Skip to main content

Abstract

The ionic, or membrane theory of bioelectricity originated with Bernstein’s attempt in 1902 (cf. 7) to account for the negativity inside muscle and nerve cells relative to their outside. This explanation of the resting potential was based on the then recently developed theory of semi-permeable membranes and is no longer acceptable in the totality. However, Bernstein also contributed a suggestion which has been amply verified during the past quarter-century, that living membranes could change their permeability characteristics when excited by a stimulus. Thus, he was able to regard the electrogenic responses of all excitable cells, nerves and muscles, sensory and electric organs and glands as changes of the membrane potential from its resting state. As we shall see, these changes can be depolarizing or hyperpolarizing (repolarizing) in sign, but the former, particularly those which result in an all-or-none action potential or spike, are the more prominent and have been the most studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamirano, M., and Coates, C. W. Effect of potassium on electroplax of Electrophorus electricus. J. Cell, and Comp. Physiol, 49: 69–102 (1957).

    Article  CAS  Google Scholar 

  2. Belton, P., and Grundfest, H. Comparative effects of drugs on graded responses of insect muscle fibers. Fed. Proc, 20: 339 (1961).

    Google Scholar 

  3. Belton, P., and Grundfest, H. The ionic mechanism of rectification in frog slow muscle fibers. Biol. Bull, 121: 382 (1961).

    Google Scholar 

  4. Bennett, M. V. L. Modes of operation of electric organs. Ann. N. Y. Acad. Sci., 94: 458–509 (1961).

    Article  Google Scholar 

  5. Bennett, M. V. L., and Grundfesr, H. Studies on morphology and electro-physiology of electric organs. III. Electrophysiology of electric organs in Mormyrids. In Bioelectrogenesis (C. Chagas and A. Paes de Carvalho, Eds.), Elsevier, Amsterdam, 1961.

    Google Scholar 

  6. Bennett, M. V. L., and Grundfest, H. Unpublished data.

    Google Scholar 

  7. Bernstein, J. Electrobiologie. F. Vieweg, Braunschweig, 1912.

    Google Scholar 

  8. Boistel, J., and Fatt, P. Membrane permeability change during inhibitory transmitter action in crustacean muscle. J.Physiol, 144: 176–191 (1958).

    PubMed  CAS  Google Scholar 

  9. Boyle, P. J., and Conway, E. J. Potassium accumulation in muscle and associated changes. J. Physiol. (Lond.), 100: 1–63 (1941).

    CAS  Google Scholar 

  10. Burke, W., and Ginsborg, B. L. The electrical properties of the slow muscle fibre membrane. J.Physiol (Lond.), 132: 586–598 (1956).

    CAS  Google Scholar 

  11. Cohen, B., Bennett, M. V. L., and Grundfest, H. Electrically excitable responses in Raia erinacea electroplaques. Fed. Proc, 20: 339 (1961).

    Google Scholar 

  12. Cole, K. S., and Curtis, H. J. Electric impedance of the squid giant axon during activity. J.Gen. Physiol, 22: 649–670 (1939).

    Article  PubMed  CAS  Google Scholar 

  13. Eccles, J. C. Neuron physiology. In Handbook of Physiology, I. Neurophysiology I. (J. Field, Ed.), American Physiological Society, Washington, D. C., 1959.

    Google Scholar 

  14. Edwards, C., and Hagiwara, S. Potassium ions and the inhibitory process in the crayfish stretch receptor. J. Gen. Physiol, 48: 315–321 (1959).

    Article  Google Scholar 

  15. Giebisch, G. Measurements of electrical potential differences on single nephrons of the perfused Necturus kidney. J. Gen. Physiol, 44: 659–678 (1961).

    Article  PubMed  CAS  Google Scholar 

  16. Girardier, L., Reuben, J. P., and Grundfest, H. Components of the resting potential in crayfish and lobster muscle fibers. Biol Bull, 121: 366 (1961).

    Google Scholar 

  17. Girardier, L., Reuben, J. P., and Grundfest, H. Unpublished data.

    Google Scholar 

  18. Goldman, D. E. Potential, impedance, and rectification in membranes. J. Gen. Physiol, 27: 37–60 (1943).

    Article  PubMed  CAS  Google Scholar 

  19. Grundfest, H. The nature of the electrochemical potentials of bioelectric tissues. In, Electrochemistry in Biology and Medicine (T. Shedlovsky, Ed.), John Wiley, New York, 1955.

    Google Scholar 

  20. Grundfest, H. Excitation triggers in post-junctional cells. In, Physiological Triggers (T. H. Bullock, Ed.), American Physiological Society, Washington, D. C., 1957.

    Google Scholar 

  21. Grundfest, H. Electrical inexcitability of synapses and some of its consequences in the central nervous system. Physiol. Revs., 37: 337–361 (1957).

    CAS  Google Scholar 

  22. Grundfest, H. General problems of drug action on bioelectric phenomena. Ann. N. Y. Acad. Sci., 66: 537–591 (1957).

    Article  PubMed  CAS  Google Scholar 

  23. Grundfest, H. The mechanisms of discharge of the electric organs in relation to general and comparative electrophysiology. Prog. Biophys., 7: 1–85 (1957).

    CAS  Google Scholar 

  24. Grundfest, H. An electrophysiological basis for neuropharmacology. Fed. Proc, 17: 1006–1018 (1958).

    PubMed  CAS  Google Scholar 

  25. Grundfest, H. Evolution of conduction in the nervous system. In, Evolution of Nervous Control (A. D. Bass, Ed.), American Association for the Advancement of Science, Washington, D. C., 1959.

    Google Scholar 

  26. Grundfest, H. Synaptic and ephaptic transmission. In, Handbook of Physiology, Section 1, Neurophysiology I (J. Field, Ed.), American Physiological Society, Washington, D. C., 1959.

    Google Scholar 

  27. Grundfest, H. Excitation by hyperpolarizing potentials. A general theory of receptor activities. In, Nervous Inhibition (E. Florey, Ed.), Pergamon Press, London, 1961.

    Google Scholar 

  28. Grundfest, H. Ionic mechanisms in electrogenesis. Ann. N. Y. Acad. Sei., 94:405–457(1961).

    Article  CAS  Google Scholar 

  29. Grundfest, H. General physiology and pharmacology of junctional transmission. In, Biophysics of Physiological and Pharmacological Actions (A. M. Shanes, Ed.), American Association for the Advancement of Science, Washington, D. C., 1961.

    Google Scholar 

  30. Grundfest, H., and Bennett, M. V. L. Studies on morphology and electro-physiology of electric organs. I. Electrophysiology of marine electric fishes. In, Bioelectrogenesis (C. Chagas and A. Paes de Carvalho, Eds.), Elsevier, Amsterdam, 1961.

    Google Scholar 

  31. Grundfest, H., Kao, C. Y., and Altamirano, M. Bioelectric effects of ions microinjected into the giant axon of Loligo. J. Gen. Physiol, 38: 245–282 (1954).

    Article  CAS  Google Scholar 

  32. Grundfest, H., Reuben, J. P., and Rickles, W. H., Jr. The electrophysiology and pharmacology of lobster neuromuscular synapses. J. Gen. Physiol, 42: 1301–1323 (1959).

    Article  PubMed  CAS  Google Scholar 

  33. Hagiwara, S., Kusano, K., and Saïto, N. Membrane changes in crayfish stretch receptor neuron during inhibition and under action of gamma-aminobutyric acid. J. Neurophysiol, 23: 505–515 (1960).

    PubMed  CAS  Google Scholar 

  34. Hagiwara, S., and Saito, N. Voltage-current relations in nerve cell membrane of Onchidium verruculatum. J. Physiol, (Lond.), 148: 161–179 (1959).

    CAS  Google Scholar 

  35. Hodgkin, A. L.The Croonian Lecture: Ionic movements and electrical activity in giant nerve fibres. Proc. Roy. Soc. Lond. (B), 148: 1–37 (1957).

    Article  Google Scholar 

  36. Hodgkin, A. L., and Horowicz, P. Movements of Na and K in single muscle fibres. J.Physiol. (Lond.), 145: 405–432 (1959).

    CAS  Google Scholar 

  37. Hodgkin, A. L., and Huxley, A. F. A quantitative description of membrane current and its applications to conduction and excitation in nerve. J.Physiol. (Lond.), 117: 500–544 (1952).

    CAS  Google Scholar 

  38. Hodgkin, A. L., and Katz, B. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (Lond.), 108: 37–77 (1949).

    CAS  Google Scholar 

  39. Hutter, O. Ionic movements during vagus inhibition of the heart. In, Nervous Inhibition (E. Florey, Ed.), Pergamon Press, London, 1961.

    Google Scholar 

  40. Keynes, R. D., Bennett, M. V. L., and Grundfest, H. Studies on morphology and electrophysiology of electric organs. II. Electrophysiology of electric organ of Malapterurus electricus. In, Bioelectrogenesis (C. Chagas and A. Paes de Carvalho, Eds.), Elsevier, Amsterdam, 1961.

    Google Scholar 

  41. Koketsu, K. A concept of the mechanism of active depolarization. In, Biophysics of Physiological and Pharmacological Actions (A. M. Shanes, Ed.), American Association for the Advancement of Science, Washington, D. C., 1961.

    Google Scholar 

  42. Kuffler, S. W., and Vaughan-Williams, E. M. Properties of the “slow” skeletal muscle fibres of the frog. J. Physiol (Lond.), 121: 318–340 (1953).

    CAS  Google Scholar 

  43. Lorente de Nö, R. A Study of Nerve Physiology. The Rockefeller Institute for Medical Research, Studies Vols. 131 and 132, 1947.

    Google Scholar 

  44. Lüttgau, H. C. Das Kalium-Transportsystem am Ranvier-Knoten isolierter markhaltiger Nervenfasern. Pflugers Archiv., 271: 613–633 (1960).

    Article  Google Scholar 

  45. Noble, D. Cardiac action and pacemaker potentials based on the Hodgkin-Huxley equations. Nature, 188: 495–497 (1960).

    Article  CAS  Google Scholar 

  46. Reuben, J. P., Werman, R., and Grundfest, H. The ionic mechanisms of hyperpolarizing responses in lobster muscle fibers. J.Gen. Physiol., 45: 243–265. (1961).

    Article  PubMed  CAS  Google Scholar 

  47. Roche, M. (Ed.). Physiology of the cell membrane. J.Gen. Physiol., 43: Suppl. 1 (1960).

    Google Scholar 

  48. Shanes, A. M. Electrochemical aspects of physiological and pharmacological actions in excitable cells. Pharmacol. Revs., 10: 59–273 (1958).

    CAS  Google Scholar 

  49. Spyropoulos, C. S., and Tasaki, I. Nerve excitation and synaptic transmission. Ann. Rev. Physiol, 22: 407–432 (1960).

    Article  CAS  Google Scholar 

  50. Tasaki, I. Demonstration of two stable states of the nerve membrane in potassium-rich media. J.Physiol (Lond.), 148: 306–331 (1959).

    PubMed  CAS  Google Scholar 

  51. Tasaki, I. Conduction of the nerve impulse. In, Handbook of Physiology, Section1, Neurophysiology 1 (J. Field, Ed.), American Physiological Society, Washington, D. C., 1959.

    Google Scholar 

  52. Tasaki, I., and Hagiwara, S. Demonstration of two stable potential states in the squid giant axon under tetraethylammonium chloride. J.Gen. Physiol, 40: 858–885 (1957).

    Article  Google Scholar 

  53. Teorell, T. Electrokinetic membrane processes in relation to properties of excitable tissues. J.Gen. Physiol, 42: 831–863 (1959).

    Article  PubMed  CAS  Google Scholar 

  54. Weidmann, S. Electrophysiologic der Herzmuskelfaser. Hans Huber, Bern, 1956.

    Google Scholar 

  55. Werman, R., and Grundfest, H. Graded and all-or-none electrogenesis in arthropod muscle. II. The effect of alkali-earth and onium ions on lobster muscle fibers. J.Gen. Physiol, 44: 997–1027 (1961).

    Article  PubMed  CAS  Google Scholar 

  56. Werman, R., McCann, F. V., and Grundfest, H. Graded and all-or-none electrogenesis in arthropod muscle. I. The effects of alkali-earth cations on the neuromuscular system of Romalea microptera. J. Gen. Physiol, 44: 979–995 (1961).

    Article  CAS  Google Scholar 

  57. Wolstenholme, G. E. W., and O’Connor, C. M. (Eds.) Regidation of the Inorganic Ion Content of Cells (Ciba Foundation Study Group No. 5). Little, Brown and Co., Boston, 1960.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grundfest, H. (1962). Ionic Transport across Neural and Non-Neural Membranes. In: PROPERTIES of MEMBRANES and Diseases of the Nervous System. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-39528-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-39528-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-38663-7

  • Online ISBN: 978-3-662-39528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics