Skip to main content

Brief Tour of Wavelet Theory

  • Chapter
  • First Online:
Wavelets in Neuroscience

Abstract

In this chapter, the main definitions of wavelet theory are given. To explain the basic ideas of the continuous wavelet transform, we describe a transition from Fourier analysis to wavelets. Mother functions and numerical techniques for implementing the wavelet transform are described. The problem of visualising the results is considered. Finally, features of the discrete wavelet transform are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that hereafter we will consider only the positive range of frequencies, since the negative frequency region is the “mirror image” of the positive one and does not provide any additional useful information.

  2. 2.

    More precisely, amplitude spectra of the Fourier transform.

  3. 3.

    Of course, in the case of experimental signals or data from numerical simulation, researchers deal with finite time series.

  4. 4.

    Here, for simplicity, a rectangular window is used. In a more general case (known as the Gabor transform), we use a window function g(t) that is localized in both the time and frequency domains.

  5. 5.

    This is the most typical case in experimental studies. However, data can be acquired in such a way that each data point is related to an arbitrary instant of time. This happens, e.g., for point processes represented by RR intervals of the electrocardiogram [31, 32]. In such a case, the relevant algorithms must be modified [31, 32].

  6. 6.

    Notice the difference between ψ, \(\hat{\psi }\) and Ψ, \(\hat{\varPsi }\) used for the continuous and discrete transforms, respectively.

  7. 7.

    Here we do not consider iterations for calculation of the Fourier image of the signal \(\hat{x}\), since this transform should be performed only once.

  8. 8.

    For time series with length N, only \(\mathcal{L}\times 2N(1 +\log _{2}N)\) arithmetic operations are needed to obtain the wavelet surface with the described technique for reducing edge effects.

  9. 9.

    The dimension of the phase space is equal to the number of quantities required to fully characterize the state of the system under study.

  10. 10.

    Of course, if one deals with a system dimension of 3 or higher.

  11. 11.

    Nevertheless, the phase synchronization of such systems can usually be detected by means of indirect indications [58, 63] and measurements [64].

  12. 12.

    For practical purposes, mother wavelets can also be constructed from tabulated segments of time series (see [30, 71]). This subject will be discussed in detail in Sect. 6.3.

References

  1. J. Morlet, G. Arens, E. Fourgeau, D. Glard, Wave propagation and sampling theory. Part I: complex signal and scattering in multilayered media. Geophysics 47(2), 203 (1982)

    Google Scholar 

  2. J. Morlet, G. Arens, E. Fourgeau, D. Giard, Wave propagation and sampling theory. Part II: sampling theory and complex waves. Geophysics 47(2), 222 (1982)

    Google Scholar 

  3. A. Grossman, J. Morlet, Decomposition of Hardy function into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15(4), 273 (1984)

    Google Scholar 

  4. M. Holschneider, Wavelets: An Analysis Tool (Oxford University Press, Oxford, 1995)

    MATH  Google Scholar 

  5. M. Farge, J.C. Hunt, J.C. Vassilicos, Wavelets, Fractals and Fourier Transforms (Oxford University Press, Oxford, 1995)

    Google Scholar 

  6. A. Aldroubi, M. Unser, Wavelets in Medicine and Biology (CRC, Boca Raton, 1996)

    MATH  Google Scholar 

  7. R.T. Ogden, Essential Wavelets for Statistical Applications and Data Analysis (Birkhäuser, Boston/Berlin, 1997)

    Book  MATH  Google Scholar 

  8. C. Torrence, G.P. Compo, A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61 (1998)

    Article  ADS  Google Scholar 

  9. D.A. Yuen, A.P. Vincent, M. Kido, L. Vecsey, Geophysical applications of multidimensional filtering with wavelets. Pure Appl. Geophys. 159, 2285 (2001)

    Article  ADS  Google Scholar 

  10. J.C. van den Berg, Wavelets in Physics (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  11. R. Gencay, F. Selcuk, B. Whitcher, An Introduction to Wavelets and Other Filtering Methods in Finance and Economics (Academic, San Diego, 2001)

    Google Scholar 

  12. R. Carmonia, Practical Time–Frequency Analysis (Academic, New York, 1998)

    Google Scholar 

  13. S.G. Mallat, A Wavelet Tour of Signal Processing (Academic, New York, 1998)

    MATH  Google Scholar 

  14. M.B. Ruskai, G. Beylkin, R. Coifman, I. Daubechies, S.G. Mallat, Y. Meyer, L. Raphael, Wavelets and Their Applications and Data Analysis (Jones and Bartlett, Boston, 1992)

    Google Scholar 

  15. G. Kaiser, A Friendly Guide to Wavelets (Springer/Birkhauser, Boston, 1994)

    MATH  Google Scholar 

  16. A.A. Koronovskii, A.E. Hramov, Continuous Wavelet Analysis and Its Applications (Fizmatlit, Moscow, 2003)

    Google Scholar 

  17. C. Blatter, Wavelets: A Primer (A.K. Peters, Natick, 1998)

    MATH  Google Scholar 

  18. Y. Meyer, Wavelets: Algorithms and Applications (SIAM, Philadelphia, 1993)

    MATH  Google Scholar 

  19. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  20. Y. Meyer, Wavelets and Operators (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  21. N.M. Astafyeva, Wavelet analysis: spectral analysis of local perturbations. Appl. Nonlinear Dyn. 4(2), 3 (1996)

    Google Scholar 

  22. J.C. Goswami, A.K. Chan, Fundamentals of Wavelets: Theory, Algorithms, and Applications (Wiley, Hoboken, 2011)

    Book  Google Scholar 

  23. T. Paul, Function analytic on half-plane as quantum mechanical states. J. Math. Phys. 24(25), 136 (1984)

    Google Scholar 

  24. M. Farge, Wavelet transforms and their applications to turbulence. Annu. Rev. Fluid Mech. 24, 395 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  25. P. Sliwinski, Nonlinear System Identification by Haar Wavelets (Springer, Berlin/Heidelberg, 2013)

    Book  MATH  Google Scholar 

  26. I. Daubechies, The wavelet transform, time–frequency localization and signal analysis. IEEE Trans. Inf. Theory 36, 961–1004 (1990)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  27. S.G. Mallat, Multiresolution approximation and wavelet orthonormal bases of L 2(R). Trans. Am. Math. Soc. 315, 69 (1989)

    MATH  MathSciNet  Google Scholar 

  28. P.G. Lemarie, Y. Meyer, Ondelettes et bases hilbertiennes. Revista Matemática Iberoamericana 2, 1 (1986)

    Article  MathSciNet  Google Scholar 

  29. G. Battle, A block spin construction of ondelettes. Part 1. Commun. Math. Phys. 110, 607 (1987)

    Google Scholar 

  30. V.A. Gusev, A.A. Koronovskii, A.E. Hramov, Application of adaptive wavelet bases to analysis of nonlinear systems with chaotic dynamics. Tech. Phys. Lett. 29(18), 61 (2003)

    Google Scholar 

  31. A.E. Hramov, A.A. Koronovskii, V.I. Ponomarenko, M.D. Prokhorov, Detecting synchronization of self-sustained oscillators by external driving with varying frequency. Phys. Rev. E 73(2), 026208 (2006)

    Google Scholar 

  32. A.E. Hramov, A.A. Koronovskii, V.I. Ponomarenko, M.D. Prokhorov, Detection of synchronization from univariate data using wavelet transform. Phys. Rev. E 75(5), 056207 (2007)

    Google Scholar 

  33. R.K. Otnes, L. Enochson, Applied Time Series Analysis (Wiley, New York/Chichester/Toronto, 1978)

    MATH  Google Scholar 

  34. I. Daubechies, Orthogonal bases of compactly supported wavelets. Comput. Appl. Math. 41(7), 906 (1988)

    MathSciNet  Google Scholar 

  35. S.D. Meyers, B.G. Kelly, J.J. O’Brien, An introduction to wavelet analysis in oceanography and meteorology: with application to the dispersion of Yanai waves. Mon. Weather Rev. 121, 2858 (1993)

    Article  ADS  Google Scholar 

  36. M. Farge, E. Coirand, Y. Meyer, F. Pascal, Improved predictability of two dimensional turbulent flows using wavelet packet compression. Fluid Dyn. Res. 10, 229 (1992)

    Article  ADS  Google Scholar 

  37. V.S. Anishchenko, T.E. Vadivasova, D.E. Postnov, M.A. Safonova, Synchronization of chaos. Int. J. Bifurc. Chaos 2(3), 633 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  38. N.F. Rulkov, A.R. Volkovskii, A. Rodriguez-Lozano, E. Del Rio, M.G. Velarde, Synchronous chaotic behaviour of a response oscillator with chaotic driving. Chaos Solitons Fractals 4, 201 (1994)

    Article  ADS  Google Scholar 

  39. A. Shabunin, V. Astakhov, J. Kurths, Quantitative analysis of chaotic synchronization by means of coherence. Phys. Rev. E 72(1), 016218 (2005)

    MathSciNet  Google Scholar 

  40. A.E. Hramov, A.A. Koronovskii, M.K. Kurovskaya, O.I. Moskalenko, Synchronization of spectral components and its regularities in chaotic dynamical systems. Phys. Rev. E 71(5), 056204 (2005)

    MathSciNet  Google Scholar 

  41. I. Noda, Y. Ozaki, Two-Dimensional Correlation Spectroscopy: Applications in Vibrational and Optical Spectroscopy (Wiley, Chichester, 2002)

    Google Scholar 

  42. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Phase synchronisation in regular and chaotic systems. Int. J. Bifurc. Chaos 10(10), 2291 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  43. P. Bergé, Y. Pomeau, C. Vidal, L’Ordre dans le Chaos (Hermann, Paris, 1988)

    Google Scholar 

  44. F.C. Moon, Chaotic Vibrations: An Introduction for Applied Scientists and Engineers (Wiley, Hoboken, 2004)

    Book  Google Scholar 

  45. L.M. Pecora, T.L. Carroll, Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  46. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78(22), 4193 (1997)

    Google Scholar 

  47. N.F. Rulkov, M.M. Sushchik, L.S. Tsimring, H.D. Abarbanel, Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51(2), 980 (1995)

    Google Scholar 

  48. S. Fahy, D.R. Hamann, Transition from chaotic to nonchaotic behavior in randomly driven systems. Phys. Rev. Lett. 69(5), 761 (1992)

    Google Scholar 

  49. A. Maritan, J.R. Banavar, Chaos, noise and synchronization. Phys. Rev. Lett. 72(10), 1451 (1994)

    Google Scholar 

  50. R. Toral, C.R. Mirasso, E. Hernández-Garsia, O. Piro, Analytical and numerical studies of noise-induced synchronization of chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 11(3), 665 (2001)

    MATH  Google Scholar 

  51. A.A. Koronovskii, A.E. Hramov, Wavelet transform analysis of the chaotic synchronization of dynamical systems. JETP Lett. 79(7), 316 (2004)

    Google Scholar 

  52. A.E. Hramov, A.A. Koronovskii, An approach to chaotic synchronization. Chaos Interdiscip. J. Nonlinear Sci. 14(3), 603 (2004)

    Article  MathSciNet  Google Scholar 

  53. A.E. Hramov, A.A. Koronovskii, Time scale synchronization of chaotic oscillators. Phys. D 206(3–4), 252 (2005)

    MATH  MathSciNet  Google Scholar 

  54. A.E. Hramov, A.A. Koronovskii, P.V. Popov, I.S. Rempen, Chaotic synchronization of coupled electron–wave systems with backward waves. Chaos Interdiscip. J. Nonlinear Sci. 15(1), 013705 (2005)

    Google Scholar 

  55. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804 (1996)

    Article  Google Scholar 

  56. G.V. Osipov, A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Phase synchronization effect in a lattice of nonidentical Rössler oscillators. Phys. Rev. E 55(3), 2353 (1997)

    MathSciNet  Google Scholar 

  57. M.G. Rosenblum, J. Kurths, in Nonlinear Analysis of Physiological Data, ed. by H. Kantz, J. Kurths (Springer, Berlin, 1998), pp. 91–99

    Google Scholar 

  58. A.S. Pikovsky, M.G. Rosenblum, G.V. Osipov, J. Kurths, Phase synchronization of chaotic oscillators by external driving. Phys. D 104(4), 219 (1997)

    MATH  MathSciNet  Google Scholar 

  59. J.P. Lachaux, et al., Studying single-trials of the phase synchronization activity in the brain. Int. J. Bifurc. Chaos 10(10), 2429 (2000)

    Google Scholar 

  60. R.Q. Quiroga, A. Kraskov, T. Kreuz, P. Grassberger, Perfomance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys. Rev. E 65, 041903 (2002)

    Article  ADS  Google Scholar 

  61. V.S. Anishchenko, T.E. Vadivasova, Relationship between frequency and phase characteristics. Two criteria of synchronization. J. Commun. Technol. Electron. 49, 69 (2004)

    Google Scholar 

  62. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Book  Google Scholar 

  63. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization in a population of globally coupled chaotic oscillaors. Europhys. Lett. 34(3), 165 (1996)

    Google Scholar 

  64. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Locking-based frequency measurement and synchronization of chaotic oscillators with complex dynamics. Phys. Rev. Lett. 89(26), 264102 (2002)

    Google Scholar 

  65. A.E. Hramov, A.A. Koronovskii, Y. Levin, Synchronization of chaotic oscillator time scales. J. Exp. Theor. Phys. 127(4), 886 (2005)

    Google Scholar 

  66. L. Glass, M.C. Mackey, From Clocks to Chaos: The Rhythms of Life (Princeton University Press, Princeton, 1988)

    MATH  Google Scholar 

  67. S. Boccaletti, J. Kurths, G.V. Osipov, D.L. Valladares, C.S. Zhou, The synchronization of chaotic systems. Phys. Rep. 366, 1 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. A.G. Balanov, N.B. Janson, D.E. Postnov, O.V. Sosnovtseva, Synchronization: From Simple to Complex (Springer, Berlin, 2009)

    Google Scholar 

  69. A.A. Koronovskii, A.A. Ovchinnikov, A.E. Hramov, Experimental study of the time-scale synchronization in the presence of noise. Phys. Wave Phenom. 18(4), 262 (2010)

    Google Scholar 

  70. R.A. Filatov, A.E. Hramov, A.A. Koronovskii, Chaotic synchronization in coupled spatially extended beam-plasma systems. Phys. Lett. A 358, 301 (2006)

    Article  ADS  MATH  Google Scholar 

  71. E. Sitnikova, A.E. Hramov, A.A. Koronovskii, E.L. Luijtelaar, Sleep spindles and spike–wave discharges in EEG: their generic features, similarities and distinctions disclosed with Fourier transform and continuous wavelet analysis. J. Neurosci. Methods 180, 304 (2009)

    Article  Google Scholar 

  72. P. Flandrin, Some aspects of non-stationary signal processing with emphasis on time–frequency and time-scale methods, in Wavelets, ed. by J.M. Combes, A. Grossmann, Ph. Tchamitchian (Springer, Berlin/Heidelberg, 1989), pp. 68–98

    Chapter  Google Scholar 

  73. G. Buzsaki, A. Draguhn, Neuronal oscillations in cortical networks. Science 304, 1926 (2004)

    Article  ADS  Google Scholar 

  74. P.S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science Engineering, Medicine and Finance (Institute of Physics Publishing, Bristol, 2002)

    Book  Google Scholar 

  75. M. Vetterli, J. Kovacevic, Wavelets and Subband Coding (Prentice Hall, New York, 1995)

    MATH  Google Scholar 

  76. I.M. Dremin, O.V. Ivanov, V.A. Nechitailo, Wavelets and their uses. Physics-Uspekhi 44(5), 447 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hramov, A.E., Koronovskii, A.A., Makarov, V.A., Pavlov, A.N., Sitnikova, E. (2015). Brief Tour of Wavelet Theory. In: Wavelets in Neuroscience. Springer Series in Synergetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43850-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43850-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43849-7

  • Online ISBN: 978-3-662-43850-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics