Skip to main content

Halving Balls in Deterministic Linear Time

  • Conference paper
Algorithms - ESA 2014 (ESA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8737))

Included in the following conference series:

Abstract

Let \({\mathcal{D}}\) be a set of n pairwise disjoint unit balls in ℝd and P the set of their center points. A hyperplane \({\mathcal{H}}\) is an m-separator for \({\mathcal{D}}\) if each closed halfspace bounded by \({\mathcal{H}}\) contains at least m points from P. This generalizes the notion of halving hyperplanes (n/2-separators). The analogous notion for point sets has been well studied. Separators have various applications, for instance, in divide-and-conquer schemes. In such a scheme any ball that is intersected by the separating hyperplane may still interact with both sides of the partition. Therefore it is desirable that the separating hyperplane intersects a small number of balls only.

We present three deterministic algorithms to bisect or approximately bisect a given set of n disjoint unit balls by a hyperplane: firstly, a linear-time algorithm to construct an αn-separator in ℝd, for 0 < α < 1/2, that intersects at most cn (d − 1)/d balls, where c depends on d and α. The number of balls intersected is best possible up to the constant c. Secondly, we present a near-linear time algorithm to find an (n/2 − o(n))-separator in ℝd that intersects o(n) balls. Finally, we give a linear-time algorithm to construct a halving line in ℝ2 that intersects O(n (5/6) + ε) disks.

Our results improve the runtime of a disk sliding algorithm by Bereg, Dumitrescu and Pach. In addition, our results improve and derandomize an algorithm to construct a space decomposition used by Löffler and Mulzer to construct an onion decomposition for imprecise points.

Partially supported by the ESF EUROCORES programme EuroGIGA, CRP GraDR and the Swiss National Science Foundation, SNF Project 20GG21-134306.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Katchalski, M., Pulleyblank, W.R.: Cutting disjoint disks by straight lines. Discrete & Computational Geometry 4, 239–243 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Atkin, A.O.L., Bernstein, D.J.: Prime sieves using binary quadratic forms. Math. Comput. 73(246), 1023–1030 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Barequet, G.: A lower bound for Heilbronn’s triangle problem in d dimensions. SIAM Journal on Discrete Mathematics 14(2), 230–236 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bereg, S., Dumitrescu, A., Pach, J.: Sliding disks in the plane. International Journal of Computational Geometry & Applications 18(05), 373–387 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. Journal of Computer and System Sciences 7(4), 448–461 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Esposito, L., Ferone, V., Kawohl, B., Nitsch, C., Trombetti, C.: The longest shortest fence and sharp Poincaré–sobolev inequalities. Archive for Rational Mechanics and Analysis 206(3), 821–851 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Held, M., Mitchell, J.S.: Triangulating input-constrained planar point sets. Information Processing Letters 109(1), 54–56 (2008)

    Article  MathSciNet  Google Scholar 

  8. Lefmann, H.: On Heilbronn’s problem in higher dimension. Combinatorica 23(4), 669–680 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Lo, C.-Y., Matoušek, J., Steiger, W.L.: Algorithms for ham-sandwich cuts. Discrete & Computational Geometry 11, 433–452 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Löffler, M., Mulzer, W.: Unions of onions: preprocessing imprecise points for fast onion layer decomposition. In: Algorithms and Data Structures, pp. 487–498. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Martini, H., Schöbel, A.: Median hyperplanes in normed spaces – a survey. Discrete Applied Mathematics 89(1), 181–195 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  12. Matoušek, J.: Efficient partition trees. Discrete & Computational Geometry 8(1), 315–334 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pach, J., Sharir, M.: Combinatorial geometry and its algorithmic applications: The Alcalá lectures. Mathematical Surveys and Monographs, vol. 152. Amer. Math. Soc. (2009)

    Google Scholar 

  14. Roth, K.F.: On a problem of Heilbronn. J. London Math. Soc. 26(3), 198–204 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  15. Tverberg, H.: A seperation property of plane convex sets. Mathematica Scandinavica 45, 255–260 (1979)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffmann, M., Kusters, V., Miltzow, T. (2014). Halving Balls in Deterministic Linear Time. In: Schulz, A.S., Wagner, D. (eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44777-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44777-2_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44776-5

  • Online ISBN: 978-3-662-44777-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics