Skip to main content

Genes for Autoregulation of Nodulation

  • Chapter
  • First Online:
The Lotus japonicus Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1131 Accesses

Abstract

The phenomenon in which developed nodules or nodule primordia suppress the emergence of further nodules in legumes is termed autoregulation of nodulation (AON) (Nutman in Ann Bot 16:79–101, 1952). AON consists of two presumptive long-distance signal molecules involving roots and shoots (Caetano-Anollés and Gresshoff in Annu Rev Microbiol 45:345–382, 1991; Oka-Kira and Kawaguchi in Curr Opin Plant Biol 9:496–502, 2006) (Fig. 7.1) and is also related to the repression of nodules by nitrogen compounds such as nitrate. AON is of great interest with respect to morphological plasticity of plant organogenesis as well as long-distance signalling. This chapter is devoted to the current knowledge of AON mainly in Lotus japonicus..

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bleckmann A, Weidtkamp-Peter S, Seidel CA, Simon R (2010) Stem cell signaling in Arabidopsis requires CRN to localize CLV2 to the plasma membrane. Plant Physiol 152:166–176

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1990) Early induction of feedback regulatory responses governing nodulation in soybean. Plant Sci 71:69–81

    Article  Google Scholar 

  • Caetano-Anollés G, Gresshoff PM (1991) Plant genetic control of nodulation. Annu Rev Microbiol 45:345–382

    Article  PubMed  Google Scholar 

  • Carroll BJ, McNeil DL, Gresshoff PM (1985) Isolation and properties of soybean [Glycine max (L.) Merr.] mutants that nodulate in the presence of high nitrate concentrations. Proc Natl Acad Sci USA 82:4162–4166

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  PubMed  CAS  Google Scholar 

  • Delves AC, Mathews A, Day DA et al (1986) Regulation of the soybean-Rhizobium nodule symbiosis by shoot and root factors. Plant Physiol 82:588–590

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Guo Y, Han L, Hymes M et al (2010) CLAVATA2 forms a distinct CLE-binding receptor complex regulating Arabidopsis stem cell specification. Plant J 63:889–900

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Imaizumi T, Schultz TF, Harmon FG, Ho LA, Kay SA (2005) FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309:293–297

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Yokota K, Li YY et al (2008) Isolation of a novel root-determined hypernodulation mutant rdh1 of Lotus japonicus. Soil Sci Plant Nutr 54:259–263

    Article  Google Scholar 

  • Ito S, Song YH, Imaizumi T (2012) LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant 5:573–582

    Article  PubMed  Google Scholar 

  • Kawaguchi M, Imaizumi-Anraku H, Koiwa H et al (2002) Root, root hair, and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 15:17–26

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita A, Betsuyaku S, Osakabe Y et al (2010) RPK2 is an essential receptor-like kinase that transmits the CLV3 signal in Arabidopsis. Development 137:3911–3920

    Article  PubMed  CAS  Google Scholar 

  • Krusell L, Madsen LH, Sato S et al (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426

    Article  PubMed  CAS  Google Scholar 

  • Krusell L, Sato N, Fukuhara I et al (2011) The Clavata2 genes of pea and Lotus japonicus affect autoregulation of nodulation. Plant J 65:861–871

    Article  PubMed  CAS  Google Scholar 

  • Lin YH, Ferguson BJ, Kereszt A, Gresshoff PM (2010) Suppression of supernodulation in soybean by a leaf-extracted, NARK- and inoculation- dependent small molecular fraction. New Phytol 185:1074–1086

    Article  PubMed  CAS  Google Scholar 

  • Magori S, Kawaguchi M (2009) Long-distance control of nodulation: molecules and models. Mol Cells 28:29–34

    Google Scholar 

  • Magori S, Oka-kira E, Shibata S et al (2009) Too much love, a root regulator associated with the long-distance control of nodulation in Lotus japonicus. Mol Plant-Microbe Interact 22:259–268

    Article  PubMed  CAS  Google Scholar 

  • Miyazawa H, Oka-kira E, Sato N (2010) The receptor-like kinase KLAVIER mediates systemic regulation of nodulation and non-symbiotic shoot development in Lotus japonicus. Development 137:4317–4325

    Article  PubMed  CAS  Google Scholar 

  • Mortier V, den Herder G, Whitford et al (2010) CLE peptides control Medicago truncatula nodulation locally and systemically. Plant Physiol 153:222–237

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mortier V, Fenta BA, Martens C et al (2011) Search for nodulation-related CLE genes in the genome of Glycine max. J Exp Bot 62:2571–2583

    Article  PubMed  CAS  Google Scholar 

  • Nishimura R, Hayashi M, Wu GJ et al (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429

    Article  PubMed  CAS  Google Scholar 

  • Nontachaiyapoom S, Scott PT, Men AE et al (2007) Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants. Mol Plant-Microbe Interact 20:769–780

    Article  PubMed  CAS  Google Scholar 

  • Nutman PS (1952) Studies on the physiology of nodule formation. Ann Bot 16:79–101

    CAS  Google Scholar 

  • Oka-Kira E, Kawaguchi M (2006) Long-distance signaling to control root nodule number. Curr Opin Plant Biol 9:496–502

    Article  PubMed  CAS  Google Scholar 

  • Oka-Kira E, Tateno K, Miura K et al (2005) klavier (klv), a novel hypernodulation mutant of Lotus japonicus affected in vascular tissue organization and floral induction. Plant J 44:505–515

    Article  PubMed  CAS  Google Scholar 

  • Okamoto S, Ohnishi E, Sato S et al (2009) Nod factor/nitrate-induced CLE genes that drive HAR1-mediated systemic regulation of nodulation. Plant Cell Physiol 50:67–77

    Article  PubMed  CAS  Google Scholar 

  • Okamoto S, Shinohara H, Mori T et al (2013) Root-derived CLE glycopeptides control nodulation by direct binding to HAR1 receptor kinase. Nature Commun 4:2191

    Article  Google Scholar 

  • Penmetsa RV, Cook DR (1997) A legume ethylene-insensitive mutant hyperinfected by its rhizobial symbiont. Science 275:527–530

    Article  PubMed  CAS  Google Scholar 

  • Postoma JG, Jacobsen E, Feenstra WJ (1988) Three pea mutants with an altered nodulation studied by genetic analysis and grafting. J Plant Physiol 132:424–430

    Article  Google Scholar 

  • Reid DE, Ferguson BJ, Gresshoff PM (2011) Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation. Mol Plant-Microbe Interact 24:606–618

    Article  PubMed  CAS  Google Scholar 

  • Sagan M, Duc G (1996) Sym28 and Sym29, two new genes involved in regulation of nodulation in pea (Pisum sativum L.). Symbiosis 20:229–245

    Google Scholar 

  • Schauser K, Handberg N, Sandal N et al (1998) Symbiotic mutants deficient in nodule establishment identified after T-DNA transformation of Lotus japonicus. Mol Gen Genet 259:414–423

    Article  PubMed  CAS  Google Scholar 

  • Schnabel E, Journet EP, de Carvalho-Niebel et al (2005) The Medicago truncatula SUNN gene encodes a CLV1-like leucine-rich repeat receptor kinase that regulates nodule number and root length. Plant Mol Biol 58:809–822

    Article  PubMed  Google Scholar 

  • Schnabel EL, Kassaw TK, Smith LS et al (2011) The ROOT DETERMINED NODULATION1 gene regulates nodule number in roots of Medicago truncatula and defines a highly conserved, uncharacterized plant gene family. Plant Physiol 157:328–340

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Schumann N, Navarro-Quezada A, Ullrich K et al (2011) Molecular evolution and selection patterns of plant F-box proteins with C-terminal kelch repeats. Plant Physiol 155:835–850

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Searle IR, Men AE, Laniya TS et al (2003) Long-distance signaling in nodulation directed by a CLAVATA1-like receptor kinase. Science 299:109–112

    Article  PubMed  CAS  Google Scholar 

  • Szczyglowski K, Shaw RS, Wopereis J et al (1998) Nodule organogenesis and symbiotic mutants of the model legume Lotus japonicus. Mol Plant Microbe Interact 11:684–697

    Article  CAS  Google Scholar 

  • Takahara M, Magori S, Soyano T et al (2013) TOO MUCH LOVE, a novel Kelch repeat-containing F-box protein, functions in the long-distance regulation of the legume-Rhizobium symbiosis. Plant Cell Physiol 54:433–447

    Article  PubMed  CAS  Google Scholar 

  • Wopereis J, Pajuelo E, Dazzo FB et al (2000) Short root mutant of Lotus japonicus with a dramatically altered symbiotic phenotype. Plant J 23:97–114

    Article  PubMed  CAS  Google Scholar 

  • Yamaya H, Arima Y (2010) Shoot-synthesized nodulation-restricting substances are present in the medium-polarity fraction of shoot extracts from wild-type soybean plants. Soil Sci Plant Nutr 56:418–421

    Article  Google Scholar 

  • Yoshida C, Funayama-Noguchi S, Kawaguchi M (2010) plenty, a novel hypernodulation mutant in Lotus japonicus. Plant Cell Physiol 51:1425–1435

    Google Scholar 

  • Zhu Y, Wang Y, Li R et al (2010) Analysis of interactions among the CLAVATA3 receptors reveals a direct interaction between CLAVATA2 and CORYNE in Arabidopsis. Plant J 61:223–233

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Kawaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kawaguchi, M. (2014). Genes for Autoregulation of Nodulation. In: Tabata, S., Stougaard, J. (eds) The Lotus japonicus Genome. Compendium of Plant Genomes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44270-8_7

Download citation

Publish with us

Policies and ethics