Skip to main content

Scanning Electrochemical Potential Microscopy (SECPM) and Electrochemical STM (EC-STM)

  • Chapter
Surface Science Tools for Nanomaterials Characterization

Abstract

Scanning electrochemical potential microscopy (SECPM) and electrochemical scanning tunnelling microscopy (EC-STM) allow for imaging the solid-liquid interface under in situ electrochemical conditions. In this chapter we take a look at two important aspects of SECPM and EC-STM studies: First, investigations on model electrode systems relevant for electrocatalysis are presented. Second, studies on the behavior of biomolecules immobilized on electrodes are shown. In both cases the use of EC-STM or SECPM allows for insights into the electrochemistry at a molecular level which cannot be achieved by other, rather integrating, methods.

Dedicated to Maria-Elisabeth Michel-Beyerle and Rudolph A. Marcus; their seminal work provided an important basis for the review given here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Potentials in this publication were measured vs. a Ag/AgCl, KCl (3 M) RE and are here converted to vs. NHE.

  2. 2.

    Potentials in this publication were measured vs. a mercury/mercurous sulfate RE and converted to vs. NHE.

  3. 3.

    Potentials in this publication were measured vs. a Ag/AgCl, KCl (3 M) RE and converted to vs. NHE.

  4. 4.

    Potentials in this publication were measured vs. a Ag/AgCl RE and converted to vs. NHE.

References

  1. Biener J, Wittstock A, Baumann TF, Weissmüller J, Bäumer M, Hamza AV (2009) Surface chemistry in nanoscale materials. Materials (Basel) 2(4):2404–2428

    Article  CAS  Google Scholar 

  2. Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Surf Sci 126:236–244

    Article  Google Scholar 

  3. Sonnenfeld R, Hansma PK (1986) Atomic-resolution microscopy in water. Science 232(4747):211–213

    Article  CAS  Google Scholar 

  4. Hurth C, Li C, Bard AJ (2007) Direct probing of electrical double layers by scanning electrochemical potential microscopy. J Phys Chem C 111(12):4620–4627

    Article  CAS  Google Scholar 

  5. Hammer B, Nørskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343:211–220

    Article  CAS  Google Scholar 

  6. Friedl J, Stimming U (2013) Model catalyst studies on hydrogen and ethanol oxidation for fuel cells. Electrochim Acta 101:41–58

    Article  CAS  Google Scholar 

  7. Kolb DM (2001) Electrochemical surface science. Angew Chemie 40(7):1162–1181

    Article  CAS  Google Scholar 

  8. Hansen W, Wang C, Humphryes T (1978) Electrode emersion and the double layer. J Electroanal Chem Interfacial Electrochem 90:137–141

    Article  CAS  Google Scholar 

  9. Tersoff J, Hamann D (1985) Theory of the scanning tunneling microscope. Phys Rev B 31(2):805–813

    Article  CAS  Google Scholar 

  10. Woo D, Yoo J, Park S, Jeon IC, Kang H (2004) Direct probing into the electrochemical interface using a novel potential probe: Au(111) electrode / NaBF4 solution interface. Bull Korean Chem Soc 25(4):577–580

    Article  CAS  Google Scholar 

  11. Wolfschmidt H, Baier C, Gsell S, Fischer M, Schreck M, Stimming U (2010) STM, SECPM, AFM and electrochemistry on single crystalline surfaces. Materials (Basel) 3(8):4196–4213

    Article  CAS  Google Scholar 

  12. Baier C, Stimming U (2009) Imaging single enzyme molecules under in situ conditions. Angew Chem Int Ed Engl 48(30):5542–5544

    Article  CAS  Google Scholar 

  13. Meier J, Friedrich KA, Stimming U (2002) Novel method for the investigation of single nanoparticle reactivity. Faraday Discuss 121:365–372

    Article  CAS  Google Scholar 

  14. Eikerling M, Meier J, Stimming U (2003) Hydrogen evolution at a single supported nanoparticle: a kinetic model. Zeitschrift für Phys Chemie 217(4–2003):395–414

    Article  CAS  Google Scholar 

  15. Wolfschmidt H, Weingarth D, Stimming U (2010) Enhanced reactivity for hydrogen reactions at Pt nanoislands on Au(111). Chemphyschem 11(7):1533–1541

    Article  CAS  Google Scholar 

  16. Zhang MG, Stimming U (1990) The use of time-resolved scanning tunneling microscopy for the determination of microscopic reaction rates. J Electroanal Chem 291:273–279

    Article  CAS  Google Scholar 

  17. Hugelmann M, Schindler W (2003) Tunnel barrier height oscillations at the solid/liquid interface. Surf Sci 541(1–3):L643–L648

    Article  CAS  Google Scholar 

  18. Nagy G (1996) Water structure at the graphite (0001) surface by STM measurements. J Electroanal Chem 409:19–23

    Article  Google Scholar 

  19. Hugelmann M, Hugelmann P, Lorenz WJ, Schindler W (2005) Nanoelectrochemistry and nanophysics at electrochemical interfaces. Surf Sci 597(1–3):156–172

    Article  CAS  Google Scholar 

  20. Halbritter J, Repphun G, Vinzelberg S (1995) Tunneling mechanisms in electrochemical STM—distance and voltage tunneling spectroscopy. Electrochim Acta 40(10):1385–1394

    Article  CAS  Google Scholar 

  21. Sumetskii M, Kornyshev A (1993) Noise in STM due to atoms moving in the tunneling space. Phys Rev B 48(23):493–506

    Article  Google Scholar 

  22. Sumetskii M, Kornyshev A, Stimming U (1994) Adatom diffusion characteristics from STM noise: theory. Surf Sci 307–209:23–27

    Article  Google Scholar 

  23. Kornyshev AA, Kuznetsov AM (2006) Potential distribution in an in situ nano-gap. Electrochem Commun 8(5):679–682

    Article  CAS  Google Scholar 

  24. Kornyshev AA, Kuznetsov AM (2006) A new type of in situ single-molecule rectifier. ChemPhysChem 7(5):1036–1040

    Article  CAS  Google Scholar 

  25. Wang M, Bugarski S, Stimming U (2008) Probing single flavoprotein molecules on graphite in aqueous solution with scanning tunneling microscopy. Small 4(8):1110–1114

    Article  CAS  Google Scholar 

  26. Alessandrini A, Corni S, Facci P (2006) Unravelling single metalloprotein electron transfer by scanning probe techniques. Phys Chem Chem Phys 8(38):4383–4397

    Article  CAS  Google Scholar 

  27. Schmickler W, Tao N (1997) Measuring the inverted region of an electron transfer reaction with a scanning tunneling microscope. Electrochim Acta 42(18):2809–2815

    Article  CAS  Google Scholar 

  28. Schmickler W (1986) A theory of adiabatic electron-transfer reactions. J Electroanal Chem Interfacial Electrochem 204(1–2):31–43

    Article  CAS  Google Scholar 

  29. Gerischer H (1960) Über den Ablauf von Redoxreaktionen an Metallen und an Halbleitern. Zeitschrift für Phys Chemie 26:223–247

    Article  CAS  Google Scholar 

  30. Tao N (1996) Probing potential-tuned resonant tunneling through redox molecules with scanning tunneling microscopy. Phys Rev Lett 76(21):4066–4069

    Article  CAS  Google Scholar 

  31. Kuznetsov AN, Schmickler W (2002) Mediated electron exchange between an electrode and the tip of a scanning tunneling microscope – a stochastic approach. Chem Phys 282(3):371–377

    Article  CAS  Google Scholar 

  32. Weaver MJ (1987) Redox reactions at metal–solution interfaces. In: Compton RG (ed) Electrode kinetics: reactions, vol 27. Elsevier, Amsterdam, pp 1–60

    Chapter  Google Scholar 

  33. Zhang J, Chi Q, Kuznetsov AM, Hansen AG, Wackerbarth H, Christensen HEM, Andersen JET, Ulstrup J (2002) Electronic properties of functional biomolecules at metal/aqueous solution interfaces. J Phys Chem B 106(6):1131–1152

    Article  CAS  Google Scholar 

  34. Friis E, Kharkats Y, Kuznetsov A, Ulstrup J (1998) In situ scanning tunneling microscopy of a redox molecule as a vibrationally coherent electronic three-level process. J Phys Chem A 5639(98):7851–7859

    Article  Google Scholar 

  35. Friis EP, Andersen JE, Kharkats YI, Kuznetsov AM, Nichols RJ, Zhang JD, Ulstrup J (1999) An approach to long-range electron transfer mechanisms in metalloproteins: in situ scanning tunneling microscopy with submolecular resolution. Proc Natl Acad Sci U S A 96(4):1379–1384

    Article  CAS  Google Scholar 

  36. Zhang J, Kuznetsov AM, Medvedev IG, Chi Q, Albrecht T, Jensen PS, Ulstrup J (2008) Single-molecule electron transfer in electrochemical environments. Chem Rev 108(7):2737–2791

    Article  CAS  Google Scholar 

  37. Zhang J, Chi Q, Hansen AG, Jensen PS, Salvatore P, Ulstrup J (2012) Interfacial electrochemical electron transfer in biology – towards the level of the single molecule. FEBS Lett 586(5):526–535

    Article  CAS  Google Scholar 

  38. Corbella C, Pascual E, Oncins G, Canal C, Andújar JL, Bertran E (2005) Composition and morphology of metal-containing diamond-like carbon films obtained by reactive magnetron sputtering. Thin Solid Films 482(1–2):293–298

    Article  CAS  Google Scholar 

  39. Grahame DC (1947) The electrical double layer and the theory of electrocapillarity. Chem Rev 41(3):441–501

    Article  CAS  Google Scholar 

  40. Baier C (2010) Electron transfer phenomena in interfacial bioelectrochemistry. Dissertation, Technische Universität München

    Google Scholar 

  41. Hurth CM (2005) Scanning probe microscopy studies of active enzymes at solid surfaces. Dissertation, The University of Texas at Austin

    Google Scholar 

  42. Hamou RF, Biedermann PU, Erbe A, Rohwerder M (2010) Numerical simulation of probing the electric double layer by scanning electrochemical potential microscopy. Electrochim Acta 55(18):5210–5222

    Article  CAS  Google Scholar 

  43. Hamou RF, Biedermann PU, Erbe A, Rohwerder M (2010) Numerical analysis of debye screening effect in electrode surface potential mapping by scanning electrochemical potential microscopy. Electrochem Commun 12(10):1391–1394

    Article  CAS  Google Scholar 

  44. Hubbard AT (1980) Electrochemistry of well-defined surfaces. Acc Chem Res 13:177–184

    Article  CAS  Google Scholar 

  45. Laidler KJ (1996) Commission on chemical kinetics * a glossary of terms used in chemical kinetics, including reaction dynamics. Pure Appl Chem 68(1):149–192

    Article  CAS  Google Scholar 

  46. Conway BE, Bockris JO (1957) Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J Chem Phys 26(3):532

    Article  CAS  Google Scholar 

  47. Parsons R (1958) The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc 54:1053–1063

    Article  CAS  Google Scholar 

  48. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U (2005) Trends in the exchange current for hydrogen evolution. J Electrochem Soc 152(3):J23

    Article  CAS  Google Scholar 

  49. Clavilier J, Faure R, Guinet G, Durand R (1980) Preparation of monocrystalline Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J Electroanal Chem 107:205–209

    Article  CAS  Google Scholar 

  50. Bauer E (1958) Phaenomenologische Theorie der Kristallabscheidung an Oberflaechen I. Zeitschrift für Krist 110:372–394

    Article  CAS  Google Scholar 

  51. Frank FC, van der Merwe JH (1949) One-dimensional dislocations. Proc R Soc Lond A Math Phys Sci 198(1053):205–216

    Article  CAS  Google Scholar 

  52. Volmer M, Weber A (1926) Keimbildung in übersättigten Gebilden. Z Phys Chem 119:277

    CAS  Google Scholar 

  53. Stranski JN, Krastanov L (1938) Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Sitz Ber Akad Wiss Wien, Mat Nat 146:797–810

    CAS  Google Scholar 

  54. Brankovic SR, Wang JX, Adzic RR (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179

    Article  CAS  Google Scholar 

  55. Vasilic R, Viyannalage L, Dimitrov N (2006) Epitaxial growth of Ag on Au(111) by galvanic displacement of Pb and Tl monolayers. J Electrochem Soc 153:648–655

    Article  CAS  Google Scholar 

  56. Quaino P, Santos E, Wolfschmidt H, Montero M, Stimming U (2011) Theory meets experiment: electrocatalysis of hydrogen oxidation/evolution at Pd–Au nanostructures. Catal Today 177(1):55–63

    Article  CAS  Google Scholar 

  57. Wolfschmidt H, Bussar R, Stimming U (2008) Charge transfer reactions at nanostructured Au(111) surfaces: influence of the substrate material on electrocatalytic activity. J Phys Condens Matter 20(37):374127

    Article  CAS  Google Scholar 

  58. Jung C, Kim J, Kyun C (2010) CO preoxidation on Ru-modified Pt(111). Electrochem Commun 12:1363–1366

    Article  CAS  Google Scholar 

  59. Kim J, Jung C, Rhee CK, Lim T (2007) Electrocatalytic oxidation of formic acid and methanol on Pt deposits on Au(111). Langmuir 23(21):10831–10836

    Article  CAS  Google Scholar 

  60. Meier J, Schiøtz J, Liu P, Nørskov JK, Stimming U (2004) Nano-scale effects in electrochemistry. Chem Phys Lett 390(4–6):440–444

    Article  CAS  Google Scholar 

  61. Kolb DM, Simeone FC (2005) Electrochemical nanostructuring with an STM: a status report. Electrochim Acta 50(15):2989–2996

    Article  CAS  Google Scholar 

  62. Hoyer R, Kibler L, Kolb D (2003) The initial stages of palladium deposition onto Pt(111). Electrochim Acta 49:63–72

    Article  CAS  Google Scholar 

  63. Varela AS, Schlaup C, Jovanov ZP, Malacrida P, Horch S, Stephens IEL, Chorkendorff I (2013) CO 2 Electroreduction on well-defined bimetallic surfaces: Cu overlayers on Pt(111) and Pt(211). J Phys Chem C 117(111):20500–20508

    Article  CAS  Google Scholar 

  64. Krausa M, Vielstich W (1994) Study of the electrocatalytic influence of Pt/Ru and Ru on the oxidation of residues of small organic molecules. J Electroanal Chem 379(1–2):307–314

    Article  Google Scholar 

  65. Frelink T, Visscher W, van Veen JAR (1995) On the role of Ru and Sn as promotors of methanol electro-oxidation over Pt. Surf Sci 335:353–360

    Article  CAS  Google Scholar 

  66. Tong Y, Kim HS, Babu PK, Waszczuk P, Wieckowski A, Oldfield E (2002) An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J Am Chem Soc 124:468–473

    Article  CAS  Google Scholar 

  67. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: part II. Enhancement of the oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem Interfacial Electrochem 60:267–273

    Article  CAS  Google Scholar 

  68. Yajima T, Wakabayashi N, Uchida H, Watanabe M (2003) Adsorbed water for the electro-oxidation of methanol at Pt-Ru alloy. Chem Commun (Camb) 7:828–829

    Article  CAS  Google Scholar 

  69. Maillard F, Lu G-Q, Wieckowski A, Stimming U (2005) Ru-decorated Pt surfaces as model fuel cell electrocatalysts for CO electrooxidation. J Phys Chem B 109(34):16230–16243

    Article  CAS  Google Scholar 

  70. Strbac S, Johnston CM, Lu GQ, Crown A, Wieckowski A (2004) In situ STM study of nanosized Ru and Os islands spontaneously deposited on Pt(111) and Au(111) electrodes. Surf Sci 573:80–99

    Article  CAS  Google Scholar 

  71. Friedrich KA, Geyzers KP, Dickinson AJ, Stimming U (2002) Fundamental aspects in electrocatalysis: from the reactivity of single-crystals to fuel cell electrocatalysts. J Electroanal Chem 524–525:261–272

    Article  Google Scholar 

  72. El-Aziz AM, Hoyer R, Kibler LA (2010) Preparation and electrochemical behavior of PtRu(111) alloy single-crystal surfaces. Chem Phys Chem 11(13):2906–2911

    Article  CAS  Google Scholar 

  73. Inukai J, Tryk DA, Abe T, Wakisaka M, Uchida H, Watanabe M (2013) Direct STM elucidation of the Effects of atomic-level structure on Pt(111) electrodes for dissolved CO oxidation. J Am Chem Soc 135(111):1476–1490

    Article  CAS  Google Scholar 

  74. Hwang S, Lee J, Kwak J (2005) Nitrate reduction catalyzed by nanocomposite layer of Ag and Pb on Au(111). J Electroanal Chem 579:143–152

    Article  CAS  Google Scholar 

  75. Brülle T, Stimming U (2009) Platinum nanostructured HOPG – Preparation, characterization and reactivity. J Electroanal Chem 636(1–2):10–17

    Article  CAS  Google Scholar 

  76. Ustarroz J, Ke X, Hubin A, Bals S, Terryn H (2012) New insights into the early stages of nanoparticle electrodeposition. J Phys Chem C 116(3):2322–2329

    Article  CAS  Google Scholar 

  77. Hyde ME, Compton RG (2003) A review of the analysis of multiple nucleation with diffusion controlled growth. J Electroanal Chem 549:1–12

    Article  CAS  Google Scholar 

  78. Sheridan L, Kim Y (2013) Palladium nanofilms formed on Au (111) by electrochemical atomic layer deposition (E-ALD): studies using voltammetry and in situ scanning tunneling microscopy. J Phys Chem C 117(111):15728–15740

    Article  CAS  Google Scholar 

  79. Brülle T, Denisenko A, Sternschulte H, Stimming U (2011) Catalytic activity of platinum nanoparticles on highly boron-doped and 100-oriented epitaxial diamond towards HER and HOR. Phys Chem Chem Phys 13(28):12883–12891

    Article  CAS  Google Scholar 

  80. Zwolinski BJ, Marcus RJ, Eyring H (1955) Inorganic oxidation-reduction reactions in solution. Chem Rev 55(1):157–180

    Article  CAS  Google Scholar 

  81. Marcus RA (1960) Exchange reactions and electron transfer reactions including isotopic exchange. Theory of oxidation-reduction reactions involving electron transfer. Part 4.- A statistical-mechanical basis for treating contributions from solvent, ligands, and inert salt. Discuss Faraday Soc 29:21–31

    Article  Google Scholar 

  82. Fedurco M (2000) Redox reactions of heme-containing metalloproteins: dynamic effects of self-assembled monolayers on thermodynamics and kinetics of cytochrome c electron-transfer reactions. Coord Chem Rev 209(1):263–331

    Article  CAS  Google Scholar 

  83. Churg A, Weiss R (1983) On the action of cytochrome c: correlating geometry changes upon oxidation with activation energies of electron transfer. J Phys Chem 87:1683–1694

    Article  CAS  Google Scholar 

  84. Corni S (2005) The reorganization energy of azurin in bulk solution and in the electrochemical scanning tunneling microscopy setup. J Phys Chem B 109(8):3423–3430

    Article  CAS  Google Scholar 

  85. Heitele H, Michel-Beyerle M (1985) Electron transfer through aromatic spacers in bridged electron-donor-acceptor molecules. J Am Chem Soc 107:8286–8288

    Article  CAS  Google Scholar 

  86. Heitele H, Michel-Beyerle ME, Finckh P (1987) The influence of dielectric relaxation on intramolecular electron transfer. Chem Phys Lett 138(2):237–243

    Article  CAS  Google Scholar 

  87. Heitele H, Pöllinger F, Weeren S, Michel-Beyerle M (1990) Influence of solvent polarity on intramolecular electron transfer. A consistency test of free energies of reaction and solvent reorganization with experimental rates. Chem Phys 143:325–332

    Article  CAS  Google Scholar 

  88. Heitele H, Pöllinger F, Weeren A, Michel-Beyerle ME (1990) Solvent polarity effects on intramolecular electron transfer: an estimate of activation entropies. Chem Phys Lett 168(6):598–604

    Article  CAS  Google Scholar 

  89. Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ (2012) Proton-coupled electron transfer. Chem Rev 112(7):4016–4093

    Article  CAS  Google Scholar 

  90. Wang M, Bugarski S, Stimming U (2008) Topological and electron-transfer properties of glucose oxidase adsorbed on highly oriented pyrolytic graphite electrodes. J Phys Chem C 112(13):5165–5173

    Article  CAS  Google Scholar 

  91. Zhang J, Welinder AC, Hansen AG, Christensen HEM, Ulstrup J (2003) Catalytic monolayer voltammetry and in situ scanning tunneling microscopy of copper nitrite reductase on cysteamine-modified Au(111) electrodes. J Phys Chem B 107(45):12480–12484

    Article  CAS  Google Scholar 

  92. Della Pia EA, Chi Q, Macdonald JE, Ulstrup J, Jones DD, Elliott M (2012) Fast electron transfer through a single molecule natively structured redox protein. Nanoscale 4(22):7106–7113

    Article  CAS  Google Scholar 

  93. Davis JJ, Peters B, Xi W (2008) Force modulation and electrochemical gating of conductance in a cytochrome. J Phys Condens Matter 20(37):374123

    Article  CAS  Google Scholar 

  94. Alessandrini A, Gerunda M, Canters GW, Verbeet MP, Facci P (2003) Electron tunnelling through azurin is mediated by the active site Cu ion. Chem Phys Lett 376(5–6):625–630

    Article  CAS  Google Scholar 

  95. Alessandrini A, Salerno M, Frabboni S, Facci P (2005) Single-metalloprotein wet biotransistor. Appl Phys Lett 86(13):133902

    Article  CAS  Google Scholar 

  96. Chi Q, Farver O, Ulstrup J (2005) Long-range protein electron transfer observed at the single-molecule level: in situ mapping of redox-gated tunneling resonance. Proc Natl Acad Sci U S A 102(45):16203–16208

    Article  CAS  Google Scholar 

  97. Kim S-U, Yagati AK, Min J, Choi J-W (2010) Nanoscale protein-based memory device composed of recombinant azurin. Biomaterials 31(6):1293–1298

    Article  CAS  Google Scholar 

  98. Facci P, Alliata D, Cannistraro S (2001) Potential-induced resonant tunneling through a redox metalloprotein investigated by electrochemical scanning probe microscopy. Ultramicroscopy 89(4):291–298

    Article  CAS  Google Scholar 

  99. Chi Q, Zhang J, Arslan T, Borg L, Pedersen GW, Christensen HEM, Nazmudtinov RR, Ulstrup J (2010) Approach to interfacial and intramolecular electron transfer of the diheme protein cytochrome c4 assembled on Au(111) surfaces. J Phys Chem B 114(16):5617–5624

    Article  CAS  Google Scholar 

  100. Welinder AC, Zhang J, Steensgaard DB, Ulstrup J (2010) Adsorption of human insulin on single-crystal gold surfaces investigated by in situ scanning tunnelling microscopy and electrochemistry. Phys Chem Chem Phys 12(34):9999–10011

    Article  CAS  Google Scholar 

  101. Climent V, Zhang J, Friis EP, Østergaard LH, Ulstrup J (2012) Voltammetry and single-molecule in situ scanning tunneling microscopy of laccases and bilirubin oxidase in electrocatalytic dioxygen reduction on Au(111) single-crystal electrodes. J Phys Chem C 116(1):1232–1243

    Article  CAS  Google Scholar 

  102. Walsh C (1980) Flavin coenzymes: at the crossroads of biological redox chemistry. Acc Chem Res 13:148–155

    Article  CAS  Google Scholar 

  103. Marcus R, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  104. Macara IG, Hoy TG, Harrison PM (1972) The formation of ferritin from apoferritin. Biochem J 126:151–162

    Article  CAS  Google Scholar 

  105. Nar H, Huber R, Messerschmidt A, Filippou AC, Barth M, Jaquinod M, van de Kamp M, Canters GW (1992) Characterization and crystal structure of zinc azurin, a by-product of heterologous expression in escherichia coli of pseudomonas aeruginosa copper azurin. Eur J Biochem 205(3):1123–1129

    Article  CAS  Google Scholar 

  106. Saltiel A, Kahn C (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  CAS  Google Scholar 

  107. Pekar A, Frank B (1972) Conformation of proinsulin. Comparison of insulin and proinsulin self-association at neutral pH. Biochemistry 11(22):4013–4016

    Article  CAS  Google Scholar 

  108. Raffalt AC, Schmidt L, Christensen HEM, Chi Q, Ulstrup J (2009) Electron transfer patterns of the di-heme protein cytochrome c(4) from Pseudomonas stutzeri. J Inorg Biochem 103(5):717–722

    Article  CAS  Google Scholar 

  109. Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96(7):2563–2606

    Article  CAS  Google Scholar 

  110. Farver O, Tepper AWJW, Wherland S, Canters GW, Pecht I (2009) Site-site interactions enhances intramolecular electron transfer in streptomyces coelicolor laccase. J Am Chem Soc 131(51):18226–18227

    Article  CAS  Google Scholar 

  111. Tao N, Cardenas G, Cunha F, Shi Z (1995) In situ STM and AFM study of protoporphyrin and iron (III) and zinc (II) protoporphyrins adsorbed on graphite in aqueous solutions. Langmuir 11:4445–4448

    Article  CAS  Google Scholar 

  112. McCreery RL (2008) Advanced carbon electrode materials for molecular electrochemistry. Chem Rev 108(7):2646–2687

    Article  CAS  Google Scholar 

  113. Choo H-S, Kinumoto T, Jeong S-K, Iriyama Y, Abe T, Ogumi Z (2007) Mechanism for electrochemical oxidation of highly oriented pyrolytic graphite in sulfuric acid solution. J Electrochem Soc 154(10):B1017

    Article  CAS  Google Scholar 

  114. Zhang J, Chi Q, Dong S, Wang E (1996) In situ electrochemical scanning tunnelling microscopy investigation of structure for horseradish peroxidase and its electricatalytic property. Bioelectrochem Bioenerg 39:267–274

    Article  CAS  Google Scholar 

  115. Chi Q, Zhang J, Friis EP, Andersen JET, Ulstrup J (1999) Electrochemistry of self-assembled monolayers of the blue copper protein pseudomonas aeruginosa azurin on Au(111). Electrochem Commun 1(3–4):91–96

    Article  CAS  Google Scholar 

  116. Vaz-Dominguez C, Pita M, de Lacey AL, Shleev S, Cuesta A (2012) Combined ATR-SEIRAS and EC-STM study of the immobilization of laccase on chemically modified au electrodes. J Phys Chem C 116:16532–16540

    Article  CAS  Google Scholar 

  117. Schmickler W, Widrig C (1992) The investigation of redox reactions with a scanning tunneling microscope: experimental and theoretical aspects. J Electroanal Chem 336:213–221

    Article  CAS  Google Scholar 

  118. Schmickler W (1993) Investigation of electrochemical electron transfer reactions with a scanning tunneling microscope: a theoretical study. Surf Sci 295(1–2):43–56

    Article  CAS  Google Scholar 

  119. Kuznetsov A, Sommer-Larsen P, Ulstrup J (1992) Resonance and environmental fluctuation effects in STM currents through large adsorbed molecules. Surf Sci 275:52–64

    Article  CAS  Google Scholar 

  120. Ryde U, Olsson M (2001) Structure, strain, and reorganization energy of blue copper models in the protein. Int J Quantum Chem 81(2001):335–347

    Article  CAS  Google Scholar 

  121. Dos Santos L, Climent V, Blanford CF, Armstrong FA (2010) Mechanistic studies of the ‘blue’Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Phys Chem Chem Phys 12:13962–13974

    Article  CAS  Google Scholar 

  122. Vesenka J, Miller R, Henderson E (1994) Three-dimensional probe reconstruction for atomic force microscopy. Rev Sci Instrum 65(7):2249

    Article  CAS  Google Scholar 

  123. Li Z, Han B, Meszaros G, Pobelov I, Wandlowski T, Błaszczyk A, Mayor M (2006) Two-dimensional assembly and local redox-activity of molecular hybrid structures in an electrochemical environment. Faraday Discuss 131:121

    Article  CAS  Google Scholar 

  124. Zhang J, Ulstrup J (2007) Oxygen-free in situ scanning tunnelling microscopy. J Electroanal Chem 599(2):213–220

    Article  CAS  Google Scholar 

  125. Roth JP, Klinman JP (2003) Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase. Proc Natl Acad Sci U S A 100(1):62–67

    Article  CAS  Google Scholar 

  126. Losic D, Shapter J, Gooding J (2002) Scanning tunneling microscopy studies of glucose oxidase on gold surfaces. Langmuir 18(14):5422–5428

    Article  CAS  Google Scholar 

  127. Rice RJ, McCreery RL (1989) Quantitative relationship between electron transfer rate and surface microstructure of laser-modified graphite electrodes. Anal Chem 61(15):1637–1641

    Article  CAS  Google Scholar 

  128. Friedl J, Bauer C, Rinaldi A, Stimming U (2013) Electron transfer kinetics of the VO2+/VO2+ – reaction on multi-walled carbon nanotubes. Carbon NY 63:228–239

    Article  CAS  Google Scholar 

  129. Crichton RR (1973) Structure and function of ferritin. Angew Chem Int Ed Engl 12(1):57–65

    Article  CAS  Google Scholar 

  130. Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G (2004) Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57(4):678–683

    Article  CAS  Google Scholar 

  131. Joachim C, Gimzewski JK, Aviram A (2000) Electronics using hybrid-molecular and mono-molecular devices. Nature 408(6812):541–548

    Article  CAS  Google Scholar 

  132. Maruccio G, Biasco A, Visconti P, Bramanti A, Pompa PP, Calabi F, Cingolani R, Rinaldi R, Corni S, Di Felice R, Molinari E, Verbeet MP, Canters GW (2005) Towards protein field-effect transistors: report and model of a prototype. Adv Mater 17(7):816–822

    Article  CAS  Google Scholar 

  133. Tans S, Verschueren A, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 672(1989):669–672

    Google Scholar 

  134. Kubatkin S, Danilov A, Hjort M, Cornil J (2003) Single-electron transistor of a single organic molecule with access to several redox states. Nature 425(6959):698–701

    Article  CAS  Google Scholar 

  135. Choi J-W, Oh B-K, Kim YJ, Min J (2007) Protein-based biomemory device consisting of the cysteine-modified azurin. Appl Phys Lett 91(26):263902

    Article  CAS  Google Scholar 

  136. Lee T, Kim S-U, Min J, Choi J-W (2010) Multilevel biomemory device consisting of recombinant azurin/cytochrome C. Adv Mater 22(4):510–514

    Article  CAS  Google Scholar 

  137. Yagati AK, Kim S-U, Min J, Choi J-W (2009) Multi-bit biomemory consisting of recombinant protein variants, azurin. Biosens Bioelectron 24(5):1503–1507

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Stimming .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herpich, M., Friedl, J., Stimming, U. (2015). Scanning Electrochemical Potential Microscopy (SECPM) and Electrochemical STM (EC-STM). In: Kumar, C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_1

Download citation

Publish with us

Policies and ethics