Chance ML (1972 a) The pigment formed during haemoglobin digestion by malarial and schistosomal parasites. Comp Biochem Physiol 43B:517–523

    Google Scholar 

  • Homewood CA, Warhurst DC, Peters W, Baggaley VC (1972 b) Electron transport in intraerythrocytic Plasmodium berghei. Proc Helminth Soc Wash 39:382–386

    CAS  Google Scholar 

  • Honigberg BM (1967) Chemistry of parasitism among some protozoa. In: Kidder GW (ed) Chemical zoology, vol I. Protozoa. Academic, New York, pp 695–814

    Google Scholar 

  • Howells RE (1970) Mitochondrial changes during the life cycle of Plasmodium berghei. Ann Trop Med Parasitol 64:181–187

    PubMed  CAS  Google Scholar 

  • Howells RE, Maxwell L (1973) Further studies on the mitochondrial changes during the life cycle of Plasmodium berghei: electrophoretic studies on isocitrate dehydrogenases. Ann Trop Med Parasitol 67:279–283

    PubMed  CAS  Google Scholar 

  • Ilan J, Tokuyasu K, Ilan J (1970) Phosphorylation of d-arabinosyl adenine by Plasmodium berghei. and its partial protection of mice against malaria. Nature 228:1300–1301

    PubMed  CAS  Google Scholar 

  • Ilan J, Pierce DR, Miller FW (1977) Influence of 9-β-D-arabinofuranosyladenine on total protein synthesis and on differential gene expression of unique proteins in the rodent malarial parasite Plasmodium berghei. Proc Nat Acad Sci USA 74:3386–3390

    PubMed  CAS  Google Scholar 

  • Johns FM (1930) Influence of dextrose and of low temperature on preservation, transportation, and viability of malaria parasites. Proc Soc Exp Biol Med 28:743–745

    Google Scholar 

  • Khabir PA, Manwell RD (1955) Glucose consumption of Plasmodium hexamerium. J Parasitol 41:595–603

    PubMed  CAS  Google Scholar 

  • Kilejian A (1974) A unique histidine-rich Polypeptide from the malaria parasite, Plasmodium lophurae. J Biol Chem 249:4650–4655

    PubMed  CAS  Google Scholar 

  • Kilejian A (1975) Circular mitochondrial DNA from the avian malarial parasite Plasmodium lophurae. Biochim Biophys Acta 390:276–284

    PubMed  CAS  Google Scholar 

  • Kilejian A (1976) Does a histidine-rich protein from Plasmodium lophurae have a function in merozoite penetration? J Protozool 23:272–277

    PubMed  CAS  Google Scholar 

  • Kilejian A (1978) Histidine-rich protein as a model malaria vaccine. Science 201:922–924

    PubMed  CAS  Google Scholar 

  • Kilejian A (1979) Characterization of a protein correlated with the production of knob-like protrusions on membrane of erythrocytes infected with Plasmodium falciparum. Proc Nat Acad Sci USA 76:4650–4653

    PubMed  CAS  Google Scholar 

  • Kilejian A (1980) Homology between a histidine-rich protein from Plasmodium lophurae and a protein associated with the knob-like protrusions on membranes of erythrocytes infected with Plasmodium falciparum. J Exp Med 151:1534–1538

    PubMed  CAS  Google Scholar 

  • Kilejian A, Jensen JB (1977) A histidine-rich protein from Plasmodium falciparum and its interaction with membranes. Bull WHO 55:191–198

    PubMed  CAS  Google Scholar 

  • Kilejian A, Liao T-H, Trager W (1975) Studies on the primary structure and biosynthesis of a histidine-rich Polypeptide from the malaria parasite, Plasmodium lophurae. Proc Nat Acad Sci USA 72:3057–3059

    PubMed  CAS  Google Scholar 

  • Königk E (1977) Salvage syntheses and their relationship to nucleic acid metabolism. Bull WHO 55:249–252

    PubMed  Google Scholar 

  • Königk E, Mirtsch S (1977) Plasmodium chabaudi infection of mice: specific activities of erythrocyte membrane-associated enzymes and patterns of proteins and glycoproteins of erythrocyte membrane preparations. Tropenmed Parasitol 28:17–22

    PubMed  Google Scholar 

  • Krooth RS, Wuu K-D, Ma R (1969) Dihydroorotic acid dehydrogenase: introduction into erythrocyte by the malaria parasite. Science 164:1073–1075

    PubMed  CAS  Google Scholar 

  • Langer BW Jr, Phisphumvidhi P, Jiampermpoon D (1970) Malarial parasite metabolism: the glutamic acid dehydrogenase of Plasmodium berghei. Exp Parasitol 28:298–303

    PubMed  CAS  Google Scholar 

  • Langreth S (1977) Electron microscope cytochemistry of host-parasite membrane interactions in malaria. Bull WHO 55:171–178

    PubMed  CAS  Google Scholar 

  • Langreth SG, Trager W (1973) Fine structure of the malaria parasite Plasmodium lophurae developing extracellularly in vivo. J Protozool 20:606–613

    PubMed  CAS  Google Scholar 

  • Langreth S, Reese R, Motyl M, Trager W (1979) Plasmodium falciparum: loss of knobs on the infected erythrocyte surface after long-term cultivation. Exp Parasitol 48:213–219

    PubMed  CAS  Google Scholar 

  • Lantz CH, Van Dyke K, Carter G (1971) Plasmodium berghei: in vitro incorporation of purine derivatives into nucleic acids. Exp Parasitol 29:402–416

    PubMed  CAS  Google Scholar 

  • Levy MR, Chou SC (1973) Activity and some properties of an acid Proteinase from normal and Plasmodium berghei-infected red cells. J Parasitol 59:1064–1070

    PubMed  CAS  Google Scholar 

  • Levy MR, Chou SC (1974) Some properties and susceptibility to inhibitors of partially purified acid proteases from Plasmodium berghei and from ghosts of mouse red cells. Biochim Biophys Acta 334:423–430

    CAS  Google Scholar 

  • Levy MR, Chou SC (1975) Inhibition of macromolecular synthesis in the malarial parasites by inhibitors of proteolytic enzymes. Experientia 31:52–54

    PubMed  CAS  Google Scholar 

  • Levy MR, Siddiqui WA, Chou SC (1974) Acid protease activity in Plasmodium falciparum and P. knowlesi and ghosts of their respective host red cells. Nature 247:546–549

    PubMed  CAS  Google Scholar 

  • Luzzatto L (1979) Genetics of red cells and susceptibility to malaria. Blood 54:961–976

    PubMed  CAS  Google Scholar 

  • Maier J, Coggeshall LT (1941) Respiration of malaria plasmodia. J Infect Dis 69:87–96

    CAS  Google Scholar 

  • Manandhar MSP, Van Dyke K (1975) Detailed purine salvage metabolism in and outside the free malarial parasite. Exp Parasitol 37:138–146

    PubMed  CAS  Google Scholar 

  • Manwell RD, Feigelson P (1949) Glycolysis in Plasmodium gallinaceum. Proc Soc Exp Biol Med 70:578–582

    PubMed  CAS  Google Scholar 

  • Marshall PB (1948) The glucose metabolism of Plasmodium gallinaceum, and the action of antimalarial agents. Br J Pharmacol 3:1–7

    CAS  Google Scholar 

  • Mason SJ, Miller LH, Shiroishi T, Dvorak JA, McGinnis MH (1977) The Duffy blood group determinants: their role in the susceptibility of human and animal erythrocytes to Plasmodium knowlesi malaria. Br J Haematol 36(3):327–336

    PubMed  CAS  Google Scholar 

  • McCormick GJ, Canfield CJ, Willet GP (1974) In vitro antimalarial activity of nucleic acid precursor analogs in the simian malaria Plasmodium knowlesi. Antimicrob Agents Chemo 6:16–21

    CAS  Google Scholar 

  • McDaniel HG, Siu PML (1972) Purification and characterization of phosphoenolpyruvate carboxylase from Plasmodium berghei. J Bacteriol 109:385–390

    PubMed  CAS  Google Scholar 

  • McDonald V, Hannon M, Tanigoshi L, Sherman I (1981) Plasmodium lophurae: immunization of Pekin ducklings with different antigen preparations. Exp Parasitol 51:195–203

    PubMed  CAS  Google Scholar 

  • McGhee RB (1953) The infection by Plasmodium lophurae of duck erythrocytes in the chick embryo. J Exp Med 97:773–782

    PubMed  CAS  Google Scholar 

  • McKee RW (1951) Biochemistry of Plasmodium and the influence of antimalarials. In: Hutner SH, Lwoff A (eds) Biochemistry and physiology of protozoa, vol I. Academic, New York, pp 251–322

    Google Scholar 

  • McKee RW, Ormsbee RA, Anfmsen CB, Geiman QM, Ball EG (1946) Studies on malarial parasites. VI. The chemistry and metabolism of normal and parasitized (P. knowlesi) monkey blood. J Exp Med 84:569–582

    PubMed  CAS  Google Scholar 

  • McLaren DJ, Bannister LH, Trigg PI, Butcher GA (1977) A freeze-fracture study on the parasite-erythrocyte interrelationship in Plasmodium knowlesi infections. Bull WHO 55:199–204

    PubMed  CAS  Google Scholar 

  • McLaren DJ, Bannister LH, Trigg PI, Butcher GA (1979) Freeze-fracture studies on the interaction between the malaria parasite and host erythrocyte in Plasmodium knowlesi infections. Parasitology 79:125–139

    PubMed  CAS  Google Scholar 

  • Miller FW, Ilan J (1978) The ribosomes of Plasmodium berghei: isolation and ribosomal ribonucleic acid analysis. Parasitology 77:345–365

    PubMed  CAS  Google Scholar 

  • Miller LH (1977) Hypothesis on the mechanism of invasion of erythrocytes by malaria merozoites. Bull WHO 55:157–162

    PubMed  CAS  Google Scholar 

  • Miller LH, Aikawa M, Johnson J, Shiroishi T (1979) Interaction between cytochalasin B-treated malarial parasites and erythrocytes. J Exp Med 149:172–184

    PubMed  CAS  Google Scholar 

  • Miller LH, McGinniss MH, Holland PV, Sigmon P (1978) The Duffy blood group pheno-type in American blacks infected with Plasmodium vivax in Vietnam. Am J Trop Med Hyg 27:1069–1072

    PubMed  CAS  Google Scholar 

  • Miller ZB, Kozloff LM (1947) The ribonuclease activity of normal and parasitized chick erythrocytes. J Biol Chem 170:105–120

    CAS  Google Scholar 

  • Momen H (1979 a) Biochemistry of intraerythrocytic parasites: I. Identification of enzymes of parasite origin by starch-gel electrophoresis. Ann Trop Med Parasitol 73:109–115

    PubMed  CAS  Google Scholar 

  • Momen H (1979 b) Biochemistry of intraerythrocytic parasites: II. Comparative studies in carbohydrate metabolism. Ann Trop Med Parasitol 73:117–121

    PubMed  CAS  Google Scholar 

  • Moulder J (1962) The biochemistry of intracellular parasitism. University of Chicago Press, Chicago, Illinois, pp 13–42

    Google Scholar 

  • Moulder JW (1948) Effect of quinine treatment of the host upon the carbohydrate metabolism of the malarial parasite Plasmodium gallinaceum. J Infect Dis 83:262–270

    PubMed  CAS  Google Scholar 

  • Moulder JW (1949) Inhibition of pyruvate oxidation in the malarial parasite Plasmodium gallinaceum by quinine treatment of the host. J Infect Dis 85:195–204

    PubMed  CAS  Google Scholar 

  • Moulder JW, Evans EA Jr (1946) The biochemistry of the malaria parasite. VI. Studies on the nitrogen metabolism of the malaria parasite. J Biol Chem 164:145–147

    PubMed  CAS  Google Scholar 

  • Nagarajan K (1964) Pyruvate and lactate levels in relationship to the nicotinamide adenine dinucleotide levels in malarial parasites (Plasmodium berghei). Biochem Biophys Acta 93:176–179

    PubMed  CAS  Google Scholar 

  • Nagarajan K (1968 a) Metabolism of Plasmodium berghei. I. Krebs cycle. Exp Parasitol 21:19–26

    Google Scholar 

  • Nagarajan K (1968 b) Metabolism of Plasmodium berghei. II. 32Pi incorporation into high-energy phosphates. Exp Parasitol 22:27–32

    PubMed  CAS  Google Scholar 

  • Nagarajan K (1968 c) Metabolism of Plasmodium berghei. III. Carbon dioxide fixation and role of pyruvate and dicarboxylic acids. Exp Parasitol 22:33–42

    PubMed  CAS  Google Scholar 

  • Neame KD, Homewood CA (1975) Alterations in the permeability of mouse erythrocytes infected with the malaria parasite, Plasmodium berghei. Int J Parasitol 5:537–540

    PubMed  CAS  Google Scholar 

  • Neame KD, Brownbill PA, Homewood CA (1974) The uptake and incorporation of nucleosides into normal erythrocytes and erythrocytes containing Plasmodium berghei. Parasitology 69:329–335

    PubMed  CAS  Google Scholar 

  • Oelshlegel FJ Jr, Brewer GJ (1975) Parasitism and the red blood cell. In: Mac D, Surgenor N (eds) The red blood cell, 2nd edn. vol 2. Academic, New York, pp 1263–1302

    Google Scholar 

  • Oelshlegel FJ Jr, Sander BJ, Brewer GJ (1975) Pyruvate kinase in malaria host-parasite interaction. Nature 255:345–347

    PubMed  CAS  Google Scholar 

  • O’Sullivan WJ, Ketley K (1980) Biosynthesis of uridine monophosphate in Plasmodium berghei. Ann Trop Med Parasitol 74:109–114

    PubMed  Google Scholar 

  • Overman RR, Hill TS, Wong UT (1949) Physiological studies in the human malarial host. I. Bood, plasma, “extracellular” fluid volumes, and ionic balance in therapeutic P. vivax and P. falciparum. J Nat Malar Soc 8:14–31

    CAS  Google Scholar 

  • Overman RR, Bass AC, Tomlinson TH Jr (1950) Ionic alterations in chickens infected with Plasmodium gallinaceum. Fed Proc Fed Am Soc Exp Biol 9:96–97

    Google Scholar 

  • Pasvol G, Weatherall DJ, Wilson RJM (1977) Effects of fetal hemoglobin on susceptibility of red cells to Plasmodium falciparum. Nature 270:171–173

    PubMed  CAS  Google Scholar 

  • Pasvol G, Weatherall DJ, Wilson RJM (1978) Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature 274:701–703

    PubMed  CAS  Google Scholar 

  • Pasvol G, Weatherall DJ, Wilson RJM (1980) The increased susceptibility of young red cells to invasion by the malarial parasite Plasmodium falciparum. Br J Haematol 45:285–295

    PubMed  CAS  Google Scholar 

  • Peters W (1969) Recent advances in the physiology and biochemistry of plasmodia. Trop Dis Bull 66:1–29

    PubMed  CAS  Google Scholar 

  • Phisphumvidhi P, Langer BW Jr (1969) Malarial parasite metabolism: the lactic acid dehydrogenase of Plasmodium berghei. Exp Parasitol 24:37–41

    PubMed  CAS  Google Scholar 

  • Picard-Maureau A, Hempelmann E, Krammer G, Jackisch R, Jung A (1975) Glutathion-status in Plasmodium vinckei parasitierten Erythrozyten in Abhängigkeit vom intraery-throzytären Entwicklungsstadium des Parasiten. Tropenmed Parasitol 26:405–416

    PubMed  CAS  Google Scholar 

  • Platzer EG (1972) Metabolism of tetrahydrofolate in Plasmodium lophurae and duckling erythrocytes. Trans NY Acad Sci, Series II, 34:200–208

    CAS  Google Scholar 

  • Platzer EG (1974) Dihydrofolate reductase in Plasmodium lophurae and duckling erythrocytes. J Protozool 21:400–405

    PubMed  CAS  Google Scholar 

  • Platzer EG (1977) Subcellular distribution of serine hydroxymethyltransferase in Plasmodium lophurae. Life Sci 20:1417–1424

    PubMed  CAS  Google Scholar 

  • Platzer EG, Kassis JA (1978) Pyridoxine kinase in Plasmodium lophurae and duckling erythrocytes. J Protozool 25:556–559

    PubMed  CAS  Google Scholar 

  • Pollack Y, Katzen AL, Spira DT, Golenser J (1982) The genome of Plasmodium falciparum I. DNA base composition. Nucleic Acid Res 10:539–546

    PubMed  CAS  Google Scholar 

  • Polet H, Barr CF (1968 a) DNA, RNA, and protein synthesis in erythrocytic forms of Plasmodium knowlesi. Am J Trop Med Hyg 17:672–679

    PubMed  CAS  Google Scholar 

  • Polet H, Barr CF (1968 b) Chloroquine and dihydroquinine. In vitro studies of their antimalarial effect upon Plasmodium knowlesi. J Pharmacol Exp Ther 164:380–386

    PubMed  CAS  Google Scholar 

  • Polet H, Conrad ME (1969 a) In vitro studies on the amino acid metabolism of Plasmodium knowlesi and the antiplasmodial effect of the isoleucine antagonists. Milit Med 134:939–944

    CAS  Google Scholar 

  • Polet H, Conrad ME (1969 b) The influence of three analogs of isoleucine on in vitro growth and protein synthesis of erythrocytic forms of Plasmodium knowlesi. Proc Soc Exp Biol Med 130:581–586

    PubMed  CAS  Google Scholar 

  • Rama Rao R, Sirsi M (1956 a) Avian malaria and B complex vitamins. I. Thiamine. J Indian Inst Sci 38:108–114

    Google Scholar 

  • Rama Rao R, Sirsi M (1956 b) Avian malaria and B complex vitamins. II. Riboflavin. J Indian Inst Sci 38:186–189

    Google Scholar 

  • Ramakrishnan SP (1954) Studies on Plasmodium berghei Vincke and Lips 1948. XIX. The course of blood induced infections in pyridoxine or vitamin B6 deficient rats. Indian J Malar 8:107–113

    CAS  Google Scholar 

  • Reid VE, Friedkin M (1973 a) Plasmodium berghei: folic acid levels in mouse erythrocytes. ExpParasitol 33:424–428

    CAS  Google Scholar 

  • Reid VE, Friedkin M (1973 b) Thymidylate synthetase in mouse erythrocytes infected with Plasmodium berghei. Mol Pharmacol 9:74–80

    PubMed  CAS  Google Scholar 

  • Rickard MD (1969) Carbohydrate metabolism in Babesia rodhaini: differences in metabolism of normal and infected rat erythrocytes. Exp Parasitol 25:16–31

    PubMed  CAS  Google Scholar 

  • Rietz PJ, Skelton FS, Folkers K (1967) Occurrence of ubiquinones-8 and-9 in Plasmodium lophurae. Int J Vit Res 37:405–411

    CAS  Google Scholar 

  • Rock RC (1971 a) Incorporation of 14C-labelled non-lipid precursors into lipids of Plasmodium knowlesi in vitro. Comp Biochem Physiol 40B:657–669

    Google Scholar 

  • Rock RC (1971 b) Incorporation of 14C-labelled fatty acids into lipids of rhesus erythrocytes and Plasmodium knowlesi in vitro. Comp Biochem Physiol 40B:893–906

    Google Scholar 

  • Rock RC, Standefer J, Little W (1971) Incorporation of 33P-orthophosphate into membrane phospholipids of Plasmodium knowlesi and host erythrocytes of Macaca mulatta. Comp Biochem Physiol 40B:543–561

    Google Scholar 

  • Roos A, Hegsted D, Stare F (1946) Nutritional studies with the duck. IV. The effect of vitamin deficiencies on the course of P. lophurae infection in the duck and the chick. J Nutr 32:473–484

    PubMed  CAS  Google Scholar 

  • Roth E, Friedman M, Ueda Y, Tellez I, Trager W, Nagel R (1978) Sickling rates of human AS red cells infected in vitro with Plasmodium falciparum malaria. Science 202:650–652

    PubMed  Google Scholar 

  • Scheibel LW, Miller J (1969) Glycolytic and cytochrome oxidase activity in plasmodia. Milit Med 134:1074–1080

    CAS  Google Scholar 

  • Scheibel LW, Pflaum WK (1970) Carbohydrate metabolism in Plasmodium knowlesi. Comp Biochem Physiol 37:543–553

    CAS  Google Scholar 

  • Scheibel W, Adler A, Trager W (1979 a) Tetraethylthiuram disulfide (Antabuse) inhibits the human malaria parasite Plasmodium falciparum. Proc Nat Acad Sci USA 76:5303–5307

    PubMed  CAS  Google Scholar 

  • Scheibel LW, Ashton SH, Trager W (1979 b) Plasmodium falciparum: Microaerophilic requirements in human red blood cells. Exp Parasit 47:410–418

    PubMed  CAS  Google Scholar 

  • Schellenberg KA, Coatney GR (1961) The influence of anti-malarial drugs on the nucleic acid synthesis in Plasmodium gallinaceum and Plasmodium berghei. Biochem Pharmacol 6:143–152

    PubMed  CAS  Google Scholar 

  • Schmidt-Ullrich R, Wallach DFH, Lightholder J (1979) Two Plasmodium knowlesi-specific antigens on the surface of schizont-infected rhesus monkey erythrocytes induce antibody production in immune hosts. J Exp Med 150:86–99

    PubMed  CAS  Google Scholar 

  • Schmidt-Ullrich R, Wallach DFH, Lightholder J (1980) Metabolic labelling of P. knowlesi-specific glycoproteins in membranes of parasitized rhesus monkey erythrocytes. Cell Biol Int Rep 4:555–561

    PubMed  CAS  Google Scholar 

  • Schnell JW, Siddiqui WA, Geiman QM (1971) Biosynthesis of coenzymes Q by malarial parasites. 2. Coenzyme Q synthesis in blood cultures of monkeys infected with malarial parasites (Plasmodium falciparum and P. knowlesi). J Med Chem 14:1026–1029

    PubMed  CAS  Google Scholar 

  • Seaman GR (1953) Inhibition of the succinic dehydrogenase of parasitic protozoans by an arsono and a phosphano analog of succinic acid. Exp Parasitol 2:366–373

    PubMed  CAS  Google Scholar 

  • Seed TM, Kreiser JP (1976) Surface properties of extracellular malaria parasites: electrophoresis and lectin-binding characteristics. Infect Immun 14:1339–1347

    PubMed  CAS  Google Scholar 

  • Seed TM, Aikawa M, Sterling CR (1973) An electron microscope-cytochemical method for differentiating membranes of host red cells and malaria parasites. J. Protozool 20:603–605

    PubMed  CAS  Google Scholar 

  • Seeler AO (1945) The inhibitory effect of pyridoxine on the activity of quinine and atabrine against avian malaria. J Nat Malar Soc 4:13–19

    Google Scholar 

  • Seeler AO, Ott W (1944) Effect of riboflavin deficiency on the course of Plasmodium lophurae infections in chicks. J Inf Dis 75:175–178

    CAS  Google Scholar 

  • Shakespeare PG, Trigg PI (1973) Glucose catabolism by the simian malaria parasite Plasmodium knowlesi. Nature 241:538–540

    PubMed  CAS  Google Scholar 

  • Shakespeare P, Trigg P, Tappenden L (1979 a) Some properties of membranes in the simian malaria parasite. Ann Trop Med Parasit 73:333–343

    PubMed  CAS  Google Scholar 

  • Shakespeare P, Trigg P, Kyd S, Tappenden L (1979 b) Glucose metabolism in the simian malaria parasite Plasmodium knowlesi: activities of the glycolytic and pentose phosphate pathways during the intraerythrocytic cycle. Ann Trop Med Parasitol 73:407–415

    PubMed  CAS  Google Scholar 

  • Sherman IW (1961) Molecular heterogeneity of lactic dehydrogenase in avian malaria (Plasmodium lophurae). J Exp Med 114:1049–1062

    PubMed  CAS  Google Scholar 

  • Sherman IW (1965) Glucose-6-phosphate dehydrogenase and reduced glutathione in malaria-infected erythrocytes (Plasmodium lophurae and P. berghei). J Protozool 12:394–396

    PubMed  CAS  Google Scholar 

  • Sherman IW (1966 a) Malic dehydrogenase heterogeneity in malaria (Plasmodium lophurae and P. berghei). J Protozool 13:344–349

    PubMed  CAS  Google Scholar 

  • Sherman IW (1966 b) Levels of oxidized and reduced pyridine nucleotides in avian malaria (Plasmodium lophurae). Am J Trop Med Hyg 15:814–817

    PubMed  CAS  Google Scholar 

  • Sherman IW (1976) The ribosomes of the simian malaria Plasmodium knowlesi. II. A cell-free protein synthesizing system. Comp Biochem Physiol 53B:447–450

    Google Scholar 

  • Sherman IW (1977 a) Transport of amino acids and nucleic acid precursors in malarial parasites. Bull WHO 55:211–225

    PubMed  CAS  Google Scholar 

  • Sherman IW (1977 b) Amino acid metabolism and protein synthesis in malarial parasites. Bull WHO 55:265–276

    PubMed  CAS  Google Scholar 

  • Sherman IW (1979) Biochemistry of Plasmodium (malarial parasites). Microbiol Rev 43:453–495

    PubMed  CAS  Google Scholar 

  • Sherman IW, Jones LA (1976) Protein synthesis by a cell-free preparation from the bird malaria, Plasmodium lophurae. J Protozool 23:277–281

    PubMed  CAS  Google Scholar 

  • Sherman IW, Jones LA (1977) The Plasmodium lophurae (avian malaria) ribosome. J Protozool 24:331–334

    PubMed  CAS  Google Scholar 

  • Sherman IW, Jones LA (1979) Plasmodium lophurae: Membrane proteins of erythrocyte-free plasmodia and malaria-infected red cells. J Protozool 26:489–501

    PubMed  CAS  Google Scholar 

  • Sherman IW, Mudd JB (1966) Malaria infection (P. lophurae): changes in free amino acids. Science 154:287–289

    PubMed  CAS  Google Scholar 

  • Sherman IW, Tanigoshi L (1970) Incorporation of 14C-amino-acids by malaria (Plasmodium lophurae). IV. In vivo utilization of host cell haemoglobin. Int J Biochem I:635–637

    Google Scholar 

  • Sherman IW, Tanigoshi L (1971 a) Alterations in sodium and potassium in the red blood cells and plasma during the malaria infection (Plasmodium lophurae). Comp Biochem Physiol 40A:543–546

    Google Scholar 

  • Sherman IW, Tanigoshi L (1971 b) Incorporation of 14C-amino-acids by malaria (Plasmodium lophurae). III. Metabolic fate of selected amino-acids. Int J Biochem 2:41–48

    CAS  Google Scholar 

  • Sherman IW, Tanigoshi L (1974 a) Incorporation of 14C-amino acids by malarial plasmodia (Plasmodium lophurae). VI. Changes in the kinetic constants of amino acid transport during infection. Exp Parasitol 35:369–373

    PubMed  CAS  Google Scholar 

  • Sherman IW, Tanigoshi L (1974 b) Glucose transport in the malarial (Plasmodium lophurae) infected erythrocyte. J Protozool 21:603–607

    PubMed  CAS  Google Scholar 

  • Sherman IW, Ting IP, Ruble JA (1968) Characterization of the malaria pigment (hemozoin) from the avian malaria parasite Plasmodium lophurae. J Protozool 15:158–164

    PubMed  CAS  Google Scholar 

  • Sherman IW, Ruble JA, Ting IP (1969) Plasmodium lophurae: [U-14C]-glucose catabolism by free plasmodia and duckling host erythrocytes. Exp Parasitol 25:181–192

    PubMed  CAS  Google Scholar 

  • Sherman IW, Ting IP, Tanigoshi L (1970) Plasmodium lophurae: glucose-1-14C and glucose-6-14C catabolism by free plasmodia and duckling host erythrocytes. Comp Biochem Physiol 34:625–639

    PubMed  CAS  Google Scholar 

  • Sherman IW, Petersen I, Tanigoshi L, Ting IP (1971) The glutamate dehydrogenase of Plasmodium lophurae (avian malaria). Exp Parasitol 29:433–439

    PubMed  CAS  Google Scholar 

  • Sherman IW, Cox RA, Higginson B, McLaren DJ, Williamson J (1975) The ribosomes of the simian malaria, Plasmodium knowlesi. I. Isolation and characterization. J Protozool 22:568–572

    PubMed  CAS  Google Scholar 

  • Siddiqui WA, Trager W (1966) Folic and folinic acids in relation to the development of Plasmodium lophurae. J Parasitol 52:556–558

    PubMed  CAS  Google Scholar 

  • Siddiqui WA, Schnell JV, Geiman QM (1967) Stearic acid as plasma replacement for intracellular in vitro culture of Plasmodium knowlesi. Science 156:1623–1625

    PubMed  CAS  Google Scholar 

  • Siddiqui WA, Schnell JV, Geiman QM (1969) Nutritional requirements for in vitro cultivation of a simian malarial parasite, Plasmodium knowlesi. Milit Med 134:929–938

    CAS  Google Scholar 

  • Silverman M, Ceithaml J, Taliaferro LG, Evans EA Jr (1944) The in vitro metabolism of Plasmodium gallinaceum. J Infect Dis 75:212–230

    CAS  Google Scholar 

  • Sinden R (1978) Cell biology. In: Killick-Kendrick R, Peters W (eds) Rodent malaria. Academic, New York, pp 85–168

    Google Scholar 

  • Singer I (1956) Coenzyme A changes in liver, spleen, and kidneys of rats with infections of Plasmodium berghei. Proc Soc Exp Biol Med 91:315–318

    PubMed  CAS  Google Scholar 

  • Singer I (1961) Tissue thiamine changes in rats with experimental trypanosomiasis or malaria. Exp Parasitol 11:391–401

    PubMed  CAS  Google Scholar 

  • Siu PML (1967) Carbon dioxide fixation in plasmodia and the effect of some antimalarial drugs on the enzyme. Comp Biochem Physiol 23:785–795

    PubMed  CAS  Google Scholar 

  • Skelton FS, Lunan KD, Folkers K, Schnell JV, Siddiqui WA, Geiman QM (1969) Biosynthesis of ubiquinones by malarial parasites. I. Isolation of [14C]ubiquinones from cultures of rhesus monkey blood infected with Plasmodium knowlesi. Biochem 8:1284–1287

    CAS  Google Scholar 

  • Skelton FS, Rietz PJ, Folkers K (1970) Coenzyme Q. CXXII. Identification of ubiquinone-8 biosynthesized by Plasmodium knowlesi, P. cynomolgi, and P. berghei. J Med Chem 13:602–606

    PubMed  CAS  Google Scholar 

  • Smith CC, McCormick GJ, Canfield CJ (1976) Plasmodium knowlesi: in vitro biosynthesis of methionine. Exp Parasitol 40:432–437

    PubMed  CAS  Google Scholar 

  • Speck JF, Evans EA Jr (1945) The biochemistry of the malarial parasite. II. Glycolysis in cell-free preparations of the malaria parasite. J Biol Chem 159:71–81

    CAS  Google Scholar 

  • Speck JF, Moulder JW, Evans EA Jr (1946) The biochemistry of the malaria parasite. V. Mechanism of pyruvate oxidation in the malaria parasite. J. Biol Chem 164:119–144

    CAS  Google Scholar 

  • Takahashi Y, Sherman IW (1978) Plasmodium lophurae: Cationized ferritin staining, an electron microscope cytochemical method for differentiating malarial parasite and host cell membranes. Exp Parasitol 44:15–154

    Google Scholar 

  • Takahashi Y, Sherman IW (1980) Plasmodium lophurae: Lectin mediated agglutination of malaria-infected red cells and fine-structure cytochemical detection of lectin binding sites on plasmodial and host cell membranes. Exp Parasitol 49:233–247

    PubMed  CAS  Google Scholar 

  • Taylor AER (1958) Effects of cod liver oil and vitamin E on infections of Plasmodium gallinaceum and Treponema duttoni. Ann Trop Med Parasitol 52:139–144

    PubMed  CAS  Google Scholar 

  • Theakston RDG, Howells RE, Fletcher KA, Peters W, Fullard J, Moore GA (1969) The ultrastructural distribution of cytochrome oxidase activity in Plasmodium berghei and P. gallinaceum. Life Sci 8:521–529

    PubMed  CAS  Google Scholar 

  • Theakston RDG, Fletcher KA, Maegraith BG (1970) The use of electron microscope autoradiography for examining the uptake and degradation of haemoglobin by Plasmodium berghei. Ann Trop Med Parasitol 64:63–71

    PubMed  CAS  Google Scholar 

  • Theakston RDG, Ali SN, Moore GA (1972) Electron microscope autoradiographic studies on the effect of chloroquine on the uptake of tritiated nucleosides and methionine by Plasmodium berghei. Ann Trop Med Parasitol 66:295–302

    PubMed  CAS  Google Scholar 

  • Ting IP, Sherman IW (1966) Carbon dioxide fixation in malaria-I. Kinetic studies in Plasmodium lophurae. Comp Biochem Physiol 19:855–869

    CAS  Google Scholar 

  • Tokuyasu K, Ilan J, Ilan J (1969) Biogenesis of ribosomes in Plasmodium berghei. Milit Med 134:1032–1038

    CAS  Google Scholar 

  • Tracy SM, Sherman IW (1972) Purine uptake and utilization by the avian malaria parasite Plasmodium lophurae. J Protozool 19:541–549

    PubMed  CAS  Google Scholar 

  • Trager W (1950) Studies on the extracellular cultivation of an intracellular parasite (avian malaria). I. Development of the organisms in erythrocyte extracts, and the favoring effect of adenosine triphosphate. J Exp Med 92:349–366

    PubMed  CAS  Google Scholar 

  • Trager W (1952) Studies on the extracellular cultivation of an intracellular parasite (avian malaria). II. The effects of malate and of coenzyme A concentrates. J Exp Med 96:465–476

    PubMed  CAS  Google Scholar 

  • Trager W (1970) Recent progress in some aspects of the physiology of parasitic protozoa. J Parasitol 56:627–633

    PubMed  CAS  Google Scholar 

  • Trager W (1971) Malaria parasites (Plasmodium lophurae) developing extracellularly in vitro: incorporation of labeled precursors. J Protozool 18:392–399

    PubMed  CAS  Google Scholar 

  • Trager W (1973) Bongkrekic acid and the adenosinetriphosphate requirement of malaria parasites. Exp Parasitol 34:412–416

    PubMed  CAS  Google Scholar 

  • Trager W (1977) Cofactors and vitamins in the metabolism of malarial parasites. Bull WHO 55:285–289

    PubMed  CAS  Google Scholar 

  • Trager W, Brohn FH (1975) Coenzyme A requirement of malaria parasites: effects of coenzyme A precursors on extracellular development in vitro of Plasmodium lophurae. Proc Nat Acad Sci USA 72:1834–1837

    PubMed  CAS  Google Scholar 

  • Trager W, Langreth SC, Platzer EG (1972) Viability and fine structure of extracellular Plasmodium lophurae prepared by different methods. Proc Helminthol Soc Wash 39:220–230

    Google Scholar 

  • Trager W, Robert-Gero M, Lederer E (1978) Antimalarial activity of S-isobutyl adenosine against Plasmodium falciparum in culture. FEBS Letters 85:264–266

    PubMed  CAS  Google Scholar 

  • Trager W, Tershakovec M, Chiang P, Cantoni G (1980) Plasmodium falciparum: antimalarial activity in culture of sinefungin and other methylation inhibitors. Exp Parasitol 50:83–90

    PubMed  CAS  Google Scholar 

  • Trigg PI (1968) Sterol metabolism of Plasmodium knowlesi in vitro. Ann Trop Med Parasitol 62:481–487

    PubMed  CAS  Google Scholar 

  • Trigg PI, Gutteridge WE (1971) A minimal medium for the growth of Plasmodium knowlesi in dilution cultures. Parasitology 62:113–123

    PubMed  CAS  Google Scholar 

  • Trigg PI, Gutteridge WE (1972) A rational approach to the serial culture of malaria parasites. Evidence for a deficiency in RNA synthesis during the first cycle in vitro. Parasitology 65:265–271

    PubMed  CAS  Google Scholar 

  • Trigg PI, Gutteridge WE, Williamson J (1971) The effects of cordycepin on malaria parasites. Trans Soc Trop Med Hyg 65:514–520

    CAS  Google Scholar 

  • Trigg PI, Shakespeare PG, Burt SJ, Kyd SI (1975) Ribonucleic acid synthesis in Plasmodium knowlesi maintained both in vivo and in vitro. Parasitology 71:199–209

    PubMed  CAS  Google Scholar 

  • Trigg P, Hirst S, Shakespeare P, Tappenden L (1977) Labelling of membrane of glycoprotein in erythrocytes infected with Plasmodium knowlesi. Bull WHO 55:205–210

    PubMed  CAS  Google Scholar 

  • Tsukamoto M (1974) Differential detection of soluble enzymes specific to a rodent malaria parasite, Plasmodium berghei, by electrophoresis on Polyacrylamide gels. Trop Med 16:55–69

    CAS  Google Scholar 

  • Van Dyke K, Szustkiewicz C, Lantz CH, Saxe LH (1969) Studies concerning the mechanism of action of antimalarial drugs — inhibition of the incorporation of adenosine-8-3H into nucleic acids of Plasmodium berghei. Biochem Pharmacol 18:1417–1425

    PubMed  Google Scholar 

  • Van Dyke K, Tremblay GC, Lantz CH, Szustkiewicz C (1970) The source of purines and pyrimidines in Plasmodium berghei. Am J Trop Med Hyg 19:202–208

    PubMed  Google Scholar 

  • Velick SF (1942) The respiratory metabolism of the malaria parasite, P. cathemerium, during its developmental cycle. Am J Hyg 35:152–161

    CAS  Google Scholar 

  • Wallach DFH, Conley M (1977) Altered membrane proteins of monkey erythrocytes infected with simian malaria. J Molec Med 2:119–135

    CAS  Google Scholar 

  • Walsh CJ, Sherman IW (1968 a) Isolation, characterization, and synthesis of DNA from a malaria parasite. J Protozool 15:503–508

    PubMed  CAS  Google Scholar 

  • Walsh CJ, Sherman IW (1968 b) Purine and pyrimidine synthesis by the avian malaria parasite, Plasmodium lophurae. J Protozool 15:763–770

    PubMed  CAS  Google Scholar 

  • Walter RD, Königk E (1971) Synthese der Desoxythymidylat-Synthetase und der Dihydrofolat-Reduktase bei synchroner Schizogonie von Plasmodium chabaudi. Z Tropenmed Parasitol 22:250–255

    PubMed  CAS  Google Scholar 

  • Walter RD, Nordmeyer J-P, Königk E (1974) NADP-specific glutamate dehydrogenase from Plasmodium chabaudi. Hoppe-Seyler’s Z Physiol Chem 355:495–500

    PubMed  CAS  Google Scholar 

  • Wan Y-P, Porter TH, Folkers K (1974) Antimalarial quinones for prophylaxis based on rationale of inhibition of electron transfer in Plasmodium. Proc Nat Acad Sci USA 71:952–956

    PubMed  CAS  Google Scholar 

  • Warhurst DC, Williamson J (1970) Ribonucleic acid from Plasmodium knowlesi before and after chloroquine treatment. Chemico-Biol Inter 2:89–106

    CAS  Google Scholar 

  • Warren L, Manwell RD (1954) Rate of glucose consumption by malarial blood. Exp Parasitol 3:16–24

    PubMed  CAS  Google Scholar 

  • Weidekamm E, Wallach DFH, Lin PS, Hendricks J (1973) Erythrocyte membrane alterations due to infection with Plasmodium berghei. Biochim Biophys Acta 323:539–546

    PubMed  CAS  Google Scholar 

  • Whitfeld PR (1952) Nucleic acids in erythrocytic stages of a malaria parasite. Nature 169:751–752

    PubMed  CAS  Google Scholar 

  • Whitfeld PR (1953) Studies on the nucleic acids of the malaria parasite, Plasmodium berghei (Vincke and Lips). Aust J Biol Sci 6:234–243

    PubMed  CAS  Google Scholar 

  • Wilson RJM, Pasvol G, Weatherall DJ (1977) Invasion and growth of Plasmodium falciparum in different types of erythrocytes. Bull WHO 55:179–186

    PubMed  CAS  Google Scholar 

  • Yamada KA, Sherman IW (1979) Plasmodium lophurae: Composition and properties of hemozoin, the malarial pigment. Exp Parasitol 48:61–74

    PubMed  CAS  Google Scholar 

  • Yamada K, Sherman I (1981 a) Plasmodium lophurae: Malaria induced nucleotide changes in duckling (Anas domesticus) erythrocytes. Mol Biochem Parasitol 1:187–198

    Google Scholar 

  • Yamada K, Sherman I (1981 b) Purine metabolizing enzymes of the avian malaria Plasmodium lophurae and its host cell, the duckling (Anas domesticus) erythrocyte. Mol Biochem Parasitol 2:349–358

    PubMed  CAS  Google Scholar 

  • Yamada K, Sherman I (to be published) Regulation of purine uptake and metabolism by avian malarial parasite Plasmodium lophurae. Mol Biochem Parasitol

    Google Scholar 

  • Yuthavong Y, Wilairat P, Panijpan B, Potiwan C, Beale G (1979) Alterations in membrane proteins of mouse erythrocytes infeced with different strains and species of malaria parasites. Comp Biochem Physiol 63B:83–85

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sherman, I.W. (1984). Metabolism. In: Peters, W., Richards, W.H.G. (eds) Antimalarial Drugs I. Handbook of Experimental Pharmacology, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-35326-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-35326-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-34991-5

  • Online ISBN: 978-3-662-35326-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics