Skip to main content

Biliary Infection, Pancreatic Infection and Microecology

  • Chapter
Infectious Microecology

Abstract

The biliary tract system mainly transports bile secreted by hepatocytes and bile duct epithelial cells into the gut, and includes the intra-hepatic biliary tract and extra hepatic biliary tract. It starts from intra hepatic capillary biliary tract, and ends with pancreatic duct rendezvous with the Vater ampullary, opening into the duodenum nipple. The pancreas is the body’s second largest digestive gland secondary to the liver, and has exocrine and endocrine functions. Normally, the pancreas stimulated by food, etc. secretes mounts of characteristic pancreatic juice into the gut. Thus, biliary tract and pancreas infections are closely associated with intestinal bacterial translocation and microecology imbalance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdeldayem H, Ghoneim E, Refaei A A, et al. Obstructive jaundice promotes intestinal-barrier dysfunction and bacterial translocation: Experimental study. Hepatol Int, 2007, 1: 444–448.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Pinzone M R, Celesia B M, Di Rosa M, et al. Microbial translocation in chronic liver diseases. Int J Microbiol, 2012: 629–694.

    Google Scholar 

  3. Wang F, Jiang H, Shi K, et al. Gut Bacterial Translocation is associated with Microinflammation in End Stage Renal Disease Patients. Nephrology (Carlton), 2012, 17: 733–738.

    Article  CAS  Google Scholar 

  4. Ilan Y. Leaky gut and the liver: A role for bacterial translocation in nonalcoholic steatohepatitis. World J Gastroenterol, 2012, 18: 2609–2618.

    Article  Google Scholar 

  5. Quirino I E, Cardoso V N, Santos R D, et al. The Role of L-arginine and inducible nitric oxide synthase in intestinal permeability and bacterial translocation. J Parenter Enteral Nutr, 2013, 37: 392–400.

    Article  CAS  Google Scholar 

  6. Lundell L. Use of probiotics in abdominal surgery. Dig Dis, 2011, 29: 570–573.

    Article  PubMed  Google Scholar 

  7. Liu Z, Ma Y, Qin H. Potential prevention and treatment of intestinal barrier dysfunction using active components of Lactobacillus. Ann Surg, 2011, 254: 832–833; author reply 3.

    Article  PubMed  Google Scholar 

  8. Sarna S K. Cyclic motor activity; migrating motor complex. Gastroenterology, 1985, 89: 894–913.

    CAS  PubMed  Google Scholar 

  9. Grivell M B, Woods C M, Grivell A R, et al. The possum sphincter of Oddi pumps or resists flow depending on common bile duct pressure: a multilumen manometry study. J Physiol, 2004, 558: 611–622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Zelenka J, Muchova L, Zelenkova M, et al. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie, 2012, 94: 1821–1827.

    Article  CAS  PubMed  Google Scholar 

  11. Lamsa V, Levonen A L, Sormunen R, et al. Heme and heme biosynthesis intermediates induce Heme oxygenase-1 and cytochrome P450 2A5, enzymes with putative sequential roles in heme and bilirubin metabolism: Different requirement for transcription factor nuclear factor erythroid-derived 2-like 2. Toxicol Sci, 2012, 130: 132–144.

    Article  PubMed  CAS  Google Scholar 

  12. Wi Y M, Peck K R. Biliary sepsis caused by Ochrobactrum anthropi. Jpn J Infect Dis, 2010, 63: 444–446.

    PubMed  Google Scholar 

  13. Correia M I, Liboredo J C, Consoli M L. The role of probiotics in gastrointestinal surgery. Nutrition, 2012, 28: 230–234.

    Article  PubMed  Google Scholar 

  14. Chao C M, Lai C C, Tang H J, et al. Biliary tract infections caused by Aeromonas species. Eur J Clin Microbiol Infect Dis, 2013, 32: 245–251.

    Article  CAS  PubMed  Google Scholar 

  15. Ortega M, Marco F, Soriano A, et al. Epidemiology and prognostic determinants of bacteraemic biliary tract infection. J Antimicrob Chemother, 2012, 67: 1508–1513.

    Article  CAS  PubMed  Google Scholar 

  16. Shanahan F. Probiotics in perspective. Gastroenterology, 2010, 139: 1808–1812.

    Article  PubMed  Google Scholar 

  17. Kunisawa J, Kiyono H. Peaceful mutualism in the gut: Revealing key commensal bacteria for the creation and maintenance of immunological homeostasis. Cell Host Microbe, 2011, 9: 83–84.

    Article  CAS  PubMed  Google Scholar 

  18. Greenwood-Van Meerveld B. Intestinal barrier function in health and gastrointestinal disease. Neurogastroenterol Motil, 2012, 24: 889.

    Article  CAS  Google Scholar 

  19. Lorenzo-Zuniga V, Bartoli R, Planas R, et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats. Hepatology, 2003, 37: 551–557.

    Article  CAS  PubMed  Google Scholar 

  20. Clements W D, Parks R, Erwin P, et al. Role of the gut in the pathophysiology of extrahepatic biliary obstruction. Gut, 1996, 39: 587–593.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ding J W, Andersson R, Soltesz V, et al. Obstructive jaundice impairs reticuloendothelial function and promotes bacterial translocation in the rat. J Surg Res, 1994, 57: 238–245.

    Article  CAS  PubMed  Google Scholar 

  22. Clark J F, Loftspring M, Wurster W L, et al. Bilirubin oxidation products, oxidative stress, and intracerebral hemorrhage. Acta Neurochir Suppl, 2008, 105: 7–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Liu Y, Li P, Lu J, et al. Bilirubin possesses powerful immunomodulatory activity and suppresses experimental autoimmune encephalomyelitis. J Immunol, 2008, 181:1887–1897.

    Article  CAS  PubMed  Google Scholar 

  24. Kapan M, Tekin R, Onder A, et al. Thymoquinone ameliorates bacterial translocation and inflammatory response in rats with intestinal obstruction. Int J Surg, 2012, 10: 484–488.

    Article  PubMed  Google Scholar 

  25. De Winter B Y, De Man J G. Interplay between inflammation, immune system and neuronal pathways: Effect on gastrointestinal motility. World J Gastroenterol, 2010, 16: 5523–5535.

    Article  PubMed Central  PubMed  Google Scholar 

  26. von Kampen O, Buch S, Nothnagel M, et al. Genetic and functional identification of the likely causative variant for cholesterol gallstone disease at the ABCG5/8 lithogenic locus. Hepatology, 2013, 57: 2407–2417.

    Article  CAS  Google Scholar 

  27. Xie M, Kotecha VR, Andrade JD, et al. Augmented cholesterol absorption and sarcolemmal sterol enrichment slow small intestinal transit in mice, contributing to cholesterol cholelithogenesis. J Physiol, 2012, 590: 1811–1824.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Chai J, He Y, Cai S Y, et al. Elevated hepatic multidrug resistance-associated protein 3/ATP-binding cassette subfamily C 3 expression in human obstructive cholestasis is mediated through tumor necrosis factor alpha and c-Jun NH2-terminal kinase/stress-activated protein kinase-signaling pathway. Hepatology, 2012, 55: 1485–1494.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Ahmed M H, Hamad M A, Routh C, et al. Statins as potential treatment for cholesterol gallstones: An attempt to understand the underlying mechanism of actions. Expert Opin Pharmacother, 2011, 12: 2673–2681.

    Article  CAS  PubMed  Google Scholar 

  30. Suo T, Peng P, Feng M, et al. Fixed-point and stratified analysis of the fine structure and composition of five gallstones with Fourier transform infrared (FT-IR) specular reflection spectroscopy. Microsc Res Tech, 2012, 75: 294–299.

    Article  CAS  PubMed  Google Scholar 

  31. Kiriyama S, Takada T, Strasberg S M, et al. New diagnostic criteria and severity assessment of acute cholangitis in revised Tokyo guidelines. J Hepatobiliary Pancreat Sci, 2012, 19:548–556.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Schmidt M, Dumot J A, Soreide O, et al. Diagnosis and management of calculous gallbladder disease. Scand J Gastroenterol, 2012, 47: 1257–1265.

    Article  PubMed  Google Scholar 

  33. Lee S J, Cho Y H, Lee S Y, et al. A case of scrub typhus complicated by acute calculous cholecystitis. Korean J Fam Med, 2012, 33: 243–246.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Cai D, Sorokin V, Lutwick L, et al. C. glycolicum as the sole cause of bacteremia in a patient with acute cholecystitis. Ann Clin Lab Sci, 2012, 42: 162–164.

    PubMed  Google Scholar 

  35. Lata J, Jurankova J, Kopacova M, et al. Probiotics in hepatology. World J Gastroenterol, 2011, 17: 2890–2896.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Lee Y K, Mazmanian S K. Has the microbiota played a critical role in the evolution of the adaptive immune system? Science, 2010, 330: 1768–1773.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Khanal T, Kim H G, Jin S W, et al. Protective role of metabolism by intestinal microflora in butyl paraben-induced toxicity in HepG2 cell cultures. Toxicol Left, 2012, 213:174–183.

    Article  CAS  Google Scholar 

  38. Frick J S, Autenrieth I B. The gut microflora and its variety of roles in health and disease. Curr Top Microbiol Immunol, 2013, 358: 273–289.

    CAS  PubMed  Google Scholar 

  39. Guarino A, Wudy A, Basile F, et al. Composition and roles of intestinal microbiota in children. J Matern Fetal Neonatal Med, 2012, 1:63–66.

    Article  Google Scholar 

  40. Naik S, Bouladoux N, Wilhelm C, et al. Compartmentalized control of skin immunity by resident commensals. Science, 2012, 337:1115–1119.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Macdonald T T, Monteleone G, Immunity, inflammation, and allergy in the gut. Science, 2005, 307:1920–1925.

    Article  CAS  PubMed  Google Scholar 

  42. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486: 207–214.

    Article  PubMed Central  CAS  Google Scholar 

  43. Kaya M, Bestas R, Bacalan F, et al. Microbial profile and antibiotic sensitivity pattern in bile cultures from endoscopic retrograde cholangiography patients. World J Gastroenterol, 2012, 18: 3585–3589.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Sung Y K, Lee J K, Lee K H, et al. The clinical epidemiology and outcomes of bacteremic biliary tract infections caused by antimicrobial-resistant pathogens. Am J Gastroenterol, 2012, 107: 473–483.

    Article  CAS  PubMed  Google Scholar 

  45. Kager L M, Sjouke B, van den Brand M, et al. The role of antibiotic prophylaxis in endoscopic retrograde cholangiopancreatography; a retrospective single-center evaluation. Scand J Gastroenterol, 2012, 47: 245–250.

    Article  PubMed  Google Scholar 

  46. Chow J, Lee S M, Shen Y, et al. Host-bacterial symbiosis in health and disease. Adv Immunol, 2010, 107: 243–274.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Backhed F, Ley R E, Sonnenburg J L, et al. Host-bacterial mutualism in the human intestine. Science, 2005, 307:1915–1920.

    Article  PubMed  CAS  Google Scholar 

  48. Methé B A, Nelson K E, Pop M. A framework for human microbiome research. Nature, 2012, 486:215–221.

    Article  PubMed Central  CAS  Google Scholar 

  49. Bengmark S. Pro- and synbiotics to prevent sepsis in major surgery and severe emergencies. Nutrients, 2012, 4: 91–111.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Resta-Lenert S, Barrett K E. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut, 2003, 52: 988–997.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kinross J M, Markar S, Karthikesalingam A, et al. A meta-analysis of probiotic and synbiotic use in elective surgery: Does nutrition modulation of the gut microbiome improve clinical outcome? JPEN J Parenter Enteral Nutr, 2013, 37: 243–253.

    Article  PubMed  Google Scholar 

  52. Holte K, Krag A, Gluud L L. Systematic review and meta-analysis of randomized trials on probiotics for hepatic encephalopathy. Hepatol Res, 2012, 42: 1008–1015.

    Article  PubMed  Google Scholar 

  53. Furrie E, Macfarlane S, Kennedy A, et al. Synbiotic therapy (Bifidobacterium longum/Synergy initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. Gut, 2005, 54: 242–249.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Ichinohe T, Pang I K, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA, 2011, 108: 5354–5359.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lilly D M, Stillwell R H. Probiotics: Growth-promoting factors produced by microorganisms. Science, 1965, 147: 747–748.

    Article  CAS  PubMed  Google Scholar 

  56. Kolida S, Gibson G R. Synbiotics in health and disease. Annu Rev Food Sci Technol, 2011, 2: 373–393.

    Article  PubMed  Google Scholar 

  57. Fuller R. Probiotics in human medicine. Gut, 1991, 32:439–442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Dunne C, O’Mahony L, Murphy L, et al. In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. Am J Clin Nutr, 2001, 73: S386–S392.

    Google Scholar 

  59. Gibson G R, Roberfroid M B Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J Nutr, 1995, 125: 1401–1412.

    CAS  PubMed  Google Scholar 

  60. Eguchi S, Takatsuki M, Hidaka M, et al. Perioperative synbiotic treatment to prevent infectious complications in patients after elective living donor liver transplantation: A prospective randomized study. Am J Surg, 2011, 201: 498–502.

    Article  PubMed  Google Scholar 

  61. Sugawara G, Nagino M, Nishio H, et al. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: A randomized controlled trial. Ann Surg, 2006, 244: 706–714.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Kinross J, Warren O, Silk D, et al. Perioperative synbiotic treatment to prevent postoperative infectious complications in biliary cancer surgery: A randomized control trial. Ann Surg, 2007, 245: 1000.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Wang S Q, Feng Q X, Li S J, et al. The day when infection is confirmed is a better time point for mortality prediction in patients with severe acute pancreatitis. Pancreas, 2012, 41: 605–610.

    Article  CAS  PubMed  Google Scholar 

  64. Besselink M G, van Santvoort H C, Buskens E, et al. Probiotic prophylaxis in predicted severe acute pancreatitis: A randomised, double-blind, placebo-controlled trial. Lancet, 2008, 371: 651–659.

    Article  PubMed  Google Scholar 

  65. Olivieri C, Nanni L, Taddei A, et al. Acute pancreatitis associated with herpes simplex virus infection in a child. Pancreas, 2012, 41: 330–331.

    Article  PubMed  Google Scholar 

  66. Jeppsson B, Mangell P, Thorlacius H. Use of probiotics as prophylaxis for postoperative infections. Nutrients, 2011, 3: 604–612.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Yadav D, Lowenfels A B. Trends in the epidemiology of the first attack of acute pancreatitis: a systematic review. Pancreas, 2006, 33: 323–330.

    Article  PubMed  Google Scholar 

  68. Gurusamy K S, Farouk M, Tweedie J H. UK guidelines for management of acute pancreatitis: Is it time to change? Gut, 2005, 54: 1344–1345.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Sah R P, Garg P, Saluja A K. Pathogenic mechanisms of acute pancreatitis. Curr Opin Gastroenterol, 2012, 28: 507–515.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Saluja A, Hashimoto S, Saluja M, et al. Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am J Physiol, 1987, 253: G508-G516.

    Google Scholar 

  71. Saluja A K, Bhagat L, Lee H S, et al. Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am J Physiol, 1999, 276: G835-G842.

    Google Scholar 

  72. Kolodecik T R, Shugrue C A, Thrower E C, et al. Activation of soluble adenylyl cyclase protects against secretagogue stimulated zymogen activation in rat pancreaic acin ar cells. PLoS One, 2012, 7: e41320.

    Google Scholar 

  73. Dawra R, Sah R P, Dudeja V, et al. Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology, 2011, 141: 2210–2217 e2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Sah R P, Saluja A. Molecular mechanisms of pancreatic injury. Curr Opin Gastroenterol, 2011, 27: 444–451.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Park C Y, Hoover P J, Mullins F M, et al. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orail. Cell, 2009, 136: 876–890.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Mukherjee R, Criddle D N, Gukovskaya A, et al. Mitochondrial injury in pancreatitis. Cell Calcium, 2008, 44: 14–23.

    Article  CAS  PubMed  Google Scholar 

  77. Cardenas C, Miller RA, Smith I, et al. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell, 2010, 142: 270–283.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Lugea A, Waldron R T, French SW, et al. Drinking and driving pancreatitis: Links between endoplasmic reticulum stress and autophagy. Autophagy, 2011, 7: 783–785.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Grasso D, Ropolo A, Lo Re A, et al. Zymophagy, a novel selective autophagy pathway mediated by VMP1-USP9x-p62, prevents pancreatic cell death. J Biol Chem, 2011, 286: 8308–8324.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Ahmed F, Fogel E. Reply to Reiss G, Ramrakhiani S. Right upper-quadrant pain and a normal abdominal ultrasound. Clin Gastroenterol Hepatol, 2009, 7: 603. Clin Gastroenterol Hepatol, 2009, 7: 1256.

    Article  Google Scholar 

  81. [81] Mashima H, Sato T, Horie Y, et al. Interferon regulatory factor-2 regulates exocytosis mechanisms mediated by SNAREs in pancreatic acinar cells. Gastroenterology, 2011, 141: 1102–1113, el-8.

    Google Scholar 

  82. Chen Y, Zak Y, Hernandez-Boussard T, et al. The epidemiology of idiopathic acute pancreatitis, analysis of the nationwide inpatient sample from 1998 to 2007. Pancreas, 2013, 42: 1–5.

    Article  PubMed  Google Scholar 

  83. Dufour M C, Adamson M D. The epidemiology of alcohol-induced pancreatitis. Pancreas, 2003, 27: 286–290.

    Article  PubMed  Google Scholar 

  84. Algul H, Tando Y, Schneider G, et al. Acute experimental pancreatitis and NF-κB/Rel activation. Pancreatology, 2002, 2: 503–509.

    Article  PubMed  CAS  Google Scholar 

  85. Garcia M, Calvo J J. Cardiocirculatory pathophysiological mechanisms in severe acute pancreatitis. World J Gastrointest Pharmacol Ther, 2010, 1: 9–14.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Andersen A M, Novovic S, Ersboll A K, et al. Mortality in alcohol and biliary acute pancreatitis. Pancreas, 2008, 36: 432–434.

    Article  PubMed  Google Scholar 

  87. Hirota M, Satoh K, Kikuta K, et al. Early detection of low enhanced pancreatic parenchyma by contrast-enhanced computed tomography predicts poor prognosis of patients with acute pancreatitis. Pancreas, 2012, 41: 1099–1104.

    Article  PubMed  Google Scholar 

  88. Bryner B S, Smith C, Cooley E, et al. Extracorporeal life support for pancreatitis-induced acute respiratory distress syndrome. Ann Surg, 2012, 256: 1073–1077.

    Article  PubMed  Google Scholar 

  89. Besselink M G, van Santvoort H C, Renooij W, et al. Intestinal barrier dysfunction in a randomized trial of a specific probiotic composition in acute pancreatitis. Ann Surg, 2009, 250: 712–719.

    Article  PubMed  Google Scholar 

  90. Runkel N S, Rodriguez L F, Moody F G Mechanisms of sepsis in acute pancreatitis in opossums. Am J Surg, 1995, 169: 227–232.

    Article  CAS  PubMed  Google Scholar 

  91. Penny S M. Clinical signs of pancreatitis. Radiol Technol, 2012, 83: 561–577.

    PubMed  Google Scholar 

  92. Ono S, Tsujimoto H, Yamauchi A, et al. Detection of microbial DNA in the blood of surgical patients for diagnosing bacterial translocation. World J Surg, 2005, 29: 535–539.

    Article  PubMed  Google Scholar 

  93. Kane T D, Alexander J W, Johannigman J A. The detection of microbial DNA in the blood: a sensitive method for diagnosing bacteremia and/or bacterial translocation in surgical patients. Ann Surg, 1998, 227: 1–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Carnovale A, Rabitti P G, Manes G, et al. Mortality in acute pancreatitis: Is it an early or a late event? JOP, 2005, 6: 438–444.

    PubMed  Google Scholar 

  95. Heimesaat M M, Boelke S, Fischer A, et al. Comprehensive postmortem analyses of intestinal microbiota changes and bacterial translocation in human flora associated mice. PLoS One, 2012, 7: e40758.

    Google Scholar 

  96. Corradi F, Brusasco C, Fernandez J, et al. Effects of pentoxifylline on intestinal bacterial overgrowth, bacterial translocation and spontaneous bacterial peritonitis in cirrhotic rats with ascites. Dig Liver Dis, 2012, 44: 239–244.

    Article  CAS  PubMed  Google Scholar 

  97. Deitch E A. The role of intestinal barrier failure and bacterial translocation in the development of systemic infection and multiple organ failure. Arch Surg, 1990, 125: 403–404.

    Article  CAS  PubMed  Google Scholar 

  98. Luiten E J, Hop W C, Lange J F, et al. Controlled clinical trial of selective decontamination for the treatment of severe acute pancreatitis. Ann Surg, 1995, 222: 57–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Maung A A, Davis K A. Perioperative nutritional support: immunonutrition, probiotics, and anabolic steroids. Surg Clin North Am, 2012, 92: 273–283.

    Article  PubMed  Google Scholar 

  100. Anand N, Park J H, Wu B U. Modern management of acute pancreatitis. Gastroenterol Clin North Am, 2012, 41: 1–8.

    Article  PubMed  Google Scholar 

  101. Su M S, Lin M H, Zhao Q H, et al. Clinical study of distribution and drug resistance of pathogens in patients with severe acute pancreatitis. Chin Med J (Engl), 2012, 125: 1772–1776.

    Google Scholar 

  102. Qu R, Ji Y, Ling Y, et al. Procalcitonin is a good tool to guide duration of antibiotic therapy in patients with severe acute pancreatitis. A randomized prospective single-center controlled trial. Saudi Med J, 2012, 33: 382–387.

    PubMed  Google Scholar 

  103. Jiang K, Huang W, Yang X N, et al. Present and future of prophylactic antibiotics for severe acute pancreatitis. World J Gastroenterol, 2012, 18: 279–284.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Whitcomb D C. Clinical practice: Acute pancreatitis. N Engl J Med, 2006, 354: 2142–2150.

    Article  PubMed  Google Scholar 

  105. Burns G P, Stein T A, Kabnick L S. Blood-pancreatic juice barrier to antibiotic excretion. Am J Surg, 1986, 151: 205–208.

    Article  CAS  PubMed  Google Scholar 

  106. Kang W, Zhao Y, Tao W, et al. Change of 5-fluorouracil penetration in blood-pancreatic barrier of rats after high-dose radiotherapy. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2000. 22: 457–459.

    CAS  PubMed  Google Scholar 

  107. Ong J P, Fock K M. Nutritional support in acute pancreatitis. J Dig Dis, 2012, 13: 445–452.

    Article  CAS  PubMed  Google Scholar 

  108. Mirtallo J M, Forbes A, McClave S A, et al. International consensus guidelines for nutrition therapy in pancreatitis. JPEN J Parenter Enteral Nutr, 2012, 36: 284–291.

    Article  CAS  PubMed  Google Scholar 

  109. Yi F, Ge L, Zhao J, et al. Meta-analysis: Total parenteral nutrition versus total enteral nutrition in predicted severe acute pancreatitis. Intern Med, 2012, 51: 523–530.

    Article  PubMed  Google Scholar 

  110. Bordeje L L, Lorencio C C, Acosta E J. Guidelines for specialized nutritional and metabolic support in the critically-ill patient: Update. Consensus SEMICYUC-SENPE: Severe acute pancreatitis. Nutr Hosp, 2011, 26: S32-S36.

    Google Scholar 

  111. Rangel-Huerta O D, Aguilera C M, Mesa M D, et al. Omega-3 long-chain polyunsaturated fatty acids supplementation on inflammatory biomakers: A systematic review of randomised clinical trials. Br J Nutr, 2012, 107: S159–S170.

    Article  CAS  Google Scholar 

  112. Liu D, Chen Z. The regulatory effects of glutamine on illness and health. Protein Pept Lett, 2011, 18: 658–662.

    Article  CAS  PubMed  Google Scholar 

  113. Curi R, Newsholme P, Procopio J, et al. Glutamine, gene expression, and cell function. Front Biosci, 2007, 12: 344–357.

    Article  CAS  PubMed  Google Scholar 

  114. Rossoni Junior J V, Araujo G R, Padua B C, et al. Annatto extract and beta-carotene enhances antioxidant status and regulate gene expression in neutrophils of diabetic rats. Free Radic Res, 2012, 46: 329–338.

    Article  PubMed  CAS  Google Scholar 

  115. Katsuura S, Imamura T, Bando N, et al., β-Carotene and β-cryptoxanthin but not lutein evoke redox and immune changes in RAW264 murine macrophages. Mol Nutr Food Res, 2009, 53: 1396–1405.

    Article  CAS  PubMed  Google Scholar 

  116. Bertrand J, Goichon A, Dechelotte P, et al. Regulation of intestinal protein metabolism by amino acids. Amino Acids, 2012, DOI 10. 1007/s00726–012-1325–8.

    Google Scholar 

  117. Dai Z L, Li X L, Xi P B, et al. L-glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids, 2012, DOI 10. 1007/s00726–012-1264–4.

    Google Scholar 

  118. Lehmann C, Pavlovic D, Zhou J, et al. Intravenous free and dipeptide-bound glutamine maintains intestinal microcirculation in experimental endotoxemia. Nutrition, 2012, 28: 588–593.

    Article  CAS  PubMed  Google Scholar 

  119. Feng Y, Ralls M W, Xiao W, et al. Loss of enteral nutrition in a mouse model results in intestinal epithelial barrier dysfunction. Ann NY Acad Sci, 2012, 1258: 71–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  120. Manzanares W, Heyland D K. Pharmaconutrition with arginine decreases bacterial translocation in an animal model of severe trauma. Crit Care Med, 2012, 40: 350–352.

    Article  PubMed  Google Scholar 

  121. Braga M. Perioperative immunonutrition and gut function. Curr Opin Clin Nutr Metab Care, 2012, 15: 485–488.

    Article  CAS  PubMed  Google Scholar 

  122. Han S C, Kang G J, Ko Y J, et al. Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of atopic dermatitis via generation of CD4+CD25+Foxp3+ T cells. BMC Immunol, 2012, 13: 44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Miles E A, Calder P C. Influence of marine N-3 polyunsaturated fatty acids on immune function and a systematic review of their effects on clinical outcomes in rheumatoid arthritis. Br J Nutr, 2012, 107: S171–S184.

    Article  CAS  Google Scholar 

  124. Bilku D K, Hall T C, Al-Leswas D, et al. Can enhanced recovery programmes be further improved by the addition of omega three fatty acids? Ir J Med Sci, 2012, 181: 453–457.

    Article  CAS  PubMed  Google Scholar 

  125. Swanson D, Block R, Mousa S A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv Nutr, 2012, 3: 1–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  126. Weichert S, Schroten H, Adam R. The role of prebiotics and probiotics in prevention and treatment of childhood infectious diseases. Pediatr Infect Dis J, 2012, 31: 856–862.

    Article  Google Scholar 

  127. Simren M, Barbara G, Flint H J, et al. Intestinal microbiota in functional bowel disorders: A Rome foundation report. Gut, 2012, 62: 159–176.

    Article  PubMed Central  PubMed  Google Scholar 

  128. D’Souza A, Cai C L, Kumar D, et al. Cytokines and toll-like receptor signaling pathways in the terminal ileum of hypoxic/hyperoxic neonatal rats: Benefits of probiotics supplementation. Am J Transl Res, 2012, 4: 187–197.

    PubMed Central  PubMed  Google Scholar 

  129. Morrow L E, Gogineni V, Malesker M A. Probiotic, prebiotic, and synbiotic use in critically ill patients. Curr Opin Crit Care, 2012, 18: 186–191.

    Article  PubMed  Google Scholar 

  130. Quigley E M. Therapies aimed at the gut microbiota and inflammation: Antibiotics, prebiotics, probiotics, synbiotics, anti-inflammatory therapies. Gastroenterol Clin North Am, 2011, 40: 207–222.

    Article  PubMed  Google Scholar 

  131. Gourbeyre P, Denery S, Bodinier M. Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol, 2011, 89: 685–695.

    Article  CAS  PubMed  Google Scholar 

  132. Zhang M M, Cheng J Q, Lu Y R, et al. Use of pre-, pro- and synbiotics in patients with acute pancreatitis: A meta-analysis. World J Gastroenterol, 2010, 16: 3970–3978.

    Article  PubMed Central  PubMed  Google Scholar 

  133. Ishikawa H, Matsumoto S, Ohashi Y, et al. Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: A randomized controlled study. Digestion, 2011, 84: 128–133.

    Article  PubMed  Google Scholar 

  134. Shimizu K, Ogura H, Asahara T, et al. Probiotic/synbiotic therapy for treating critically ill patients from a gut microbiota perspective. Dig Dis Sci, 2013, 58: 23–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  135. Tappenden K A. Probiotics are not a one-species-fits-all proposition. JPEN J Parenter Enteral Nutr, 2012, 36: 496.

    Article  PubMed  Google Scholar 

  136. Kelly D, Mulder I E. Microbiome and immunological interactions. Nutr Rev, 2012, 70: S18-S30.

    Article  Google Scholar 

  137. Nagpal R, Kaur A. Synbiotic effect of various prebiotics on in vitro activities of probiotic lactobacilli. Ecol Food Nutr, 2011, 50: 63–68.

    Article  PubMed  Google Scholar 

  138. van de Pol M A, Lutter R, Smids B S, et al. Synbiotics reduce allergen-induced T-helper 2 response and improve peak expiratory flow in allergic asthmatics. Allergy, 2011, 66: 39–47.

    Article  CAS  Google Scholar 

  139. Expression of concern — Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial. Lancet, 2010, 375: 875–876.

    Google Scholar 

  140. Qin H L, Zheng J J, Tong D N, et al. Effect of Lactobacillus plantarum enteral feeding on the gut permeability and septic complications in the patients with acute pancreatitis. Eur J Clin Nutr, 2008, 62: 923–930.

    Article  CAS  PubMed  Google Scholar 

  141. Wang L, Li Y, Ma Q, et al. Chaiqin Chengqi Decoction decreases IL-6 levels in patients with acute pancreatitis. J Zhejiang Univ Sci B, 2011, 12: 1034–1340.

    Article  PubMed Central  PubMed  Google Scholar 

  142. Wan M H, Li J, Tang W F, et al. The influnence of dachengqi tang on acute lung injury and intra abdominal hypertension in rats with acute pancreatitis. Sichuan Da Xue Xue Bao Yi Xue Ban, 2011, 42: 707–711.

    PubMed  Google Scholar 

  143. Chen Y F, Sha J P, Wu Z M. Synergetic effect of yihuo qingyi decoction (see text) and recombinant staphylokinase in treatment of severe acute pancreatitis of rats. J Tradit Chin Med, 2011, 31: 103–106.

    Article  CAS  PubMed  Google Scholar 

  144. Xue Q M, Ning L, Xue P, et al. Effect of electroacupuncture on serum proinflammatory cytokine levels and pancreatic nuclear factor κB expression in acute pancreatitis rats. Zhen Ci Yan Jiu, 2011, 36: 272–277.

    CAS  PubMed  Google Scholar 

  145. Xue Q M, Huang L, Li N. Effects of electroacupuncture at Tianshu (ST25) on pro- and anti-inflammatory cytokines in rats with severe acute pancreatitis. Zhong Xi Yi Jie He Xue Bao, 2011, 9: 658–664.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jiang, J., Ren, Z., Zheng, S. (2014). Biliary Infection, Pancreatic Infection and Microecology. In: Li, L. (eds) Infectious Microecology. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43883-1_13

Download citation

Publish with us

Policies and ethics