Skip to main content

Adaptive Optics Imaging of the Retina and Vessels

  • Chapter
  • First Online:
Teleophthalmology in Preventive Medicine
  • 608 Accesses

Abstract

Adaptive optics imaging enables the observation of microscopic structures of the retina, such as photoreceptors and the arteriolar wall, and more generally increases the overall resolution and contrast of fundus images. We present here clinical applications of AO flood imaging for the management of age-related macular degeneration and arterial hypertension. A promising application is the monitoring of therapy at a short time scale, since AO can detect minute disease-related changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A. 1997;14(11):2884–92.

    Article  CAS  Google Scholar 

  2. Gocho K, Sarda V, Falah S, Sahel JA, Sennlaub F, Benchaboune M, et al. Adaptive optics imaging of geographic atrophy. Invest Ophthalmol Vis Sci. 2013;54:3673–80.

    Article  PubMed  Google Scholar 

  3. Buus NH, Mathiassen ON, Fenger-Grøn M, Præstholm MN, Sihm I, Thybo NK, et al. Small artery structure during antihypertensive therapy is an independent predictor of cardiovascular events in essential hypertension. J Hypertens. 2013;31:791–7.

    Article  CAS  PubMed  Google Scholar 

  4. Wong TY, Klein R, Sharrett AR, Duncan BB, Couper DJ, Klein BE, et al. Atherosclerosis Risk in Communities Study. Retinal arteriolar diameter and risk for hypertension. Ann Intern Med. 2004;140:248–55.

    Google Scholar 

  5. Wong TY, Klein R, Nieto FJ, Klein BE, Sharrett AR, Meuer SM, et al. Retinal microvascular abnormalities and 10-year cardiovascular mortality: a population-based case–control study. Ophthalmology. 2003;110:933–40.

    Article  PubMed  Google Scholar 

  6. Lindley RI, Wang JJ, Wong MC, Mitchell P, Liew G, Hand P, et al. Multi-Centre Retina and Stroke Study (MCRS) Collaborative Group. Retinal microvasculature in acute lacunar stroke: a cross-sectional study. Lancet Neurol. 2009;8:628–34.

    Google Scholar 

  7. Koch E, Rosenbaum D, Brolly A, Sahel JA, Chaumet-Riffaud P, Girerd X, Rossant F, Paques M. Morphometric analysis of small arteries in the human retina using adaptive optics imaging: relationship with blood pressure and focal vascular changes. J Hypertens. 2014;32:890–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Heagerty AM. Predicting hypertension complications from small artery structure. J Hypertens. 2007;25:939–40.

    Article  CAS  PubMed  Google Scholar 

  9. Seitz R. The retinal vessels: comparative ophthalmoscopic and histologic studies on healthy and diseased eye. Translated by Frederick C. Blodi. Saint-Louis: CV Mosby; 1964.

    Google Scholar 

  10. Jefferies P, Clemett R, Day T. An anatomical study of retinal arteriovenous crossings and their role in the pathogenesis of retinal branch vein occlusions. Aust N Z J Ophthalmol. 1993;21:213–7.

    Article  CAS  PubMed  Google Scholar 

  11. Kimura T, Mizota A, Fujimoto N, Tsuyama Y. Light and electron microscopic studies on human retinal blood vessels of patients with sclerosis and hypertension. Int Ophthalmol. 2005;4:151–8.

    Google Scholar 

  12. Schmitz-Valckenberg S, Lara D, Nizari S, Normando EM, Guo L, Wegener AR, et al. Localisation and significance of in vivo near-infrared autofluorescent signal in retinal imaging. Br J Ophthalmol. 2011;95:1134–9.

    Article  PubMed  Google Scholar 

  13. Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH. Bruch’s membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol. 2010;94:918–25.

    Article  CAS  PubMed  Google Scholar 

  14. Paques M, Simonutti M, Augustin S, Goupille O, El Mathari B, Sahel JA. In vivo observation of the locomotion of microglial cells in the retina. Glia. 2010;58:1663–8.

    Article  PubMed  Google Scholar 

  15. Sarks SH. Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol. 1976;60:324–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Chui TY, Vannasdale DA, Burns SA. The use of forward scatter to improve retinal vascular imaging with an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express. 2012;10:2537–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Paques MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Paques, M. (2015). Adaptive Optics Imaging of the Retina and Vessels. In: Michelson, G. (eds) Teleophthalmology in Preventive Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44975-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44975-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44974-5

  • Online ISBN: 978-3-662-44975-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics