Skip to main content

Modelling Techniques for Simulating Large QCA Circuits

  • Chapter
  • First Online:
Field-Coupled Nanocomputing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8280))

  • 1237 Accesses

Abstract

In the past several years, incredible advances in the availability of nano fabrication processes have been witnessed, and have demonstrated molecular-scale production beyond the usable limit for CMOS process technology. This has led to the research and early development of a wide-range of novel computing paradigms at the nanoscale; amongst them, quantum dot cellular automata (QCA). QCA is a nanoelectronic computing paradigm in which an array of cells, each electrostatically interacting with its neighbors, is employed in a locally interconnected manner to implement general purpose digital circuits. Several proof-of-concept QCA devices have been fabricated using silicon-on-insulator (SOI), metallic island devices operating in the Coulomb blockade regime, and nano-magnetics. In recent years, research into implementing these devices using single molecules has also begun to generate significant interest, and most recently, it was demonstrated that silicon atom dangling bonds (DBs), on an otherwise hydrogen terminated silicon crystal surface, can serve as quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haider, M.B., et al.: Controlled coupling and occupation of silicon atomic quantum dots at room temperature. Phys. Rev. Lett. 102, 046805 (2009)

    Article  Google Scholar 

  2. Wang, L., Krapek, V., Ding, F., Horton, F., Schliwa, A., Bimberg, D., Rastelli, A., Schmidt, O.G.: Self-assembled quantum dots with tunable thickness of the wetting layer: role of vertical confinement on interlevel spacing. Phys. Rev. B 80(8), 9 (2009)

    Article  Google Scholar 

  3. Keyser, U.F., Schumacher, H.W., Zeitler, U., Haug, R.J., Eberl, K.: Fabrication of quantum dots with scanning probe nanolithography. Phys. Status Solidi B 224(3), 681–684 (2001)

    Article  Google Scholar 

  4. Lent, C.S.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  5. Macucci, M., Gattobigio, M., Bonci, L., Iannaccone, G., Prins, F.E., Single, C., Wetekam, G., Kern, D.P.: A QCA cell in silicon-on-insulator technology: theory and experiment. Superlattices Microstruct. 34, 205–211 (2004)

    Article  Google Scholar 

  6. Orlov, A.O., Kummamuru, R.K., Ramasubramaniam, R., Lent, C.S., Berstein, G.H., Snider, G.L.: Clocked quantum-dot cellular automata shift register. Surf. Sci. 532–535, 1193–1198 (2003)

    Article  Google Scholar 

  7. Amlani, I., Orlov, A.O., Toth, G., Bernstein, G.H., Lent, C.S., Snider, G.L.: Digital logic gate using quantum-dot cellular automata. Science 284, 289–291 (1999)

    Article  Google Scholar 

  8. Amlani, I., Orlov, A., Snider, G.L., Lent, C.S.: Demonstration of a functional quantum-dot cellular automata cell. J. Vac. Sci. Technol. B 16, 3795–3799 (1998)

    Article  Google Scholar 

  9. Lent, C.S., Snider, G.L., Bernstein, G.H., Porod, W., Orlov, A., Lieberman, M., Fehlner, T., Niemier, M.T., Kogge, P.: Quantum-Dot Cellular Automata. Kluwer Academic Publishers, Boca Raton (2003)

    Google Scholar 

  10. Snider, G.L., Amlani, I., Orlov, A., Toth, G., Bernstein, G., Lent, C.S., Merz, J.L., Porod, W.: Quantum-dot cellular automata: line and majority gate logic. Jpn. J. Appl. Phys. 38, 7227–7229 (1999)

    Article  Google Scholar 

  11. Kummamuru, R.V., Timler, J., Toth, G., Lent, C.S., Ramasubramaniam, R., Orlov, A., Bernstein, G.H.: Power gain and dissipation in a quantum-dot cellular automata latch. Appl. Phys. Lett. 81, 1332–1334 (2002)

    Article  Google Scholar 

  12. Toth, G., Lent, C.S.: Quasiadiabatic switching of metal-island quantum-dot cellular automata. J. Appl. Phys. 85(5), 2977–2984 (1999)

    Article  Google Scholar 

  13. Imre, A., Csaba, G., Ji, L., Orlov, A., Bernstein, G.H., Porod, W.: Majority Logic gate for magnetic quantum-dot cellular automata. Science 311(5758), 205–208 (2006)

    Article  Google Scholar 

  14. Csaba, G., et al.: Nanocomputing by field-coupled nanomagnets. IEEE Trans. Nanotechnol. 1(4), 209–213 (2002)

    Article  Google Scholar 

  15. György, C., Porod, W.: Simulation of field coupled computing architectures based on magnetic dot arrays. J. Comput. Electron. 1(1), 87–91 (2002)

    Google Scholar 

  16. Parish, M.C.B.: Modeling of physical constraints on bistable magnetic quantum cellular automata. Ph.D. thesis, University of London (2003)

    Google Scholar 

  17. Cowburn, R.P., Welland, M.E.: Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)

    Article  Google Scholar 

  18. Bernstein, G.H., Imre, A., Metlushko, V., Ji, L., Orlov, A., Csaba, G., Porod, W.: Magnetic QCA systems. Microelectron. J. 36, 619–624 (2005)

    Article  Google Scholar 

  19. Lu, Y., Lent, C.S.: Theoretical study of molecular quantum-dot cellular automata. J. Comput. Electron. 4, 115–118 (2005)

    Article  Google Scholar 

  20. Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

    Article  Google Scholar 

  21. Jiao, J., Long, G.J., Grandjean, F., Beatty, A.M., Fehlner, T.P.: Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes. J. Am. Chem. Soc. 125(25), 7522–7523 (2003)

    Article  Google Scholar 

  22. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Devices 50(9), 1890–1896 (2003)

    Article  Google Scholar 

  23. Li, Z., Fehlner, T.P.: Molecular QCA cells. 2. Characterization of an unsymmetrical dinuclear mixed-valence complex bound to a au surface by an organic linker. Inorg. Chem. 42(18), 5715–5721 (2003)

    Article  Google Scholar 

  24. Li, Z., Beatty, A.M., Fehlner, T.P.: Molecular QCA cells. 1. Structure and functionalization of an unsymmetrical dinuclear mixed-valence complex for surface binding. Inorg. Chem. 42(18), 5707–5714 (2003)

    Article  Google Scholar 

  25. Qi, H., Sharma, S., Li, Z., Snider, G.L., Orlov, A.O., Lent, C.S., Fehlner, T.P.: Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata. J. Am. Chem. Soc. 125(49), 15250–15259 (2003)

    Article  Google Scholar 

  26. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)

    Article  Google Scholar 

  27. Timler, J., Lent, C.S.: Maxwell’s demon and quantum-dot cellular automata. J. Appl. Phys. 94, 1050–1060 (2003)

    Article  Google Scholar 

  28. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE Trans. Electron Dev. 50, 1890–1896 (2003)

    Article  Google Scholar 

  29. Jin, Z.: Fabrication and measurement of molecular quantum cellular automata (QCA) device. Master’s thesis, University of Notre Dame, Notre Dame, IN 46556 (2006)

    Google Scholar 

  30. Data flow in molecular QCA: Logic can “sprint,” but the memory wall can still be a “hurdle” (2005)

    Google Scholar 

  31. Lent, C., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology 17(16), 4240–4251 (2006)

    Article  Google Scholar 

  32. Walus, K., Budiman, R.A., Jullien, G.A.: Impurity charging in semiconductor quantum-dot cellular automata. Nanotechnology 16(11), 2525–2529 (2005)

    Article  Google Scholar 

  33. Walus, K.: Design and simulation of quantum-dot cellular automata devices and circuits. Ph.D. thesis, University of Alberta, September (2005)

    Google Scholar 

  34. Walus, K., Karim, F., Ivanov, A.: Architecture for an external input into a molecular QCA circuit. J. Comput. Electron. 8, 35–42 (2009)

    Article  Google Scholar 

  35. Karim, F., Walus, K., Ivanov, A.: Analysis of field-driven clocking for molecular quantum-dot cellular automata. J. Comput. Electron. 9, 16–30 (2010)

    Article  Google Scholar 

  36. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19(5), 1752–1755 (2001)

    Article  Google Scholar 

  37. Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74, 6227–6233 (1993)

    Article  Google Scholar 

  38. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Article  Google Scholar 

  39. Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80, 4722–4735 (1996)

    Article  Google Scholar 

  40. Tóth, G., Lent, C.S.: Role of correlation in the operation of quantum-dot cellular automata. J. Appl. Phys. 89, 7943–7953 (2001)

    Article  Google Scholar 

  41. Karim, F., Navabi, A., Walus, K., Ivanov, A.: Quantum mechanical simulation of QCA with a reduced hamiltonian. In: Proceedings of the 8th IEEE Conference on Nanotechnolgy (2008)

    Google Scholar 

  42. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8(1), 116–127 (2009)

    Article  Google Scholar 

  43. Lieberman, M., Chellamma, S., Varughese, B., Wang, Y.L., Lent, C., Bernstein, G.H., Snider, G., Peiris, F.C.: Quantum-dot cellular automata at a molecular scale. Mol. Electron. II 960, 225–239 (2002)

    Google Scholar 

  44. Walus, K., Mazur, M., Schulhof, G., Jullien, G.A.: Simple 4-bit processor based on quantum-dot cellular automata (QCA). In: Proceedings of Application Specific Architectures, and Processors Conference, pp. 288–293, July 2005

    Google Scholar 

  45. Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots for quantum cellular automata. Appl. Phys. Lett. 62, 714–716 (1993)

    Article  Google Scholar 

  46. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59, 1–85 (1987)

    Article  Google Scholar 

  47. Mahler, G., Weberruß, V.A.: Quantum Networks: Dynamics of Open Nanostructures. Springer, Berlin (1998)

    Book  Google Scholar 

  48. Weiss, U.: Quantum Dissipative Systems. World Scientific, Stuttgart (2008)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faizal Karim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karim, F., Walus, K. (2014). Modelling Techniques for Simulating Large QCA Circuits. In: Anderson, N., Bhanja, S. (eds) Field-Coupled Nanocomputing. Lecture Notes in Computer Science(), vol 8280. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43722-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43722-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43721-6

  • Online ISBN: 978-3-662-43722-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics